Assignment 3 INF-MAT5340 Spring 2011

Tom Lyche and Knut Mørken March 1, 2011

Exercise 1. Write a procedure that will compute the first derivative of a spline function f. Use any of the algorithms discussed in the lecture notes. Test the program by differentiating the two polynomials 1 and x, represented in terms of B-splines.

Exercise 2.

- a) Write a program that implements the Schoenberg variation diminishing spline approximation, assuming that the spline degree p and the knot vector t, as well as the function f to be approximated, are given.
- b) Test your program by computing a cubic spline approximation to the function $f(x) = \sin x$ on the interval $[0, 8\pi]$. Use a knot vector with 20 uniformly spaced knots in the interior of the interval.
- c) Use your procedure from exercise 1 to compute the first derivative of the approximation in (b) and plot this derivative and the derivative of $\sin x$ together.
- d) Can you find a knot vector t such that the cubic Schoenberg approximation to $\sin x$ on the interval $[0, 3\pi]$ is identically zero?

Exercise 3.

a) Write a program that implements spline interpolation for a given spline space of degree p with knots t. Assume that the data $(x_i, y_i)_{i=1}^n$ to be interpolated are given as two vectors x and y, where n is the dimension of the spline space.

- b) Test your program by computing a cubic spline interpolant to the function $f(x) = \sin x$ on the interval $[0, 8\pi]$. Use a knot vector with 20 uniformly spaced knots in the interior of the interval, and let the interpolation points be uniformly spaced in the same interval.
- c) Compute the first derivative of the approximation in (b) and plot this derivative and the derivative of $\sin x$ together. Compare the error to that of the Schoenberg approximation in exercise 2.

Exercise 4. Prove that the Schoenberg variation diminishing spline approximation to a function f gives error 0 if f is a straight line.