
CHAPTER 9

Approximation theory and stability

Polynomials of degree d have d+1 degrees of freedom, namely the d+1 coefficients relative
to some polynomial basis. It turns out that each of these degrees of freedom can be utilised
to gain approximation power so that the possible rate of approximation by polynomials of
degree d is hd+1, see Section 9.1. The meaning of this is that when a smooth function is
approximated by a polynomial of degree d on an interval of length h, the error is bounded
by Chd+1, where C is a constant that is independent of h. The exponent d + 1 therefore
controls how fast the error tends to zero with h.

When several polynomials are linked smoothly together to form a spline, each polyno-
mial piece has d+1 coefficients, but some of these are tied up in satisfying the smoothness
conditions. It therefore comes as a nice surprise that the approximation power of splines of
degree d is the same as for polynomials, namely hd+1, where h is now the largest distance
between two adjacent knots. In passing from polynomials to splines we have therefore
gained flexibility without sacrificing approximation power. We prove this in Section 9.2,
by making use of some of the simple quasi-interpolants that we constructed in Chapter 8;
it turns out that these produce spline approximations with the required accuracy.

The quasi-interpolants also allow us to establish two important properties of B-splines.
The first is that B-splines form a stable basis for splines, see Section 9.3. This means that
small perturbations of the B-spline coefficients can only lead to small perturbations in the
spline, which is of fundamental importance for numerical computations. An important
consequence of the stability of the B-spline basis is that the control polygon of a spline
converges to the spline as the knot spacing tends to zero; this is proved in Section 9.4.

9.1 The distance to polynomials

We start by determining how well a given real valued function f defined on an interval
[a, b] can be approximated by a polynomial of degree d. We measure the error in the
approximation with the uniform norm which for a bounded function g defined on an interval
[a, b] is defined by

‖g‖∞,[a,b] = sup
a≤x≤b

∣∣g(x)
∣∣.

Whenever we have an approximation p to f we can use the norm and measure the error by
‖f−p‖∞,[a,b]. There are many possible approximations to f by polynomials of degree d, and
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the approximation that makes the error as small as possible is of course of special interest.
This approximation is referred to as the best approximation and the corresponding error
is referred to as the distance from f to the space πd of polynomials of degree ≤ d. This is
defined formally as

dist∞,[a,b](f,πd) = inf
p∈πd

‖f − p‖∞,[a,b].

In order to bound this approximation error, we have to place some restrictions on the func-
tions that we approximate, and we will only consider functions with piecewise continuous
derivatives. Such functions lie in a space that we denote Ck

∆[a, b] for some integer k ≥ 0.
A function f lies in this space if it has k − 1 continuous derivatives on the interval [a, b],
and the kth derivative Dkf is continuous everywhere except for a finite number of points
in the interior (a, b), given by ∆ = (zj). At the points of discontinuity ∆ the limits from
the left and right, given by Dkf(zj+) and Dkf(zj−), should exist so all the jumps are
finite. If there are no continuous derivatives we write C∆[a, b] = C0

∆[a, b]. Note that we
will often refer to these spaces without stating explicitly what the singularities ∆ are.

It is quite simple to give an upper bound for the distance of f to polynomials of degree
d by choosing a particular approximation, namely Taylor expansion.
Theorem 9.1. Given a polynomial degree d and a function f in Cd+1

∆ [a, b], then

dist∞,[a,b](f,πd) ≤ Cdh
d+1‖Dd+1f‖∞,[a,b],

where h = b− a and the constant Cd only depends on d,

Cd =
1

2d+1(d + 1)!
.

Proof. Consider the truncated Taylor series of f at the midpoint m = (a + b)/2 of [a, b],

Tdf(x) =
d∑

k=0

(x−m)k

k!
Dkf(m), for x ∈ [a, b].

Since Tdf is a polynomial of degree d we clearly have

dist∞,[a,b](f,πd) ≤ ‖f − Tdf‖∞,[a,b]. (9.1)

The error is given by the integral form of the remainder in the Taylor expansion,

f(x)− Tdf(x) =
1
d!

∫ x

m
(x− y)dDd+1f(y)dy,

which is valid for any x ∈ [a, b]. If we restrict x to the interval [m, b] we obtain

|f(x)− Tdf(x)| ≤ ‖Dd+1f‖∞,[a,b]
1
d!

∫ x

m
(x− y)ddy.

The integral is given by

1
d!

∫ x

m
(x− y)ddy =

1
(d + 1)!

(x−m)d+1 ≤ 1
(d + 1)!

(
h

2

)d+1

,
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so for x ≥ m we have

∣∣f(x)− Tdf(x)
∣∣ ≤ 1

2d+1(d + 1)!
hd+1‖Dd+1f‖∞,[a,b].

By symmetry this estimate must also hold for x ≤ m. Combining the estimate with (9.1)
completes the proof.

It is in fact possible to compute the best possible constant Cd. It turns out that for
each f ∈ Cd+1[a, b] there is a point ξ ∈ [a, b] such that

dist∞,[a,b](f,πd) =
2

4d+1(d + 1)!
hd+1|Dd+1f(ξ)|

Applying this formula to the function f(x) = xd+1 we see that the exponent d + 1 in hd+1

is best possible.

9.2 The distance to splines

Just as we defined the distance from a function f to the space of polynomials of degree
d we can define the distance from f to a spline space. Our aim is to show that on one
knot interval, the distance from f to a spline space of degree d is essentially the same as
the distance from f to the space of polynomials of degree d on a slightly larger interval,
see Theorem 9.2 and Corollary 9.12. Our strategy is to consider the cases d = 0, 1 and 2
separately and then generalise to degree d. The main ingredient in the proof is to construct
a simple but good approximation method that we can use in the same way that Taylor
expansion was used in the polynomial case above. Some of the quasi-interpolants that we
constructed in Chapter 8 will do this job very nicely.

We consider a spline space Sd,τ where d is a nonnegative integer and τ = (τi)n+d+1
i=1 is

a d + 1 regular knot vector and set

a = τ1, b = τn+d+1, hj = τj+1 − τj , h = max
1≤j≤n

hj .

Given a function f we consider the distance from f to Sd,τ defined by

dist∞,[a,b](f, Sd,τ) = inf
g∈Sd,τ

‖f − g‖∞,[a,b].

We want to show the following.
Theorem 9.2. Let the polynomial degree d and the function f in Cd+1

∆ [a, b] be given. The
distance between f and the spline space Sd,τ is bounded by

dist∞,[a,b](f, Sd,τ) ≤ Ddh
d+1‖Dd+1f‖∞,[a,b], (9.2)

where the constant Dd depends on d, but not on f or τ .
We will prove this theorem by constructing a spline Pdf such that

|f(x)− Pdf(x)| ≤ Ddh
d+1‖Dd+1f‖∞,[a,b], x ∈ [a, b] (9.3)
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for a constant Dd that depends only on d. The approximation Pdf will be a quasi-
interpolant on the form

Pdf =
n∑

i=1

λi(f)Bi,d

where λi is a rule for computing the ith B-spline coefficient. We will restrict ourselves to
rules λi like

λi(f) =
d∑

k=0

wi,kf(xi,k)

where the points (xi,k)d
k=0 all lie in one knot interval and (wi,k)d

k=0 are suitable coefficients.

9.2.1 The constant and linear cases

We first prove Theorem 9.2 in the simplest cases d = 0 and d = 1. For d = 0 the knots
form a partition a = τ1 < · · · < τn+1 = b of [a, b] and the B-spline Bi,0 is the characteristic
function of the interval [τi, τi+1) for i = 1, . . . , n − 1, while Bn,0 is the characteristic
function of the closed interval [τn, τn+1]. We consider the step function

g(x) = P0f(x) =
n∑

i=1

f(τi+1/2)Bi,0(x), (9.4)

where τi+1/2 = (τi+τi+1)/2. Fix x ∈ [a, b] and let µ be an integer such that τµ ≤ x < τµ+1.
We then have

f(x)− P0f(x) = f(x)− f(τµ+1/2) =
∫ x

τµ+1/2

Df(y)dy

so
∣∣f(x)− P0f(x)

∣∣ ≤ |x− τµ+1/2| ‖Df‖∞,[τµ,τµ+1] ≤
h

2
‖Df‖∞,[a,b].

In this way we obtain (9.2) with D0 = 1/2.
In the linear case d = 1 we define P1f to be the piecewise linear interpolant to f on τ

defined by

g = P1f =
n∑

i=1

f(τi+1)Bi,1. (9.5)

Proposition 5.2 gives an estimate of the error in linear interpolation and by applying this
result on each interval we obtain

‖f − P1f‖∞,[a,b] ≤
h2

8
‖D2f‖∞,[a,b]

which is (9.2) with D1 = 1/8.

9.2.2 The quadratic case

The quadratic case d = 2 is more involved. We shall approximate f by the quasi-interpolant
P2f that we constructed in Section 8.2.2 and then estimate the error. The relevant prop-
erties of P2 are summarised in the following lemma.
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Lemma 9.3. Suppose τ = (τi)n+3
i=1 is a knot vector with τi+3 > τi for i = 1, . . . , n and set

ti+3/2 = (ti+1 + ti+2)/2. The operator

P2f =
n∑

i=1

λi(f)Bi,2,τ with λi(f) = −1
2
f(τi+1) + 2f(τi+3/2)−

1
2
f(τi+2) (9.6)

is linear and satisfies P2f = f for all f ∈ S2,τ .
Note that since the knot vector is 3-regular we have λ1(f) = f(t2) and λn(f) = f(tn+1).

We also note that since P2 reproduces all splines in Sd,τ it certainly reproduces all quadratic
polynomial. This fact that will be useful in the proof of Lemma 9.6.

Our aim is to show that (9.3) holds for d = 2 and we are going to do this by establishing
a sequence of lemmas. The first lemma shows that λi(f) can become at most 3 times as
large as f , irrespective of what the knot vector is.
Lemma 9.4. Let P2(f) be as in (9.6). Then

∣∣λi(f)
∣∣ ≤ 3‖f‖∞,[τi+1,τi+2], for i = 1, . . . , n. (9.7)

Proof. Fix an integer i. Then

∣∣λi(f)
∣∣ =

∣∣∣−
1
2
f(τi+1) + 2f(τi+3/2)−

1
2
f(τi+2)

∣∣∣ ≤
(1

2
+ 2 +

1
2

)
‖f‖∞,[τi+1,τi+2]

from which the result follows.

Since the B-spline coefficients of P2f are bounded it is easy to see that the spline P2f
is also bounded by the same constant.
Lemma 9.5. Select some interval [τµ, τµ+1) of [τ3, τn+1). On this interval the spline P2f
is bounded by

‖P2f‖∞,[τµ,τµ+1] ≤ 3‖f‖∞,[τµ−1,τµ+2]. (9.8)

Proof. Fix x ∈ [τµ, τµ+1]. Since the B-splines are nonnegative and form a partition of
unity we have

|P2f(x)| =
∣∣∣

µ∑

i=µ−2

λi(f)Bi,2,τ(x)
∣∣∣ ≤ max

µ−2≤i≤µ
|λi(f)|

≤ 3 max
µ−2≤i≤µ

‖f‖∞,[τi+1,τi+2] = 3‖f‖∞,[τµ−1,τµ+2],

where we used Lemma 9.4. This completes the proof.

The following lemma shows that on one knot interval the spline P2f approximates f
almost as well as the best quadratic polynomial over a slightly larger interval. The proof
depends on a standard trick that we will also use in the general case.
Lemma 9.6. Let [τµ, τµ+1) be a subinterval of [τ3, τn+1). On this interval the error f−P2f
is bounded by

‖f − P2f‖∞,[τµ,τµ+1] ≤ 4 dist∞,[τµ−1,τµ+2](f,π2). (9.9)
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Proof. Let p ∈ π2 be any quadratic polynomial. Since P2p = p and P2 is a linear operator,
application of (9.8) to f − p yields

∣∣f(x)− (P2f)(x)
∣∣ =

∣∣f(x)− p(x)−
(
(P2f)(x)− p(x)

)∣∣

≤
∣∣f(x)− p(x)

∣∣ +
∣∣P2(f − p)(x)

∣∣

≤ (1 + 3)‖f − p‖∞,[τµ−1,τµ+2].

(9.10)

Since p is arbitrary we obtain (9.9).

Proof of Theorem 9.2 for d = 2. Theorem 9.1 with d = 2 states that

dist∞,[a,b](f,π2) ≤ C2h
3‖D3f‖∞,[a,b],

where h = b − a and C2 = 1/(23 3!). Specialising this estimate to the interval [a, b] =
[τµ−1, τµ+2] and combining with (9.9) we obtain (9.3) and hence (9.2) with D2 = 1/12.

9.2.3 The general case
The general case is analogous to the quadratic case, but the details are more involved. The
crucial part is to find a sufficiently good local approximation operator. The operator P2

is a quasi interpolant that is based on local interpolation with quadratic polynomials at
the three points xi,k = τi+1 + k(τi+2 − τi+1)/2 for k = 0, 1, 2. Those points are located
symmetrically in the middle subinterval of the support of the B-spline Bi,2.

We will follow the same strategy for general degree. The resulting quasi-interpolant
will be a special case of the one given in Theorem 8.7. The challenge is to choose the local
interpolation points in such a way that the B-spline coefficients of the approximation can
be bounded independently of the knots, as in Lemma 9.4. The key is to let all the d + 1
points be uniformly distributed in the largest subinterval [ai, bi] = [τµ, τµ+1] of [τi+1, τi+d],

xi,k = ai +
k

d
(bi − ai), for k = 0, 1, . . . , d. (9.11)

Given f ∈ C∆[a, b] we define Pdf ∈ Sd,τ by

Pdf(x) =
n∑

i=1

λi(f)Bi,d(x), where λi(f) =
d∑

k=0

wi,kf(xi,k). (9.12)

In this situation Theorem 8.7 specialises to the following.
Lemma 9.7. Suppose that the functionals λi in (9.12) are given by λi(f) = f(τi+1) if
τi+d = τi+1, while if τi+d > τi+1 the coefficients of λi(f) are given by

wi,k = γi(pi,k), for k = 0, 1, . . . , d, (9.13)

where γi(pi,k) is the ith B-spline coefficient of the polynomial

pi,k(x) =
d∏

j=0
j %=k

x− xi,j

xi,k − xi,j
. (9.14)

Then the operator Pd in (9.12) satisfies Pdf = f for all f ∈ Sd,τ .
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We really only need reproduction of polynomials of degree d, but since all the interpol-
ation points lie in one knot interval we automatically get reproduction of all of Sd,τ .

The first challenge is to find a formula for the B-spline coefficients of pi,k. Blossoming
makes this easy.
Lemma 9.8. Suppose the spline space Sd,τ is given together with the numbers v1, . . . , vd.
The ith B-spline coefficient of the polynomial p(x) = (x− v1) . . . (x− vd) can be written

γi(p) =
1
d!

∑

(j1,...,jd)∈Πd

(ti+j1 − v1) · · · (ti+jd − vd), (9.15)

where Πd is the set of all permutations of the integers {1, 2, . . . , d}.

Proof. By Theorem 4.16 we have

γi(p) = B[p](τi+1, . . . , τi+d),

where B[p] is the blossom of p. It therefore suffices to verify that the expression (9.15)
satisfies the three properties of the blossom. This is simple and is left to the reader.

Let us consider the special case d = 2 as an example. The set of all permutations of
{1, 2} are Π2 = {(1, 2), (2, 1)} and therefore

γi
(
(x− v1)(x− v2)

)
=

1
2

(
(τi+1 − v1)(τi+2 − v2) + (τi+2 − v1)(τi+1 − v2)

)
.

The next and most difficult step is to obtain a bound for λi(f).
Theorem 9.9. Let Pd(f) =

∑n
i=1 λi(f)Bi,d be the operator in Lemma 9.7. Then

|λi(f)| ≤ Kd‖f‖∞,[τi+1,τi+d], i = 1, . . . , n, (9.16)

where

Kd =
2d

d!
(
d(d− 1)

)d (9.17)

depends only on d.

Proof. Fix an integer i. We may as well assume that τi+1 < τi+d since otherwise the
result is obvious. From Lemma 9.8 we have

wi,k =
∑

(j1,...,jd)∈Πd

d∏

r=1

(
τi+jr − vr

xi,k − vr

)
/d!, (9.18)

where (vr)d
r=1 = (xi,0, . . . , xi,k−1, xi,k+1, . . . , xi,d). and Πd denotes the set of all permuta-

tions of the integers {1, 2, . . . , d}. Since the numbers τi+jr and vr belongs to the interval
[τi+1, τi+d] for all r we have the inequality

d∏

r=1

(τi+jr − vr) ≤ (τi+d − τi+1)d. (9.19)
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We also note that xi,k− vr = (k− q)(bi− ai)/d for some q in the range 1 ≤ q ≤ d but with
q &= k. Taking the product over all r we therefore obtain

d∏

r=1

|xi,k − vr| =
d∏

q=0
q %=k

|k − q|
d

(bi − ai)

= k!(d− k)!
(

bi − ai

d

)d

≥ k!(d− k)!
(

τi+d − τi+1

d(d− 1)

)d

(9.20)

for all values of k and r since [ai, bi] is the largest subinterval of [τi+1, τi+d]. The sum in
(9.18) contains d! terms which means that

d∑

k=0

|wi,k| ≤
[d(d− 1)]d

d!

d∑

k=0

(
d

k

)
=

2d

d!
[d(d− 1)]d = Kd

and therefore
∣∣λi(f)

∣∣ ≤ ‖f‖∞,[τi+1,τi+d]

d∑

k=0

|wi,k| ≤ Kd‖f‖∞,[τi+1,τi+d] (9.21)

which is the required inequality.

Theorem 9.9 is the central ingredient in the proof of Theorem 9.2, but it has many
other consequences as well, some of which we will consider later in this chapter. In fact
Theorem 9.9 gives one of the key properties of B-splines. If f =

∑n
i=1 ciBi,d,τ is a spline

in Sd,τ we know that λi(f) = ci. The inequality (9.16) therefore states that a B-spline
coefficient is at most Kd times larger than the spline it represents, where the constant Kd

is independent of the knots. A similar conclusion holds for d ≤ 2, see Lemma 9.4 and the
definition of P0 and P1 in (9.4) and (9.5). For later reference we record this in a corollary.
Corollary 9.10. For any spline f =

∑n
i=1 ciBi,d in Sd,τ the size of the B-spline coefficients

is bounded by
|ci| ≤ Kd‖f‖∞,[τi+1,τi+d],

where the the constant Kd depends only on d.
From the bound on λi(f) we easily obtain a similar bound for the norm of Pdf .

Theorem 9.11. Let f be a function in the space C∆[a, b]. On any subinterval [τµ, τµ+1)
of [τd+1, τn+1) the approximation Pdf is bounded by

‖Pdf‖∞,[τµ,τµ+1] ≤ Kd‖f‖∞,[τµ−d+1,τµ+d], (9.22)

where Kd is the constant in Theorem 9.9.

Proof. Fix an x in some interval [τµ, τµ+1). Since the B-splines are nonnegative and form
a partition of unity we have by Theorem 9.9

∣∣Pdf(x)
∣∣ =

∣∣∣
µ∑

i=µ−d

λi(f)Bi,d,τ(x)
∣∣∣ ≤ max

µ−d≤i≤µ

∣∣λi(f)
∣∣

≤ Kd max
µ−d≤i≤µ

‖f‖∞,[τi+1,τi+d] = Kd‖f‖∞,[τµ−d+1,τµ+d]

This completes the proof.
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The following corollary shows that Pdf locally approximates f essentially as well as
the best polynomial approximation of f of degree d.
Corollary 9.12. On any subinterval [τµ, τµ+1) the error f − Pdf is bounded by

‖f − Pdf‖∞,[τµ,τµ+1] ≤ (1 + Kd) dist∞,[τµ−d+1,τµ+d](f,πd), (9.23)

where Kd is the constant in Theorem 9.9

Proof. We argue exactly as in the quadratic case. Let p ∈ πd be any polynomial in πd.
Since Pd p = p and Pd is a linear operator we have

∣∣f(x)− (Pdf)(x)
∣∣ =

∣∣f(x)− p(x)−
(
(Pdf)(x)− p(x)

)∣∣

≤
∣∣f(x)− p(x)

∣∣ +
∣∣Pd(f − p)(x)

∣∣

≤ (1 + Kd)‖f − p‖∞,[τµ−d+1,τµ+d].

Since p is arbitrary we obtain (9.23).

Proof of Theorem 9.2 for general d. By Theorem 9.1 we have for any interval [a, b]

dist∞,[a,b](f,πd) ≤ Cdh
d+1‖Dd+1f‖∞,[a,b],

where h = b − a and Cd only depends on d. Combining this estimate on [a, b] =
[τµ−d+1, τµ+d] with (9.23) we obtain (9.3) and hence (9.2) with Dd = (Kd + 1)Cd.

We have accomplished our task of estimating the distance from a function in Cd+1
∆ [a, b]

to an arbitrary spline space Sd,τ . However, there are several unanswered questions. Perhaps
the most obvious is whether the constant Kd is the best possible. A moment’s thought will
make you realise that it certainly is not. One reason is that we made use of some rather
coarse estimates in the proof of Theorem 9.9. Another reason is that we may obtain better
estimates by using a different approximation operator.

In fact, it is quite easy to find a better operator which is also a quasi-interpolant based
on local interpolation. Instead of choosing the local interpolation points uniformly in the
largest subinterval of [τi+1, τi+d], we simply choose the points uniformly in [τi+1, τi+d],

xi,k = τi+1 +
k

d
(τi+d − τi+1), for k = 0, 1, . . . , d.

It is easy to check that the bound (9.19) on the numerator still holds while the last estimate
in the bound on the denominator (9.20) is now unnecessary so we have

d∏

r=1

|xi,k − vr| =
d∏

q=0
q %=k

|k − q|
d

(τi+d − τi+1) =
k!(d− k)!

dd
(τi+d − τi+1)d.

This gives a new constant

K̃d =
2ddd

d!
.

Note that the new approximation operator will not reproduce the whole spline space for
d > 2. This improved constant can therefore not be used in Corollary 9.10.

The constant can be improved further by choosing the interpolation points to be the
extrema of the Chebyshev polynomial, adjusted to the interval [τi+1, τi+d].
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9.3 Stability of the B-spline basis

In order to compute with polynomials or splines we need to choose a basis to represent the
functions. If a basis is to be suitable for computer manipulations it should be reasonably
insensitive to round-off errors. In particular, functions with ‘small’ function values should
have ‘small’ coefficients and vice versa. A basis with this property is said to be well
conditioned or stable and the stability is measured by the condition number of the basis.
In this section we will study the condition number of the B-spline basis.

9.3.1 A general definition of stability

The stability of a basis can be defined quite generally. Instead of considering polynomials
we can consider a general linear vector space where we can measure the size of the elements
through a norm; this is called a normed linear space.
Definition 9.13. Let V be a normed linear space. A basis (φj) for V is said to be stable
with respect to a vector norm ‖ · ‖ if there are small positive constants C1 and C2 such
that

C−1
1

∥∥(cj)
∥∥ ≤

∥∥∥
∑

j

cjφj

∥∥∥ ≤ C2

∥∥(cj)
∥∥, (9.24)

for all sets of coefficients c = (cj). Let C∗1 and C∗2 denote the smallest possible values of
C1 and C2 such that (9.24) holds. The condition number of the basis is then defined to be
κ = κ((φi)i) = C∗1C∗2 .

At the risk of confusion we have used the same symbol both for the norm in V and
the vector norm of the coefficients. In our case V will be some spline space Sd,t and the
basis (φj) will be the B-spline basis. The norms we will consider are the p-norms which
are defined by

‖f‖p = ‖f‖p,[a,b] =
(∫ b

a
|f(x)|pdx

)1/p

and ‖c‖p =
( ∑

j

|cj |p
)1/p

where p is a real number in the range 1 ≤ p < ∞. Here f is a function on the interval [a, b]
and c = (cj) is a real vector. For p = ∞ the norms are defined by

‖f‖∞ = ‖f‖∞,[a,b] = max
a≤x≤b

|f(x)| and ‖c‖∞ =
∥∥(cj)

∥∥
∞ = max

j
|cj |,

In practice, the most important norms are the 1-, 2- and ∞-norms.
In Definition 9.13 we require the constants C1 and C2 to be ‘small’, but how small is

‘small’? There is no unique answer to this question, but it is typically required that C1

and C2 should be independent of the dimension n of V, or at least grow very slowly with
n. Note that we always have κ ≥ 1, and κ = 1 if and only if we have equality in both
inequalities in (9.24).

A stable basis is desirable for many reasons, and the constant κ = C1C2 crops up in
many different contexts. The condition number κ does in fact act as a sort of derivative
of the basis and gives a measure of how much an error in the coefficients is magnified in a
function value.
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Proposition 9.14. Suppose (φj) is a stable basis for V. If f =
∑

j cjφj and g =
∑

j bjφj

are two elements in V with f &= 0, then

‖f − g‖
‖f‖ ≤ κ

‖c− b‖
‖c‖ , (9.25)

where κ is the condition number of the basis as in Definition 9.13.

Proof. From (9.24), we have the two inequalities ‖f − g‖ ≤ C2‖(cj − bj)‖ and 1/‖f‖ ≤
C1/‖(cj)‖. Multiplying these together gives the result.

If we think of g as an approximation to f then (9.25) says that the relative error in f−g
is bounded by at most κ times the relative error in the coefficients. If κ is small a small
relative error in the coefficients gives a small relative error in the function values. This is
important in floating point calculations on a computer. A function is usually represented
by its coefficients relative to some basis. Normally, the coefficients are real numbers that
must be represented inexactly as floating point numbers in the computer. This round-off
error means that the computed spline, here g, will differ from the exact f . Proposition 9.14
shows that this is not so serious if the perturbed coefficients of g are close to those of f
and the basis is stable.

Proposition 9.14 also provides some information as to what are acceptable values of C∗1
and C∗2 . If for example κ = C∗1C∗2 = 100 we risk losing 2 decimal places in evaluation of a
function; exactly how much accuracy one can afford to lose will of course vary.

One may wonder whether there are any unstable polynomial bases. It turns out that
the power basis 1, x, x2, . . . , on the interval [0, 1] is unstable even for quite low degrees.
Already for degree 10, one risks losing as much as 4 or 5 decimal digits in the process of
computing the value of a polynomial on the interval [0, 1] relative to this basis, and other
operations such as numerical root finding is even more sensitive.

9.3.2 Stability of the B-spline basis, p = ∞
Since splines and B-splines are defined via the knot vector, it is quite conceivable that
the condition number of the B-spline basis could become arbitrarily large for certain knot
configurations, for example in the limit when two knots merge into one. One of the key
features of splines is that this cannot happen.
Theorem 9.15. There is a constant Kd which depends only on the polynomial degree d,
such that for all spline spaces Sd,t and all splines f =

∑n
i=1 ciBi,d ∈ Sd,t with B-spline

coefficients c = (ci)n
i=1, the two inequalities

K−1
d ‖c‖∞ ≤ ‖f‖∞,[t1,tn+d] ≤ ‖c‖∞ (9.26)

hold.

Proof. We have already proved variants of the second inequality several times; it follows
since B-splines are nonnegative and sum to (at most) 1.

The first inequality is a consequence of Corollary 9.10. The value of the constant Kd

is K0 = K1 = 1, K2 = 3 while it is given by (9.17) for d > 2.
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The condition number of the B-spline basis on the knot vector τ with respect to the
∞-norm is usually denoted κd,∞,τ . By taking the supremum over all knot vectors we obtain
the knot independent condition number κd,∞,

κd,∞ = sup
τ

κd,∞,τ .

Theorem 9.15 shows that κd,∞ is bounded above by Kd.
Although Kd is independent of the knots, it grows quite quickly with d and seems to

indicate that the B-spline basis may well be unstable for all but small values of d. However,
by using different techniques it is possible to find better estimates for the condition number,
and it is indeed known that the B-spline basis is very stable, at least for moderate values
of d. It is simple to determine the condition number for d ≤ 2; we have κ0,∞ = κ1,∞ = 1
and κ2,∞ = 3. For d ≥ 3 it has recently been shown that κd,∞ = O(2d). The first few
values are known to be approximately κ3,∞ ≈ 5.5680 and κ4,∞ ≈ 12.088.

9.3.3 Stability of the B-spline basis, p < ∞
In this section we are going to generalise Theorem 9.15 to any p-norm. This is useful in some
contexts, especially the case p = 2 which is closely related to least squares approximation.
The proof uses standard tools from analysis, but may seem technical for the reader who is
not familiar with the techniques.

Throughout this section p is a fixed real number in the interval [1,∞) and q is a related
number defined by the identity 1/p+1/q = 1. A classical inequality for functions that will
be useful is the Hölder inequality

∫ b

a

∣∣f(x)g(x)
∣∣dx ≤ ‖f‖p‖g‖q.

We will also need the Hölder inequality for vectors which is given by

n∑

i=1

|bici| ≤ ‖(bi)n
i=1‖p‖(ci)n

i=1‖q.

In addition to the Hölder inequalities we need a fundamental inequality for polynomials.
This states that for any polynomial g ∈ πd and any interval [a, b] we have

∣∣g(x)
∣∣ ≤ C

b− a

∫ b

a

∣∣g(z)
∣∣ dz, for any x ∈ [a, b], (9.27)

where the constant C only depends on the degree d. This is a consequence of the fact that
all norms on a finite dimensional vector space are equivalent.

In order to generalise the stability result (9.26) to arbitrary p-norms we need to intro-
duce a different scaling of the B-splines. We define the p-norm B-splines to be identically
zero if τi+d+1 = τi and

Bp
i,d,t =

(
d + 1

τi+d+1 − τi

)1/p

Bi,d,t, (9.28)

otherwise. We can then state the p-norm stability result for B-splines.
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Theorem 9.16. There is a constant K that depends only on the polynomial degree d,
such that for all 1 ≤ p ≤ ∞, all spline spaces Sd,t and all splines f =

∑n
i=1 ciB

p
i,d ∈ Sd,t

with p-norm B-spline coefficients c = (ci)n
i=1 the inequalities

K−1‖c‖p ≤ ‖f‖p,[τ1,τm+d] ≤ ‖c‖p (9.29)

hold.

Proof. We first prove the upper inequality. Let γi = (d + 1)/(τi+d+1 − τi) denote the
pth power of the scaling factor in (9.28) for i = 1, . . . , n and set [a, b] = [τ1, τn+d+1].
Remembering the definition of Bp

i,d,τ and the identity 1/p + 1/q = 1 and applying the
Hölder inequality for sums we obtain

∑

i

∣∣ciB
p
i,d

∣∣ =
∑

i

∣∣ciγ
1/p
i B1/p

i,d

∣∣B1/q
i,d ≤

( ∑

i

|ci|pγiBi,d

)1/p( ∑

i

Bi,d

)1/q

.

Raising both sides of this inequality to the pth power and recalling that B-splines sum to
(at most) 1 we obtain the inequality

∣∣
∑

i

ciB
p
i,d(x)

∣∣p ≤
∑

i

|ci|pγiBi,d(x) for any x ∈ R. (9.30)

It can be shown that the integral of a B-spline is given by
∫ τi+d+1

τi

Bi,d(x)dx =
τi+d+1 − τi

d + 1
=

1
γi

.

Making use of this and (9.30) we find

‖f‖p
p,[a,b] =

∫ b

a

∣∣∣
∑

i

ciB
p
i,d(x)

∣∣∣
p
dx ≤

∑

i

|ci|pγi

∫ b

a
Bi,d(x) dx =

∑

i

|ci|p.

Taking pth roots on both sides proves the upper inequality.
Consider now the lower inequality. The spline f is given as a linear combination of

p-norm B-splines, but can very simply be written as a linear combination of the usual
B-splines,

f =
∑

i

ciB
p
i,d =

∑

i

ciγ
1/p
i Bi,d.

From the first inequality in (9.26) we then obtain for each i

(
d + 1

τi+d+1 − τi

)1/p

|ci| ≤ Kd max
τi+1≤x≤τi+d

|f(x)|,

where the constant Kd only depends on d. Extending the maximum to a larger subinterval
and applying the inequality (9.27) we find

|ci| ≤ Kd(d + 1)−1/p
(
τi+d+1 − τi

)1/p| max
τi≤x≤τi+d+1

|f(x)|

≤ CKd(d + 1)−1/p
(
τi+d+1 − τi

)−1+1/p
∫ τi+d+1

τi

|f(y)| dy.
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Next, we apply the Hölder inequality for integrals to the product
∫ τi+d+1

τi

∣∣f(y)
∣∣ 1 dy and

obtain

|ci| ≤ CKd(d + 1)−1/p

( ∫ τi+d+1

τi

|f(y)|p dy

)1/p

.

Raising both sides to the pth power and summing over i we obtain
∑

i

|ci|p ≤ CpKp
d(d + 1)−1

∑

i

∫ τi+d+1

τi

|f(y)|p dy ≤ CpKp
d‖f‖

p
p,[a,b].

Taking pth roots we obtain the lower inequality in (9.29) with K = CKd.

9.4 Convergence of the control polygon for spline functions

Recall that for a spline function f(x) =
∑

i ciBi,d,τ the control polygon is the piecewise
linear interpolant to the points (τ∗i , ci), where τ∗i = (τi+1 + · · · + τi+d)/d is the ith knot
average. In this section we are going to prove that the control polygon converges to the
spline it represents when the knot spacing approaches zero. The main work is done in
Lemma 9.17 which shows that a corner of the control polygon is close to the spline since
ci is close to f(τ∗i ), at least when the spacing in the knot vector is small. The proof of the
lemma makes use of the fact that the size of a B-spline coefficient ci can be bounded in
terms of the size of the spline on the interval [τi+1, τi+d+1], which we proved in Theorem 9.9
and Lemma 9.4 (and Section 9.2.1),

|ci| ≤ Kd‖f‖[τi+1,τi+d]. (9.31)

The norm used here and throughout this section is the ∞-norm.
Lemma 9.17. Let f be a spline in Sd,τ with coefficients (ci). Then

|ci − f(τ∗i )| ≤ K(τi+d − τi+1)2‖D2f‖[τi+1,τi+d], (9.32)

where τ∗i = (τi+1 + · · ·+ τi+d)/d, the operator D2 denotes (one-sided) differentiation (from
the right), and the constant K only depends on d.

Proof. Let i be fixed. If τi+1 = τi+d then we know from property 5 in Lemma 2.6 that
Bi,d(τ∗i ) = 1 so ci = f(τ∗i ) and there is nothing to prove. Assume for the rest of the
proof that the interval J = (τi+1, τi+d) is nonempty. Since J contains at most d− 2 knots,
it follows from the continuity property of B-splines that f has at least two continuous
derivatives in J . Let x0 be a number in the interval J and consider the spline

g(x) = f(x)− f(x0)− (x− x0)Df(x0)

which is the error in a first order Taylor expansion of f at x0. This spline lies in Sd,τ and
can therefore be written as g =

∑
i biBi,d,τ for suitable coefficients (bi). More specifically

we have
bi = ci − f(x0)− (τ∗i − x0)Df(x0).

Choosing x0 = τ∗i we have bi = ci − f(τ∗i ) and according to the inequality (9.31) and the
error term in first order Taylor expansion we find

∣∣ci − f(τ∗i )
∣∣ = |bi| ≤ Kd‖g‖J ≤

Kd(τi+d − τi+1)2

2
‖D2f‖J .

The inequality (9.32) therefore holds with K = Kd/2 and the proof is complete.
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Lemma 9.17 shows that the corners of the control polygon converge to the spline as
the knot spacing goes to zero. This partly explains why the control polygon approaches
the spline when we insert knots. What remains is to show that the control polygon as a
whole also converges to the spline.
Theorem 9.18. Let f =

∑n
i=1 ciBi,d be a spline in Sd,τ , and let Γd,τ(f) be its control

polygon. Then ∥∥Γd,τ(f)− f
∥∥

[τ∗1 ,τ∗n]
≤ Kh2‖D2f‖[τ1,τn+d+1], (9.33)

where h = maxi{τi+1 − τi} and the constant K only depends on d.

Proof. As usual, we assume that τ is d + 1-regular (if not we extend it with d + 1-tuple
knots at either ends and add zero coefficients). Suppose that x is in [τ∗1 , τ∗m] and let j be
such that τ∗j ≤ x < τ∗j+1. Observe that since the interval J∗ = (τ∗j , τ∗j+1) is nonempty we
have τj+1 < τj+d+1 and J∗ contains at most d− 1 knots. From the continuity property of
B-splines we conclude that f has a continuous derivative and the second derivative of f is
at least piecewise continuous in J∗. Let

g(x) =
(τ∗j+1 − x)f(τ∗j ) + (x− τ∗j )f(τ∗j+1)

τ∗j+1 − τ∗j

be the linear interpolant to f on this interval. We will show that both Γ = Γd,τ(f) and f
are close to g on J∗ and then deduce that Γ is close to f because of the triangle inequality

∣∣Γ(x)− f(x)
∣∣ ≤

∣∣Γ(x)− g(x)
∣∣ +

∣∣g(x)− f(x)
∣∣. (9.34)

Let us first consider the difference Γ− g. Note that

Γ(x)− g(x) =
(τ∗j+1 − x)(bj − f(τ∗j )) + (x− τ∗j )(bj+1 − f(τ∗j+1))

τ∗j+1 − τ∗j

for any x in J∗. We therefore have
∣∣Γ(x)− g(x)

∣∣ ≤ max
{∣∣bj − f(τ∗j )

∣∣,
∣∣bj+1 − f(τ∗j+1)

∣∣
}

,

for x ∈ J∗. From Lemma 9.17 we then conclude that

|Γ(x)− g(x)| ≤ K1h
2‖D2f‖J , x ∈ J∗, (9.35)

where J = [τ1, τm+d+1] and K1 is a constant that only depends on d.
The second difference f(x) − g(x) in (9.34) is the error in linear interpolation to f at

the endpoints of J∗. For this process we have the standard error estimate
∣∣f(x)− g(x)

∣∣ ≤ 1
8
(τ∗j+1 − τ∗j )2‖D2f‖J∗ ≤

1
8
h2‖D2f‖J , x ∈ J∗. (9.36)

If we now combine (9.35) and (9.36) as indicated in (9.34), we obtain the Theorem with
constant K = K1 + 1/8.

Because of the factor h2 in Theorem 9.18 we say (somewhat loosely) that the control
polygon converges quadratically to the spline.
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Exercises for Chapter 9
9.1 In this exercise we will study the order of approximation by the Schoenberg Variation

Diminishing Spline Approximation of degree d ≥ 2. This approximation is given by

Vdf =
n∑

i=1

f(τ∗i )Bi,d, with τ∗i =
τi+1 + · · · τi+d

d
.

Here Bi,d is the ith B-spline of degree d on a d+1-regular knot vector τ = (τi)n+d+1
i=1 .

We assume that τi+d > τi for i = 2, . . . , n. Moreover we define the quantities

a = τ1, b = τn+d+1, h = max
1≤i≤n

τi+1 − τi.

We want to show that Vdf is an O(h2) approximation to a sufficiently smooth f .

We first consider the more general spline approximation

Ṽdf =
n∑

i=1

λi(f)Bi,d, with λi(f) = wi,0f(xi,0) + wi,1f(xi,1).

Here xi,0 and xi,1 are two distinct points in [τi, τi+d] and wi,0, wi,1 are constants,
i = 1, . . . , n.

Before attempting to solve this exercise the reader might find it helpful to review
Section 9.2.2

a) Suppose for i = 1, . . . , n that wi,0 and wi,1 are such that

wi,0 + wi,1 = 1
xi,0wi,0 + xi,1wi,1 = τ∗i

Show that then Ṽdp = p for all p ∈ π1. (Hint: Consider the polynomials p(x) = 1
and p(x) = x.)

b) Show that if we set xi,0 = τ∗i for all i then Ṽdf = Vdf for all f , regardless of
how we choose the value of xi,1.
In the rest of this exercise we set λi(f) = f(τ∗i ) for i = 1, . . . , n, i.e. we consider
Vdf . We define the usual uniform norm on an interval [c, d] by

‖f‖[c,d] = sup
c≤x≤d

|f(x)|, f ∈ C∆[c, d].

c) Show that for d + 1 ≤ l ≤ n

‖Vdf‖[τl,τl+1] ≤ ‖f‖[τ∗l−d,τ∗l ], f ∈ C∆[a, b].

d) Show that for f ∈ C∆[τ∗l−d, τ
∗
l ] and d + 1 ≤ l ≤ n

‖f − Vdf‖[τl,τl+1] ≤ 2 dist[τ∗l−d,τ∗l ](f,π1).
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e) Explain why the following holds for d + 1 ≤ l ≤ n

dist[τ∗l−d,τ∗l ](f,π1) ≤
(τ∗l − τ∗l−d)

2

8
‖D2f‖[τ∗l−d,τ∗l ].

f) Show that the following O(h2) estimate holds

‖f − Vdf‖[a,b] ≤
d2

4
h2‖D2f‖[a,b].

(Hint: Verify that τ∗l − τ∗l−d ≤ hd. )

9.2 In this exercise we want to perform a numerical simulation experiment to determine
the order of approximation by the quadratic spline approximations

V2f =
n∑

i=1

f(τ∗i )Bi,2, with τ∗i =
τi+1 + τi+2

2
,

P2f =
n∑

i=1

(
− 1

2
f(τi+1) + 2f(τ∗i )− 1

2
f(τi+2)

)
Bi,2.

We want to test the hypotheses f − V2f = O(h2) and f − P2f = O(h3) where h =
maxi τi+1− τi. We test these on the function f(x) = sin x on [0,π] for various values
of h. Consider for m ≥ 0 and nm = 2+2m the 3-regular knot vector τm = (τm

i )nm+3
i=1

on the interval [0,π] with uniform spacing hm = π2−m. We define

V m
2 f =

n∑

i=1

f(τm
i+3/2)B

m
i,2, with τm

i =
τm
i+1 + τm

i+2

2
,

Pm
2 f =

n∑

i=1

(
− 1

2
f(τm

i+1) + 2f(τm
i+3/2)−

1
2
f(τm

i+2)
)
Bm

i,2,

and Bm
i,2 is the ith quadratic B-spline on τm. As approximations to the norms

‖f − V m
2 f‖[0,π] and ‖f − Pm

2 f‖[0,π] we use

Em
V = max

0≤j≤100
|f(jπ/100)− V m

2 f(jπ/100)|,

Em
P = max

0≤j≤100
|f(jπ/100)− Pm

2 f(jπ/100)|.

Write a computer program to compute numerically the values of Em
V and Em

P for
m = 0, 1, 2, 3, 4, 5, and the ratios Em

V /Em−1
V and Em

P /Em−1
P for 1 ≤ m ≤ 5. What

can you deduce about the approximation order of the two methods?
Make plots of V m

2 f , Pm
2 f , f − V m

2 f , and f − Pm
2 f for some values of m.

9.3 Suppose we have m ≥ 3 data points
(
xi, f(xi)

)m
i=1

sampled from a function f , where
the abscissas x = (xi)m

i=1 satisfy x1 < · · · < xm. In this exercise we want to derive
a local quasi-interpolation scheme which only uses the data values at the xi’s and
which has O(h3) order of accuracy if the y-values are sampled from a smooth function
f . The method requires m to be odd.
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From x we form a 3-regular knot vector by using every second data point as a knot

τ = (τj)n+3
j=1 = (x1, x1, x1, x3, x5, . . . , xm−2, xm, xm, xm), (9.37)

where n = (m + 3)/2. In the quadratic spline space S2,τ we can then construct the
spline

Q2f =
n∑

j=1

λj(f)Bj,2, (9.38)

where the B-spline coefficients λj(f)n
j=1 are defined by the rule

λj(f) =
1
2

(
− θ−1

j f(x2j−3) + θ−1
j (1 + θj)2f(x2j−2)− θjf(x2j−1)

)
, (9.39)

for j = 1, . . . , n. Here θ1 = θn = 1 and

θj =
x2j−2 − x2j−3

x2j−1 − x2j−2

for j = 2, . . . , n− 1.

a) Show that Q2 simplifies to P2 given by (9.6) when the data abscissas are uni-
formly spaced.

b) Show that Q2p = p for all p ∈ π2 and that because of the multiple abscissas at
the ends we have λ1(f) = f(x1), λn(f) = f(xm), so only the original data are
used to define Q2f . (Hint: Use the formula in Exercise 1.

c) Show that for j = 1, . . . , n and f ∈ C∆[x1, xm]

|λj(f)| ≤ (2θ + 1)‖f‖∞,[τj+1,τj+2],

where
θ = max

1≤j≤n
{θ−1

j , θj}.

d) Show that for l = 3, . . . , n, f ∈ C∆[x1, xm], and x ∈ [τl, τl+1]

|Q2(f)(x)| ≤ (2θ + 1)‖f‖∞,[τl−1,τl+2].

e) Show that for l = 3, . . . , n and f ∈ C∆[x1, xm]

‖f −Q2f‖∞,[τl,τl+1] ≤ (2θ + 2) dist[τl−1,τl+2](f,π2).

f) Show that for f ∈ C3
∆[x1, xm] we have the O(h3) estimate

‖f −Q2f‖∞,[x1,xm] ≤ K(θ)|∆x|3‖D3f‖‖‖∞,[x1,xm],

where
|∆x| = max

j
|xj+1 − xj |

and the constant K(θ) only depends on θ.


