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Chapter 1
Splines and B-splines

an introduction

In this �rst chapter, we consider the following fundamental problem: Given a set of points
in the plane, determine a smooth curve that approximates the points. The algorithm
for determining the curve from the points should be well suited for implementation on a
computer. That is, it should be e�cient and it should not be overly sensitive to round-
o� errors in the computations. We only consider methods that involve a relatively small
number of elementary arithmetic operations; this ensures that the methods are e�cient.
The sensitivity of the methods to round-o� errors is controlled by insisting that all the
operations involved should amount to forming weighted averages of the given points.
This has the added advantage that the constructions are geometrical in nature and easy
to visualise.

In Section 1.1, we discuss a�ne and convex combinations and the convex hull of a set
of points, and relate these concepts to numerical stability (sensitivity to rounding errors),
while in Section 1.2 we give a brief and very informal introduction to parametric curves.
The �rst method for curve construction, namely polynomial interpolation, is introduced
in Section 1.3. In Section 1.4 we show how to construct Bézier curves, and in Section 1.5
we generalise this construction to spline curves. At the outset, our construction of spline
curves is geometrical in nature, but in Section 1.6 we show that spline curves can be
written conveniently in terms of certain basis functions, namely B-splines. In the �nal
section, we relate the material in this chapter to the rest of the book.

1.1 Convex combinations and convex hulls

An important constraint on our study is that it should result in numerical methods that
will ultimately be implemented in �oating point arithmetic on a computer. We should
therefore make sure that these methods are reasonably insensitive to the primary source
of problems, namely round-o� errors and other numerical uncertainties that occur in
numerical computations. This requirement is often referred to by saying that the methods

1



2 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

should be numerically stable .

1.1.1 Stable computations

One characteristic of numerical instabilities is that a chain of computations contain num-
bers of large magnitude even though the numbers that form the input to the computa-
tions, and the �nal result, are not particularly large numbers. A simple way to avoid this
is to base the computations on computing weighted averages as in

c = (1− λ)c1 + λc2. (1.1)

Here c1 and c2 are two given numbers and λ a given weight in the range [0, 1]. The result
of the computation is the number c which must lie between c1 and c2 as averages always
do. A special example is of course computation of the mean between two numbers, c =
(c1 +c2)/2. A computation on the form (1.1) is often referred to as a convex combination,
and c is often said to be a convex combination of c1 and c2. If all our computations are
convex combinations, all intermediate results as well as the �nal result must be within
the numerical range of the input data, thereby indicating that the computations are
reasonably stable. It is overly optimistic to hope that we can do all our computations
by forming convex combinations, but convex combinations will certainly be a guiding
principle.

1.1.2 The convex hull of a set of points

Convex combinations make sense for vectors as well as for real numbers. If c1 = (x1, y1)
and c2 = (x2, y2) then a convex combination of c1 and c2 is an expression on the form

c = (1− λ)c1 + λc2, (1.2)

where the weight λ is some number in the range 0 ≤ λ ≤ 1. This expression is often
implemented on a computer by expressing it in terms of convex combinations of real
numbers,

(x, y) =
(
(1− λ)x1 + λx2, (1− λ)y1 + λy2

)
,

where (x, y) = c.
Sometimes combinations on the form (1.1) or (1.2) with λ < 0 or λ > 1 are required.

A combination of c1 and c2 as in (1.2) with no restriction on λ other than λ ∈ R is called
an a�ne combination of c1 and c2. As λ takes on all real numbers, the point c in (1.2)
will trace out the whole straight line that passes through c1 and c2. If we restrict λ to lie
in the interval [0, 1], we only get the part of the line that lies between c1 and c2. This is
the convex hull , or the set of all weighted averages, of the two points. Figure 1.1 shows
two points c1 and c2 and the line they de�ne, together with some points on the line and
their corresponding values of λ.

We can form convex and a�ne combinations in any space dimension, we just let c1

and c2 be points in the appropriate space. If we are working in Rn for instance, then c1

and c2 have n components. In our examples we will mostly use n = 2, as this makes the
visualisation simpler.
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c1

c2

-0.4

0

0.3

0.5

0.8

1

1.3

Figure 1.1. Some points on the line (1− λ)c1 + λc2 and the corresponding values of λ.

Just as we can take the average of more than two numbers, it is possible to form
convex combinations of more than two points. If we have n points (cj)

n
j=1, a convex

combination of the points is an expression on the form

c = λ1c1 + λ2c2 + · · ·+ λncn

where the n numbers λi sum to one,
∑n

j=1 λj = 1, and also satisfy 0 ≤ λi ≤ 1 for j = 1,
2, . . . , n. As for two points, the convex hull of the points (cj)

n
j=1 is the set of all possible

convex combinations of the points.

It can be shown that the convex hull of a set of points is the smallest convex set
that contains all the points (recall that a set is convex if the straight line connecting any
two points in the set is always completely contained in the set). This provides a simple
geometric interpretation of the convex hull. As we have already seen, the convex hull
of two points can be identi�ed with the straight line segment that connects the points,
whereas the convex hull of three points coincides with the triangle spanned by the points,
see Figure 1.2. In general, the convex hull of n points is the n-sided polygon with the
points as corners. However, if some of the points are contained in the convex hull of
the others, then the number of edges is reduced correspondingly, see the examples in
Figure 1.3.

1.2 Some fundamental concepts

Our basic challenge in this chapter is to construct a curve from some given points in the
plane. The underlying numerical algorithms should be simple and e�cient and preferably
based on forming repeated convex combinations as in (1.1). To illustrate some funda-
mental concepts let us consider the case where we are given two points c0 = (x0, y0) and
c1 = (x1, y1) (we always denote points and vectors by bold type). The most natural
curve to construct from these points is the straight line segment which connects the two



4 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

c1

c2

c3

c

c�

1-Λ

Λ

1-Μ

Μ

Figure 1.2. Determining the convex hull of three points.

points. In Section 1.1.2 we saw that this line segment coincides with the convex hull of
the two points and that a point on the line could be represented by a convex combination,
see (1.2). More generally we can express this line segment as

q[c0, c1; t0, t1](t) =
t1 − t
t1 − t0

c0 +
t− t0
t1 − t0

c1 for t ∈ [t0, t1]. (1.3)

Here t0 and t1 are two arbitrary real numbers with t0 < t1. Note that the two coe�cients
add to one,

t1 − t
t1 − t0

+
t− t0
t1 − t0

= 1

and each of them is nonnegative as long as t is in the interval [t0, t1]. The expression in
(1.3) is therefore a convex combination of c0 and c1. In fact, if we set λ = (t−t0)/(t1−t0)
then (1.3) becomes (1.2).

A representation of a line as in (1.3), where we have a function that maps each real
number to a point in R2, is an example of a parametric representation. The line can also
be expressed as a linear function

y = f(x) =
x1 − x
x1 − x0

y0 +
x− x0

x1 − x0
y1

but here we run into problems if x0 = x1, i.e., if the line is vertical. Vertical lines can
only be expressed as x = c (with each constant c characterising a line) if we insist on
using functions. In general, a parametric representation can cross itself or return to its
starting point, but this is impossible for a function, which always maps a real number to
a real number, see the two examples in Figure 1.4.

In this chapter we only work with parametric representations in the plane, and we
will refer to these simply as (parametric) curves. All our constructions start with a set of
points, from which we generate new points, preferably by forming convex combinations



1.2. SOME FUNDAMENTAL CONCEPTS 5

(a) Two points. (b) Three points.

(c) Four points. (d) Five points.

(e) Five points. (f) Five points.

Figure 1.3. Examples of convex hulls (shaded area) of points (black dots).

-2 -1 1 2 3 4

-4

-2

2

4

(a) (b)

Figure 1.4. A function (a) and a parametric curve (b).
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as in (1.2). In our examples the points lie in the plane, but we emphasise again that the
constructions will work for curves in any space dimension; just replace the planar points
with points with the appropriate number of components. For example, a line in space
is obtained by letting c0 and c1 in (1.3) be points in space with three components. In
particular, we can construct a function by letting the points be real numbers. In later
chapters we will work mainly with functions since the core of spline theory is independent
of the space dimension. The reason for working with planar curves in this chapter is that
the constructions are geometric in nature and particularly easy to visualise in the plane.

In (1.3) the two parameters t0 and t1 are arbitrary except that we assumed t0 < t1.
Regardless of how we choose the parameters, the resulting curve is always the same. If
we consider the variable t to denote time, the parametric representation q[c0, c1; t0, t1)
gives a way to travel from c0 to c1. The parameter t0 gives the time at which we start at
c0 and t1 the time at which we arrive at c1. With this interpretation, di�erent choices of
t0 and t1 correspond to di�erent ways of travelling along the line. The velocity of travel
along the curve is given by the tangent vector or derivative

q′[c0, c1; t0, t1](t) =
c1 − c0

t1 − t0
,

while the scalar velocity or speed is given by the length of the tangent vector∣∣q′[c0, c1; t0, t1)
∣∣ =
|c1 − c0|
t1 − t0

=

√
(x1 − x0)2 + (y1 − y0)2

t1 − t0
.

If t1 − t0 is small (compared to |c1 − c0|), then we have to travel quickly to reach c1 at
time t1 whereas if t1 − t0 is large then we have to move slowly to arrive at c1 exactly
at time t1. Note that regardless of our choice of t0 and t1, the speed along the curve is
independent of t and therefore constant. This re�ects the fact that all the representations
of the line given by (1.3) are linear in t.

This discussion shows how we must di�erentiate between the geometric curve in ques-
tion (a straight line in our case) and the parametric representation of the curve. Loosely
speaking, a curve is de�ned as the collection of all the di�erent parametric representations
of the curve. In practise a curve is usually given by a particular parametric represen-
tation, and we will be sloppy and often refer to a parametric representation as a curve.
The distinction between a curve and a particular parametric representation is not only of
theoretical signi�cance. When only the geometric shape is signi�cant we are discussing
curves and their properties. Some examples are the outlines of the characters in a font
and the level curves on a map. When it is also signi�cant how we travel along the curve
(how it is represented) then we are talking about a particular parametric representation
of the underlying geometric curve, which in mathematical terms is simply a vector valued
function. An example is the path of a camera in a computer based system for animation.

1.3 Interpolating polynomial curves

A natural way to construct a curve from a set of given points is to force the curve to
pass through the points, or interpolate the points, and the simplest example of this is the
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(a) t = (0, 1, 2). (b) t = (0, 0.5, 2).

(c) t = (0, 1, 2). (d) t = (0, 0.5, 2).

Figure 1.5. Some examples of quadratic interpolation.

straight line between two points. In this section we show how to construct curves that
interpolate any number of points.

1.3.1 Quadratic interpolation of three points

How can we construct a curve that interpolates three points? In addition to the three
given interpolation points c0, c1 and c2 we also need three parameters (tj)

2
j=0. We �rst

construct the two straight lines q0,1(t) = q[c0, c1; t0, t1] and q1,1(t) = q[c1, c2; t1, t2]. If
we now form the weighted average

q0,2(t) = q[c0, c1, c2; t0, t1, t2](t) =
t2 − t
t2 − t0

q0,1(t) +
t− t0
t2 − t0

q1,1(t), (1.4)

we obtain a curve that is quadratic in t, and it is easy to check that it passes through
the given points as required,

q0,2(t0) = q0,1(t0) = c0,

q0,2(t1) =
t2 − t1
t2 − t0

q0,1(t1) +
t1 − t0
t2 − t0

q1,1(t1) =
t2 − t1
t2 − t0

c1 +
t1 − t0
t2 − t0

c1 = c1,

q0,2(t2) = q1,1(t2) = c2.

Four examples are shown in Figure 1.5, with the interpolation points (cj)
2
j=0 given

as black dots and the values of the three parameters t = (tj)
2
j=0 shown below each

plot. The tangent vector at the end of the curve (at t = t2) is also displayed in each
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case. Note that the interpolation points are the same in plots (a) and (b), and also in
plots (c) and (d). When we only had two points, the linear interpolant between the
points was independent of the values of the parameters t0 and t1; in the case of three
points and quadratic interpolation the result is clearly highly dependent on the choice of
parameters. It is possible to give qualitative explanations of the results if we view q0,2(t)
as the position at time t of someone travelling along the curve. In the �rst two plots the
given points are quite uniformly spaced and the uniform distribution of parameters in
plot (a) seems to connect the points with a 'nice' curve. In plot (b) the value of t1 has
been lowered, leaving more `time' for travelling from c1 to c2 than from c0 to c1 with
the e�ect that the curve bulges out between c1 and c2. This makes the journey between
these points longer and someone travelling along the curve can therefore spend the extra
time allocated to this part of the `journey'. The curves in Figure 1.5 (c) and (d) can be
explained similarly. The interpolation points are the same in both cases, but now they
are not uniformly distributed. In plot (a) the parameters are uniform which means that
we must travel much faster between c1 and c2 (which are far apart) than between c0

and c1 (which are close together). The result is a curve that is almost a straight line
between the last two points and bulges out between the �rst two points. In plot (d) the
parameters have been chosen so as to better re�ect the geometric spacing between the
points, and this gives a more uniformly rounded curve.

1.3.2 General polynomial interpolation

To construct a cubic curve that interpolates four points we follow the same strategy that
was used to construct the quadratic interpolant. If the given points are (cj)

3
j=0 we �rst

choose four parameters t = (tj)
3
j=0. We then form the two quadratic interpolants

q0,2(t) = q[c0, c1, c2; t0, t1, t2],

q1,2(t) = q[c1, c2, c3; t1, t2, t3],

and combine these to obtain the cubic interpolant q0,3(t),

q0,3(t) =
t3 − t
t3 − t0

q0,2(t) +
t− t0
t3 − t0

q1,2(t).

At t0 this interpolant agrees with q0,2(t0) = c0 and at t3 it agrees with q1,2(t3) = c3.
At an interior point tj it is a convex combination of q0,1(tj) and q1,1(tj) which both
interpolate cj at tj . Hence we also have q0,3(tj) = cj for j = 1 and j = 2 so q0,3

interpolates the four points (cj)
3
j=0 as it should.

Some examples of cubic interpolants are shown in Figure 1.6, and the same inter-
polation points are used in (a) and (b), and (c) and (d) respectively. The qualitative
comments that we made about the quadratic interpolants also apply here. The pleasing
shape of the curve in Figure 1.6 (a) is quite natural since both the interpolation points
and parameters are quite uniformly spaced. However, by adjusting the parameters, quite
strange behaviour can occur, even with these `nice' interpolation points. In (b) there is
so much time to `waste' between c1 and c2 that the curve makes a complete loop. In (c)
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(a) t = (0, 1, 2, 3). (b) t = (0, 0.3, 2.7, 3).

(c) t = (0, 0.75, 2.25, 3). (d) t = (0, 0.3, 2.8, 3).

Figure 1.6. Some examples of cubic interpolation.

and (d) we see two di�erent approaches to jumping from one level in the data to another.
In (c) there is too much time to be spent between c0 and c1, and between c2 and c3,
the result being bulges between these points. In Figure 1.6 (d) there is too much time
between c1 and c2 leading to the two big wiggles and almost straight lines between c0

and c1, and c2 and c3 respectively.

The general strategy for constructing interpolating curves should now be clear. Given
p + 1 points (cj)

p
j=0 and parameters (tj)

p
j=0, the curve q0,p of degree p that satis�es

q0,p(tj) = cj for j = 0,1, . . . , p is constructed by forming a convex combination between

the two curves of degree p− 1 that interpolate (cj)
p−1
j=0 and (cj)

p
j=1,

q0,p(t) =
tp − t
tp − t0

q0,p−1(t) +
t− t0
tp − t0

q1,p−1(t). (1.5)

If we expand out this equation we �nd that q0,p(t) can be written

q0,p(t) = c0`0,p(t) + c1`1,p(t) + · · ·+ cp`p,p(t), (1.6)

where the functions {`k,p}pk=0 are the Lagrange polynomials of degree p given by

`k,p(t) =
∏

0≤j≤p
k 6=j

(t− tj)
tk − tj

. (1.7)
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q0,3

t3-
t

t-t0

t3-t0

q0,2

t2-
t

t-t0

t2-t0

q0,1

t1-
t

t-t0

t1-t0

q1,2

t3-
t

t-t1

t3-t1

q1,1

t2-
t

t-t1

t2-t1

q2,1

t3-
t

t-t2

t3-t2

c0

c1

c2

c3

Figure 1.7. Computing a point on a cubic interpolating curve.

It is easy to check that these polynomials satisfy the condition

`k,p(tj) =

{
1, if k = j,

0, otherwise,

which is necessary since q0,p(tj) = cj .
The complete computations involved in computing q0,p(t) are summarized in the

following algorithm.

Algorithm 1.1 (Neville-Aitken method). Let p be a positive integer and let the p + 1
points (cj)

p
j=0 be given together with p+1 strictly increasing parameter values t = (tj)

p
j=0.

There is a polynomial curve q0,p of degree p that satis�es the conditions

q0,p(tj) = cj for j = 0, 1, . . . , p,

and for any real number t the following algorithm computes the point q0,p(t). First set
qj,0(t) = cj for j = 0, 1, . . . , p and then compute

qj,k(t) =
tj+k − t
tj+k − tj

qj,k−1(t) +
t− tj

tj+k − tj
qj+1,k−1(t)

for j = 0, 1, . . . , p− k and k = 1, 2, . . . , p.

The computations involved in determining a cubic interpolating curve are shown in
the triangular table in Figure 1.7. The computations start from the right and proceed
to the left and at any point a quantity qj,k is computed by combining, in an a�ne
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(a) t = (0, 1, 2, 3, 4, 5). (b) t = (0, 0.5, 2, 3, 4.5, 5).

Figure 1.8. Two examples of interpolation with polynomial curves of degree �ve.

combination, the two quantities at the beginning of the two arrows meeting at qj,k.
The expression between the two arrows is the denominator of the weights in the a�ne
combination while the two numerators are written along the respective arrows.

Two examples of curves of degree �ve are shown in Figure 1.8, both interpolating the
same points. The wiggles in (a) indicate that t1 − t0 and t6 − t5 should be made smaller
and the result in (b) con�rms this.

It should be emphasized that choosing the correct parameter values is a complex
problem. Our simple analogy with travelling along a road may seem to explain some
of the behaviour we have observed, but to formalise these observations into a foolproof
algorithm for choosing parameter values is a completely di�erent matter. As we shall see
later, selection of parameter values is also an issue when working with spline curves.

The challenge of determining good parameter values is not the only problem with
polynomial interpolation. A more serious limitation is the fact that the polynomial
degree is only one less than the number of interpolation points. In a practical situation
we may be given several thousand points which would require a polynomial curve of an
impossibly high degree. To compute a point on a curve of degree p requires a number of
multiplications and additions that are at best proportional to p (using the Newton form

of the interpolating polynomial); the algorithm we have presented here requires roughly
p2 additions and multiplications. If for example p = 1000, computer manipulations
like plotting and interactive editing of the curve would be slow, even on today's fast
computers. More importantly, it is well known that round-o� errors in the computer
makes numerical manipulations of high degree polynomials increasingly (with the degree)
inaccurate. We therefore need alternative ways to approximate a set of points by a smooth
curve.

1.3.3 Interpolation by convex combinations?

In the interpolation algorithm for polynomials of degree p, Algorithm 1.1, the last step
is to form a convex combination between two polynomials of degree p− 1,

q0,p(t) =
tp − t
tp − t0

q0,p−1(t) +
t− t0
tp − t0

q1,p−1(t).
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(a) Two points on the curve. (b) Thirty points on the curve.

Figure 1.9. The geometry of quadratic interpolation.

More precisely, the combination is convex as long as t lies in the interval [t0, tp]. But
if the algorithm is based on forming convex combinations, any point on the �nal curve
should be within the convex hull of the given interpolation points. By merely looking
at the �gures it is clear that this is not true, except in the case where we only have two
points and the interpolant is the straight line that connects the points. To see what is
going on, let us consider the quadratic case in detail. Given the points (cj)

2
j=0 and the

parameters (tj)
2
j=0, we �rst form the two straight lines

q0,1(t) =
t1 − t
t1 − t0

c0 +
t− t0
t1 − t0

c1, (1.8)

q1,1(t) =
t2 − t
t2 − t1

c1 +
t− t1
t2 − t1

c2, (1.9)

and from these the quadratic segment

q0,2(t) =
t2 − t
t2 − t0

q0,1(t) +
t− t0
t2 − t0

q1,1(t). (1.10)

The combination in (1.8) is convex as long as t is in [t0, t1], the combination in (1.9)
is convex when t lies within [t1, t2], and the combination in (1.10) is convex when t is
restricted to [t0, t2]. But in computing q0,2(t) we also have to compute q0,1(t) and q1,1(t),
and one of these latter combinations will not be convex when t is in [t0, t2] (except when
t = t1). The problem lies in the fact that the two line segments are de�ned over di�erent
intervals, namely [t0, t1] and [t1, t2] that only has t1 in common, so t cannot be in both
intervals simultaneously. The situation is illustrated in Figure 1.9.

In the next section we shall see how we can construct polynomial curves from points
in the plane by only forming convex combinations. The resulting curve will then lie
within the convex hull of the given points, but will not interpolate the points.

1.4 Bézier curves

The curve construction method that we consider in this section is an alternative to poly-
nomial interpolation and produces what we call Bézier curves, named after the French
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(a) (b)

Figure 1.10. A Bézier curve based on three points.

engineer Pierre Bézier (1910�1999) who worked for the car manufacturer Renault. Bézier
curves are also polynomial curves and they avoid the problem of wiggles and bulges be-
cause all computations are true convex combinations. It also turns out that segments
of Bézier curves can easily be joined smoothly together to form more complex shapes.
This avoids the problem of using curves of high polynomial degree when many points are
approximated. Bézier curves are a special case of the spline curves that we will construct
in Section 1.5.

1.4.1 Quadratic Bézier curves

We have three points in the plane c0, c1 and c2, and based on these points we want to
construct a smooth curve, by forming convex combinations of the given points. With
polynomial interpolation this did not work because the two line segments (1.8) and (1.9)
are de�ned over di�erent intervals. The natural solution is to start by de�ning the two
line segments over the same interval, say [0, 1] for simplicity,

q1,1(t) = q[c0, c1](t) = (1− t)c0 + tc1, (1.11)

q2,1(t) = q[c1, c2](t) = (1− t)c1 + tc2. (1.12)

Now we have no problem forming a true convex combination,

q2,2(t) = q[c0, c1, c2](t) = (1− t)q1,1(t) + tq2,1(t). (1.13)

The construction is illustrated in Figure 1.10 (a). In Figure 1.10 (b), where we have
repeated the construction for 15 uniformly spaced values of t, the underlying curve is
clearly visible.

If we insert the explicit expressions for the two lines in (1.11) and (1.12) in (1.13) we
�nd

q2,2(t) = (1− t)2c0 + 2t(1− t)c1 + t2c2 = b0,2(t)c0 + b1,2(t)c1 + b2,2(t)c2. (1.14)

This is called a quadratic Bézier curve; the points (cj)
2
j=0 are called the control points of

the curve and the piecewise linear curve connecting the control points is called the control



14 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

(a) (b)

Figure 1.11. Two examples of quadratic Bézier curves.

polygon of the curve. The polynomials multiplying the control points are the quadratic
Bernstein polynomials. Two examples of quadratic Bézier curves with their control
points and control polygons are shown in Figure 1.11 (the two sets of interpolation points
in Figure 1.5 have been used as control points).

Some striking geometric features are clearly visible in Figures 1.10 and 1.11. We note
that the curve interpolates c0 at t = 0 and c2 at t = 1. This can be veri�ed algebraically
by observing that b0,2(0) = 1 and b1,2(0) = b2,2(0) = 0, and similarly b2,2(1) = 1 while
b0,2(1) = b1,2(1) = 0. The line from c0 to c1 coincides with the direction of the tangent
to the curve at t = 0 while the line from c1 to c2 coincides with the direction of the
tangent at t = 1. This observation can be con�rmed by di�erentiating equation (1.14).
We �nd

q′2,2(0) = 2(c1 − c0), q′2,2(1) = 2(c2 − c1).

The three polynomials in (1.14) add up to 1,

(1− t)2 + 2t(1− t) + t2 = (1− t+ t)2 = 1,

and since t varies in the interval [0, 1], we also have 0 ≤ bj,2(t) ≤ 1 for j = 0, 1, 2. This
con�rms that q2,2(t) is a convex combination of the three points (cj)

2
j=0. The geometric

interpretation of this is that the curve lies entirely within the triangle formed by the
three given points, the convex hull of c0, c1 and c2.

1.4.2 Bézier curves based on four and more points

The construction of quadratic Bézier curves generalises naturally to any number of points
and any polynomial degree. If we have four points (cj)

3
j=0 we can form the cubic Bézier

curve q3,3(t) = q[c0, c1, c2, c3] by taking a weighted average of two quadratic curves,

q3,3(t) = (1− t)q2,2(t) + tq3,2(t).

If we insert the explicit expressions for q2,2(t) and q3,2(t), we �nd

q3,3(t) = (1− t)3c0 + 3t(1− t)2c1 + 3t2(1− t)c2 + t3c3.
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(a) (b)

Figure 1.12. Constructing a Bézier curve from four points.

(a) (b)

Figure 1.13. Two examples of cubic Bézier curves.
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The construction is illustrated in Figure 1.12. Figure (a) shows the construction for
a given value of t, and in Figure (b) the cubic and the two quadratic curves are shown
together with the lines connecting corresponding points on the two quadratics (every
point on the cubic lies on such a line). The data points are the same as those used in
Figure 1.6 (a) and (b). Two further examples are shown in Figure 1.13, together with
the control points and control polygons which are de�ned just as in the quadratic case.
The data points in Figure 1.13 are the same as those used in Figure 1.6 (c) and (d).
In Figure 1.13 (b) the control polygon crosses itself with the result that the underlying
Bézier curve does the same.

To construct Bézier curves of degree p, we start with p+1 control points (cj)
p
j=0, and

form a curve qp,p(t) = q[c0, . . . , cp] based on these points by taking a convex combination
of the two Bézier curves qp−1,p−1 and qp,p−1 of degree p−1 which are based on the control

points (cj)
p−1
j=0 and (cj)

p
j=1 respectively,

qp,p(t) = (1− t)qp−1,p−1(t) + tqp,p−1(t).

If we expand out we �nd by an inductive argument that

qp,p(t) = b0,p(t)c0 + · · ·+ bp,p(t)cp, (1.15)

where

bj,p(t) =

(
p

j

)
tj(1− t)p−j .

The set of polynomials {bj,p}pj=0 turn out to be a basis for the space of polynomials of
degree p and is referred to as the Bernstein basis.

As in the quadratic case we have

b0,p(t) + b1,p(t) + · · ·+ bp,p(t) = (1− t+ t)p = 1

and 0 ≤ bj,p(t) ≤ 1 for any t in [0, 1] and 0 ≤ j ≤ p. For any t in [0, 1] the point qp,p(t)
therefore lies in the convex hull of the points (cj)

p
j=0.The curve interpolates the �rst and

last control points, while the tangent at t = 0 points in the direction from c0 to c1 and
the tangent at t = 1 points in the direction from cp−1 to cp,

q′p,p(0) = p(c1 − c0), q′p,p(1) = p(cp − cp−1). (1.16)

As in the quadratic and cubic cases the piecewise linear curve with the control points as
vertices is called the control polygon of the curve.

The complete computations involved in computing a point on a Bézier curve are given
in Algorithm 1.2 and depicted graphically in the triangular table in Figure 1.14. This
algorithm is often referred to as the Casteljau algorithm after the French engineer and
Mathematician Paul de Faget de Casteljau (1930�) who worked for Citroën.
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Figure 1.14. Computing a point on a cubic Bézier curve.

Algorithm 1.2. Let p be a positive integer and let the p + 1 points (cj)
p
j=0 be given.

The point qp,p(t) on the Bézier curve q0,p of degree p can be determined by the following
computations. First set qj,0(t) = cj for j = 0, 1, . . . , p and then compute qp,p(t) by

qj,k(t) = (1− t)qj−1,k−1(t) + tqj,k−1(t)

for j = k, k + 1, . . . , p and k = 1, 2, . . . , p.

Two examples of Bézier curves of degree �ve are shown in Figure 1.15. The curve in
Figure (a) uses the interpolation points of the two curves in Figure 1.8 as control points.

We have de�ned Bézier curves on the interval [0, 1], but any nonempty interval would

(a) (b)

Figure 1.15. Two Bézier curves of degree �ve.
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(a) (b)

Figure 1.16. Di�erent forms of continuity between two segments of a cubic Bézier curve.

work. If the interval is [a, b] we just have to use convex combinations on the form

c =
b− t
b− a

c0 +
t− a
b− a

c1

instead. Equivalently, we can use a linear change of parameter; if qp,p(t) is a Bézier curve
on [0, 1] then

q̃p,p(s) = qp,p
(
(t− a)/(b− a)

)
is a Bézier curve on [a, b].

1.4.3 Composite Bézier curves

By using Bézier curves of su�ciently high degree we can represent a variety of shapes.
However, Bézier curves of high degree su�er from the same shortcomings as interpolating
polynomial curves:

1. As the degree increases, the complexity and therefore the processing time increases.

2. Because of the increased complexity, curves of high degree are more sensitive to
round-o� errors.

3. The relation between the given data points (cj)
p
j=0 and the curve itself becomes

less intuitive when the degree is large.

Because of these shortcomings it is common to form complex shapes by joining together
several Bézier curves, most commonly of degree two or three. Such composite Bézier
curves are also referred to as Bézier curves.

A Bézier curve of degree p consisting of n segments is given by n sets of control points
(cµ0 , . . . , c

µ
p )nµ=1. It is common to let each segment be de�ned over [0, 1], but it is also

possible to form a curve de�ned over the interval [0, n] with segment µ de�ned on the
interval [µ − 1, µ]. By adjusting the control points appropriately it is possible to `glue'
together the segments with varying degrees of continuity. The minimal form of continuity
is to let cµ−1

p = cµ0 which ensures that segments µ−1 and µ join together continuously as
in Figure 1.16 (a). We obtain a smoother join by also letting the tangents be continuous
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at the join. From (1.16) we see that the tangent at the join between segments µ− 1 and
µ will be continuous if

cµ−1
p − cµ−1

p−1 = cµ1 − c
µ
0 .

An example is shown in Figure 1.16 (b).

Quadratic Bézier curves form the basis for the TrueType font technology, while cubic
Bézier curves lie at the heart of PostScript and a number of draw programs like Adobe
Illustrator. Figure 1.17 shows one example of a complex Bézier curve. It is the letter S
in the Postscript font Times Roman, shown with its control polygon and control points.
This is essentially a cubic Bézier curve, interspersed with a few straight line segments.
Each cubic curve segment can be identi�ed by the two control points on the curve giving
the ends of the segment and the two intermediate control points that lie o� the curve.

1.5 A geometric construction of spline curves

The disadvantage of Bézier curves is that the smoothness between neighbouring polyno-
mial pieces can only be controlled by choosing the control points appropriately. It turns
out that by adjusting the construction of Bézier curves slightly, we can produce pieces of
polynomial curves that automatically tie together smoothly. These piecewise polynomial
curves are called spline curves.

1.5.1 Linear spline curves

The construction of spline curves is also based on repeated averaging, but we need a slight
generalization of the Bézier curves, reminiscent of the construction of the interpolating
polynomials in Section 1.3. In Section 1.3 we introduced the general representation
(1.3) for a straight line connecting two points. In this section we use the same general
representation, but with a di�erent labelling of the points and parameters. If we have
two points c1 and c2 we now represent the straight line between them by

q[c1, c2; t2, t3](t) =
t3 − t
t3 − t2

c1 +
t− t2
t3 − t2

c2, t ∈ [t2, t3], (1.17)

provided t2 < t3. By setting t2 = 0 and t3 = 1 we get back to the linear Bézier curve.

The construction of a piecewise linear curve based on some given points (cj)
n
j=1 is

quite obvious; we just connect each pair of neighbouring points by a straight line. More
speci�cally, we choose n numbers (ti)

n+1
j=2 with ti < ti+1 for j = 2, 3, . . . , n, and de�ne

the curve f by

f(t) =


q[c1, c2; t2, t3](t), t ∈ [t2, t3),

q[c2, c3; t3, t4](t), t ∈ [t3, t4),
...

...

q[cn−1, cn; tn, tn+1](t), t ∈ [tn, tn+1].

(1.18)

The points (cj)
n
j=1 are called the control points of the curve, while the parameters t =

(tj)
n+1
j=2 , which give the value of t at the control points, are referred to as the knots, or
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Figure 1.17. The letter S in the Postscript font Times Roman.
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knot vector, of the curve. Later we will need two extra knots t1 and tn+p+1 and starting
here with t2 avoids reindexing.

If we introduce the piecewise constant functions Bµ,0(t) de�ned by

Bµ,0(t) =

{
1, tµ ≤ t < tµ+1,

0, otherwise,
(1.19)

and set qµ,1(t) = q[cµ−1, cµ; tµ, tµ+1], we can write f(t) more succinctly as

f(t) =

n∑
µ=2

qµ,1(t)Bµ,0(t). (1.20)

This construction can be generalized to produce smooth, piecewise polynomial curves of
higher degrees.

1.5.2 Quadratic spline curves

In the de�nition of the quadratic Bézier curve, a point on q2,2(t) is determined by taking
three averages, all with weights 1− t and t since both the two line segments (1.11) and
(1.12), and the quadratic curve itself (1.13), are de�ned with respect to the interval [0, 1].
The construction of spline functions is a hybrid between the interpolating polynomials of
Section 1.3 and the Bézier curve of Section 1.4 in that we retain the convex combinations,
but use more general weighted averages of the type in (1.17). To construct a spline curve
based on the three control points c1, c2, and c3, we introduce four knots (tj)

5
j=2, with

the assumption that t2 ≤ t3 < t4 ≤ t5. We represent the line connecting c1 and c2 by
q[c1, c2; t2, t4](t) for t ∈ [t2, t4], and the line connecting c2 and c3 by q[c2, c3; t3, t5](t)
for t ∈ [t3, t5]. The reason for picking every other knot in the representation of the line
segments is that then the interval [t3, t4] is within the domain of both segments. This
ensures that the two line segments can be combined in a convex combination to form a
quadratic curve,

q[c1, c2, c3; t2, t3, t4, t5](t) =
t4 − t
t4 − t3

q[c1, c2; t2, t4](t) +
t− t3
t4 − t3

q[c2, c3; t3, t5](t) (1.21)

with t varying in [t3, t4]. Of course we are free to vary t throughout the real line R since
q is a polynomial in t, but then the three combinations involved are no longer all convex.
The construction is illustrated in Figure 1.18. Note that if t2 = t3 = 0 and t4 = t5 = 1
we are back in the Bézier setting.

Just like for Bézier curves we refer to the given points as control points while the
piecewise linear curve obtained by connecting neighbouring control points is the control
polygon.

The added �exibility provided by the knots t2, t3, t4 and t5 turns out to be exactly
what we need to produce smooth, piecewise quadratic curves, and by including su�ciently
many control points and knots we can construct curves of almost any shape. Suppose
we have n control points (cj)

n
j=1 and a sequence of knots (tj)

n+2
j=2 that are assumed to be
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Figure 1.18. Construction of a segment of a quadratic spline curve.

increasing except that we allow t2 = t3 and tn+1 = tn+2. We de�ne the quadratic spline
curve f(t) by

f(t) =


q[c1, c2, c3; t2, t3, t4, t5](t), t3 ≤ t < t4,

q[c2, c3, c4; t3, t4, t5, t6](t), t4 ≤ t < t5,
...

...

q[cn−2, cn−1, cn; tn−1, tn, tn+1, tn+2](t), tn ≤ t ≤ tn+1.

(1.22)

An example with n = 4 is shown in Figure 1.19. Part (a) of the �gure shows a quadratic
curve de�ned on [t3, t4] and part (b) a curve de�ned on the adjacent interval [t4, t5]. In
part (c) the two curves in (a) and (b) have been superimposed in the same plot, and,
quite strikingly, it appears that the curves meet smoothly at t4. The precise smoothness
properties of splines will be proved in Section 3.2.4 of Chapter 3; see also Exercise 6.

By making use of the piecewise constant functions {Bµ,0}nµ=3 de�ned in (1.19) and
the abbreviation qµ,2(t) = q[cµ−2, cµ−1, cµ; tµ−1, tµ, tµ+1, tµ+2](t), we can write f(t) as

f(t) =
n∑
µ=3

qµ,2(t)Bµ,0(t). (1.23)

Two examples of quadratic spline curves are shown in Figure 1.20. The control points
are the same as those in Figure 1.13. We observe that the curves behave like Bézier curves
at the two ends.

1.5.3 Spline curves of higher degrees

The construction of spline curves can be generalized to arbitrary polynomial degrees by
forming more averages. A cubic spline segment [tµ, tµ+1] requires four control points

cµ−3, cµ−2, cµ−1, cµ, and six knots (tj)
µ+3
j=µ−2 which must form a nondecreasing sequence
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(a) (b)

(c)

Figure 1.19. A quadratic spline curve (c) and its two polynomial segments (a) and (b).

(a) (b)

Figure 1.20. Two quadratic spline curves, both with knots t = (0, 0, 0, 1, 2, 2, 2).
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of numbers with tµ < tµ+1. The curve is the average of two quadratic segments,

q[cµ−3, cµ−2, cµ−1, cµ; tµ−2, tµ−1, tµ, tµ+1, tµ+2, tµ+3](t) =

tµ+1 − t
tµ+1 − tµ

q[cµ−3, cµ−2, cµ−1; tµ−2, tµ−1, tµ+1, tµ+2](t)+

t− tµ
tµ+1 − tµ

q[cµ−2, cµ−1, cµ; tµ−1, tµ, tµ+2, tµ+3](t), (1.24)

with t varying in [tµ, tµ+1]. The two quadratic segments are given by convex combinations
of linear segments on the two intervals [tµ−1, tµ+1] and [tµ, tµ+2], as in (1.21). The three
line segments are in turn given by convex combinations of the given points on the intervals
[tµ−2, tµ+1], [tµ−1, tµ+2] and [tµ, tµ+3]. Note that all these intervals contain [tµ, tµ+1] so
that when t varies in [tµ, tµ+1] all the combinations involved in the construction of the
cubic curve will be convex. This also shows that we can never get division by zero since
we have assumed that tµ < tµ+1.

The explicit notation in (1.24) is too cumbersome, especially when we consider spline
curves of even higher degrees, so we generalise the notation in (1.20) and (1.23) and set

qsj,k(t) = q[cj−k, . . . , cj , tj−k+1, . . . , tj , tj+s, . . . , tj+k+s−1](t), (1.25)

for some positive integer s, assuming that the control points and knots in question are
given. The �rst subscript j in qsj,k indicates the segment that is involved (in general we
work with many spline segments and therefore long arrays of control points and knots),
the second subscript k gives the polynomial degree, and the superscript s gives the gap
between the knots in the computation of the weight (t − tµ)/(tµ+s − tµ). With the
abbreviation (1.25), equation (1.24) becomes

q1
µ,3(t) =

tµ+1 − t
tµ+1 − tµ

q2
µ−1,2(t) +

t− tµ
tµ+1 − tµ

q2
µ,2(t).

Note that on both sides of this equation, the last subscript and the superscript sum to
four. Similarly, if the construction of quadratic splines given by (1.21) is expressed with
the abbreviation given in (1.25), the last subscript and the superscript add to three. The
general pattern is that in the recursive formulation of spline curves of degree p, the last
subscript and the superscript always add to p + 1. Therefore, when the degree of the
spline curves under construction is �xed we sometimes drop the superscript and write
qsµ,k = qµ,k.

The complete computations involved in computing a point on the cubic segment
qµ,3(t) can be arranged in the triangular array shown in Figure 1.21 (all arguments to
the qµ,k have been omitted to conserve space). The labels should be interpreted as in
Figure 1.7.

A segment of a general spline curve of degree p requires p+1 control points (cj)
µ
j=µ−p

and 2p knots (tj)
µ+p
j=µ−p+1 that form a nondecreasing sequence with tµ < tµ+1. The curve

is a weighted average of two curves of degree p− 1,

qµ,p(t) =
tµ+1 − t
tµ+1 − tµ

qµ−1,p−1(t) +
t− tµ

tµ+1 − tµ
qµ,p−1(t). (1.26)
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Figure 1.21. Computing a point on a cubic spline curve.

Because of the assumption tµ < tµ+1 we never get division by zero in (1.26). The two
curves of degree p− 1 are obtained by forming similar convex combinations of curves of
degree p− 2. For example,

qµ,p−1(t) =
tµ+2 − t
tµ+2 − tµ

qµ−1,p−2(t) +
t− tµ

tµ+2 − tµ
qµ,p−2(t),

and again the condition tµ < tµ+1 saves us from dividing by zero. At the lowest level we
have p line segments that are determined directly from the control points,

qj,1(t) =
tj+p − t
tj+p − tj

cj−1 +
t− tj

tj+p − tj
cj

for j = µ− p+ 1, . . . , µ. The denominators in this case are tµ+1− tµ−p+1, . . . , tµ+p− tµ,
all of which are positive since the knots are nondecreasing with tµ < tµ+1. As long as
t is restricted to the interval [tµ, tµ+1], all the operations involved in computing qµ,p(t)
are convex combinations. The complete computations are summarized in the following
algorithm.

Algorithm 1.3. Let p be a positive integer, let the p + 1 points (cj)
µ
j=µ−p be given

together with the 2p knots t = (tj)
µ+p
j=µ−p+1. The point qµ,p(t) on the spline curve qµ,p

of degree p is determined by the following computations. First set qp+1
j,0 (t) = cj for

j = µ− p, µ− p+ 1, . . . , µ and then compute

qkj,p−k+1(t) =
tj+k − t
tj+k − tj

qk+1
j−1,p−k(t) +

t− tj
tj+k − tj

qk+1
j,p−k(t) (1.27)
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(a) (b)

Figure 1.22. Two cubic spline curves, both with knots t = (0, 0, 0, 0, 1, 2, 3, 3, 3, 3).

for j = µ− k + 1, . . . , µ and k = p, p− 1, . . . , 1.

A spline curve of degree p with n control points (cj)
n
j=1 and knots (tj)

n+p
j=2 is given by

f(t) =


qp+1,p(t) t ∈ [tp+1, tp+2),

qp+2,p(t), t ∈ [tp+2, tp+3);
...

...

qn,p(t), t ∈ [tn, tn+1],

where as before it is assumed that the knots are nondecreasing and in addition that
tj < tj+1 for j = p+1, . . . , n. Again we can express f in terms of the piecewise constant
functions given by (1.19),

f(t) =
n∑

j=p+1

qj,p(t)Bj,0(t). (1.28)

It turns out that spline curves of degree p have continuous derivatives up to order p− 1,
see Section 3.2.4 in Chapter 3.

Figure 1.22 shows two examples of cubic spline curves with control points taken from
the two Bézier curves of degree �ve in Figure 1.15. Again we note that the curves behave
like Bézier curves at the ends because there are four identical knots at each end.

1.5.4 Smoothness of spline curves

The geometric construction of one segment of a spline curve, however elegant and numer-
ically stable it may be, would hardly be of much practical interest was it not for the fact
that it is possible to smoothly join together neighbouring segments. We will study this
in much more detail in Chapter 3, but will take the time to state the exact smoothness
properties of spline curves here.

Theorem 1.4. Suppose that the number tµ+1 occursm times among the knots (tj)
µ+p
j=µ−p,

with m some integer bounded by 1 ≤ m ≤ p+ 1, i.e.,

tµ < tµ+1 = · · · = tµ+m < tµ+m+1.
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(a) (b)

Figure 1.23. A quadratic spline with a double knot at the circled point (a) and a cubic spline with a double
knot at the circled point (b).

Then the function f : [tµ, tµ+m+1]→ R given by

f(t) =

{
qµ.p(t), if tµ ≤ t < tµ+1,

qµ+m.p(t), if tµ+m ≤ t < tµ+m+1.

has continuous derivatives up to order p−m at the join tµ+1.

This theorem introduces a generalization of our construction of spline curves by per-
mitting tµ+1, . . . , tµ+m to coalesce, but if we assume thatm = 1 the situation corresponds
to the construction above. Theorem 1.4 tells us that in this standard case the spline curve
f will have p continuous derivatives at the join tµ+1: namely f , f ′, . . . , fp−1 will all be
continuous at tµ+1. This means that if the knots are all distinct, then a linear spline will
be continuous, a quadratic spline will also have a continuous �rst derivative, while for
a cubic spline even the second derivative will be continuous. Examples of spline curves
with this maximum smoothness can be found above.

What happens when m > 1? Theorem 1.4 tells us that each time we add a knot at
tµ+1 the number of continuous derivatives is reduced by one. So a quadratic spline will
in general only be continuous at a double knot, whereas a cubic spline will be continuous
and have a continuous derivative at a double knot.

This ability to control the smoothness of a spline by varying the multiplicity of the
knots is important in practical applications. For example it is often necessary to represent
curves with a sharp corner (discontinuous derivative). With a spline curve of degree p this
can be done by letting the appropriate knot occur p times. We will see many examples of
how the multiplicity of the knots in�uence the smoothness of a spline in later chapters.

Two examples of spline curves with reduced smoothness are shown in Figure 1.23.
Figure (a) shows a quadratic spline with a double knot and a discontinuous derivative
at the encircled point, while Figure (b) shows a cubic spline with a double knot and a
discontinuous second derivative at the encircled point.
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1.6 Representing spline curves in terms of basis functions

In Section 1.4 we saw that a Bézier curve g of degree p with control points (cj)
p
j=0

can be written as a linear combination of the Bernstein polynomials {bi,p}pj=0 with the
control points as coe�cients, see (1.15). In this section we want to develop a similar
representation for spline curves.

If we have n control points (cj)
n
j=1 and the n+ p− 1 knots t = (tj)

n+p
j=2 for splines of

degree p; we have seen that a typical spline can be written

f(t) =
n∑

j=p+1

qj,p(t)Bj,0(t), t ∈ [tp+1, tn+1], (1.29)

where {Bj,0}nj=p+1 are given by (1.19). When this representation was introduced at the
end of Section 1.5.3 we assumed that tp+1 < tp+2 < · · · < tn+1 (although the end knots
were allowed to coincide). To accommodate more general forms of continuity, we know
from Theorem 1.4 that we must allow some of the interior knots to coincide as well. If for
example tj = tj+1 for some j with p+1 < j < n+1, then the corresponding segment qj,p
is completely redundant and (1.26) does not make sense since we get division by zero.
This is in fact already built into the representation in (1.29), since Bj,0(t) is identically
zero in this case, see (1.19). A more explicit de�nition of Bi,0 makes this even clearer,

Bj,0(t) =


1, tj ≤ t < tj+1,

0, t < tj or t ≥ tj+1,

0, tj = tj+1.

(1.30)

The representation (1.29) is therefore valid even if some of the knots occur several times.
The only complication is that we must be careful when we expand out qj,p according
to (1.26) as this will give division by zero if tj = tj+1. One might argue that there
should be no need to apply (1.26) if tj = tj+1 since the result is zero anyway. However,
in theoretical developments it is convenient to be able to treat all the terms in (1.29)
similarly, and this may then lead to division by zero. It turns out though that this
problem can be circumvented quite easily by giving an appropriate de�nition of `division
by zero' in this context, see below.

Let us now see how f can be written more directly in terms of the control points. By
making use of (1.26) we obtain

f(t) =

n∑
j=p+1

( t− tj
tj+1 − tj

qj,p−1(t)Bj,0(t) +
tj+1 − t
tj+1 − tj

qj−1,p−1(t)Bj,0(t)
)

=

n−1∑
j=p+1

( t− tj
tj+1 − tj

Bj,0(t) +
tj+2 − t

tj+2 − tj+1
Bj+1,0(t)

)
qj,p−1(t)+ (1.31)

tp+2 − t
tp+2 − tp+1

Bp+1,0(t)qp,p−1(t) +
t− tn

tn+1 − tn
Bn,0(t)qn,p−1(t).
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This is a typical situation where we face the problem of division by zero if tj = tj+1 for
some j. The solution is to declare that `anything divided by zero is zero' since we know
that if tj = tj+1 the answer should be zero anyway.

In (1.31) we have two `boundary terms' that complicate the expression. But since t
is assumed to lie in the interval [tp+1, tn+1] we may add the expression

t− tp
tp+1 − tp

Bp,0(t)qp,p−1(t) +
tn+2 − t

tn+2 − tn+1
Bn+1,0(t)qn,p−1(t)

which is identically zero as long as t is within [tp+1, tn+1]. By introducing the functions

Bj,1(t) =
t− tj

tj+1 − tj
Bj,0(t) +

tj+2 − t
tj+2 − tj+1

Bj+1,0(t) (1.32)

for j = p, . . . , n, we can then write f as

f(t) =
n∑
j=p

qj,p−1(t)Bj,1(t).

This illustrates the general strategy: Successively apply the relations in (1.27) in
turn and rearrange the sums until we have an expression where the control points appear
explicitly. The functions that emerge are generalisations of Bj,1 and can be de�ned
recursively by

Bj,k(t) =
t− tj

tj+k − tj
Bj,k−1(t) +

tj+k+1 − t
tj+k+1 − tj

Bj+1,k−1(t), (1.33)

for k = 1, 2, . . . , p, starting with Bj,0 as de�ned in (1.19). Again we use the convention
that `anything divided by zero is zero'. It follows by induction that Bj,k(t) is identically
zero if tj = tj+k+1 and Bj,k(t) = 0 if t < tj or t > tj+k+1, see Exercise 7.

To prove by induction that the functions de�ned by the recurrence (1.33) appear in
the process of unwrapping all the averaging in (1.27), we consider a general step. Suppose
that after k − 1 applications of (1.27) we have

f(t) =

n∑
j=p+2−k

qj,p−k+1(t)Bj,k−1(t).

One more application yields

f(t) =
n∑

j=p+2−k

( tj+k − t
tj+k − tj

qj−1,p−k(t)Bj,k−1(t) +
t− tj

tj+k − tj
qj,p−k(t)Bj,k−1(t)

)

=
n−1∑

j=p+2−k

( t− tj
tj+k − tj

Bj,k−1(t) +
tj+k+1 − t

tj+k+1 − tj+1
Bj+1,k−1(t)

)
qj,p−k(t)+

tp+2 − t
tp+2 − tp+2−k

Bp+2−k,k−1(t)qp+1−k,p−k(t) +
t− tn

tn+k − tn
Bn,k−1(t)qn,p−k(t).
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Just as above we can include the boundary terms in the sum by adding

t− tp+1−k
tp+1 − tp+1−k

Bp+1−k,k−1(t)qp+1−k,p−k(t) +
tn+k+1 − t

tn+k+1 − tn+1
Bn+1,k−1(t)qn,p−k(t)

which is zero since Bj,k−1(t) is zero when t < tj or t > tj+k. The result is that

f(t) =

n∑
j=p+1−k

qj,p−k(t)Bj,k(t).

After p−1 steps we have f(t) =
∑n

j=2 qj,p−1(t)Bj,p−1(t). In the last application of (1.27)
we recall that qj,0(t) = cj for j = µ − p, . . . , µ. After rearranging the sum and adding
zero terms as before we obtain

f(t) =

n∑
j=1

cjBj,p(t).

But note that in this �nal step we need two extra knots, namely t1 and tn+p+1 which are
used by B1,p−1 and Bn+1,p−1, and therefore also by B1,p and Bn,p. The value of the spline
in the interval [tp+1, tn+1] is independent of these knots, but it is customary to demand

that t1 ≤ t2 and tn+p+1 ≥ tn+p to ensure that the complete knot vector t = (ti)
n+p+1
j=1 is

a nondecreasing sequence of real numbers.
The above discussion can be summarized in the following theorem.

Theorem 1.5. Let (cj)
n
j=1 be a set of control points for a spline curve f of degree p,

with nondecreasing knots (ti)
n+p+1
j=1 ,

f(t) =

n∑
j=p+1

qj,p(t)Bj,0(t)

where qj,p is given recursively by

qj,p−k+1(t) =
tj+k − t
tj+k − tj

qj−1,p−k(t) +
t− tj

tj+k − tj
qj,p−k(t) (1.34)

for j = d − k + 1, . . . , n, and k = p, p − 1, . . . , 1, while qj,0(t) = cj for j = 1, . . . , n.
The functions {Bj,0}nj=p+1 are given by

Bj,0(t) =

{
1, tj ≤ t < tj+1,

0, otherwise.
(1.35)

The spline f can also be written

f(t) =

n∑
j=1

cjBj,p(t) (1.36)
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where Bj,p is given by the recurrence relation

Bj,p(t) =
t− tj

tj+p − tj
Bj,p−1(t) +

tj+1+p − t
tj+1+p − tj+1

Bj+1,p−1(t). (1.37)

In both (1.34) and (1.37) possible divisions by zero are resolved by the convention that
`anything divided by zero is zero'.

The function Bj,p = Bj,p,t is called a B-spline of degree p (with knots t). B-splines
have many interesting and useful properties and in the next chapter we will study these
functions in detail.

1.7 The Newton Form and Divided Di�erences

Using the Neville-Aitken Algorithm 1.1 to evaluate an interpolant at many points t, say
for plotting, is not very e�cient for large degrees p. In fact, since it involves

∑p
k=1 p−k+

1 = 1
2p(p+1) a�ne combinations, the number of arithmetic operations is O(p2), i.e. it is

proportional to p2. In this section we consider an alternative approach for constructing
the interpolation polynomial, where each evaluation only costs O(p) operations. It is
based on writing the polynomial in a special form called the Newton form and computing
the coe�cients using divided di�erences. Divided di�erences will turn out to be a useful
tool in B-spline theory.

Let for a nonnegative integer k and s ∈ N, Πs
k be the space of univariate polynomials

of degree ≤ k with coe�cients in Rs. We de�ne Πk := Π1
k. Thus q ∈ Πk means that

q(t) =
∑k

j=0 bjt
j is a linear combination of 1, t, t2, . . . , tk. These monomials or powers

are linearly independent, see Theorem A.15, so the dimension (number of degrees of
freedom) is k + 1 and the polynomial coe�cients aj are uniquely given.

As in Section 1.3 we are given positive integers p, s, p + 1 points cj ∈ Rs, j =
0, 1, . . . , p, and parameter values t0 < t1 < · · · < tp. Let qj,k(t), j = 0, 1, . . . , p − k and
k = 0, 1, . . . , p be polynomials in Πs

k such that qj,k(ti) = ci, i = j, j + 1, . . . , j + k. For
each j, k there are precisely one polynomial satisfying these requirements, i.e. polynomial
interpolation is unique. This also means that if pj,k(t) =

∑k
i=0 bit

i then the coe�cients
b0, . . . , bk are uniquely determined.

Consider the linear case p = 1. We can write q0,1 as

q0,1(t) = c0 + (t− t0)
c1 − c0

t1 − t0
= a0 + (t− t0)a1, (1.38)

where a0 = c0 and

a1 = [t0, t1]c :=
c1 − c0

t1 − t0
(1.39)

is called the �rst order divided di�erence of c at t0, t1. Obviously,

q1,1(t) = c1 + (t− t1)[t1, t2]c, [t1, t2]c =
c2 − c1

t2 − t1
. (1.40)
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In the quadratic case we can write q0,2 as a convex combination of q0,1 and q1,1 as in
(1.4), but we can also add a quadratic term to q0,1

q0,2(t) = q0,1(t) + (t− t0)(t− t1)a2, (1.41)

where a2 =
(
c2 − q0,1(t2)

)
/(t2 − t0)(t2 − t1). It is easy to see that q0,2(ti) = ci for

i = 0, 1, 2. We can obtain a more convenient formula for a2 by inserting (1.38) and
(1.40) in (1.4). Thus

q0,2(t) =
t2 − t
t2 − t0

(
c0 + (t− t0)[t0, t1]c

)
+

t− t0
t2 − t0

(
c1 + (t− t1)[t1, t2]c

)
.

The t2 coe�cient must be the same on both sides of this equation giving

a2 = [t0, t1, t2]c :=
[t1, t2]c− [t0, t1]c

t2 − t0
. (1.42)

The quantity [t0, t1, t2]c is called the second order divided di�erence of c at t0, t1, t2. The
result of combining (1.38), (1.41), and (1.42) is

q0,2(t) = c0 + (t− t0)[t0, t1]c+ (t− t0)(t− t1)[t0, t1, t2]c, (1.43)

and this formula is called the Newton form of q0,2.
The Newton form for a general degree is derived in a very similar manner. If qi,r−1

is the polynomial in Πs
r−1 interpolating cl at tl for l = i, i+ 1, . . . , i+ r − 1 then

qi,r(t) = qi,r−1t+ (t− ti) · · · (t− ti+r−1)[ti, . . . , ti+r]c, i = 0, 1, . . . , p− r, (1.44)

where
[ti, . . . , ti+r]c =

(
ci+r − qi,r−1(ti+r)

)
/(ti+r − ti) · · · (ti+r − ti+r−1)

interpolates cl at tl for l = i, i + 1, . . . , i + r. Moreover, qi,r ∈ Πs
r. By Aitken-Neville's

formula for 0 ≤ j ≤ p− k

qj,k(t) =
tj+k − t
tj+k − tj

qj−1,k−1(t) + +
t− tj

tj+k − tj
qj,k−1(t).

Using the representation (1.44) and equating tr coe�cients on both sides gives

[tj , . . . , tj+k]c :=
[tj+1, . . . , tj+k]c− [tj , . . . , tj+k−1]c

tj+k − tj
, 0 ≤ j ≤ p− k. (1.45)

Algorithm 1.6 (Divided di�erence calculation). Let p be a positive integer and let the
p + 1 points (cj)

p
j=0 be given together with p + 1 strictly increasing parameter values

t = (tj)
p
j=0. The following algorithm computes the coe�cients aj = [t0, . . . , tj ]c for

j = 0, 1, . . . , p in the Newton form

q0,p(t) = a0 + (t− t0)a1 + (t− t0)(t− t1)a2 + · · ·+ (t− t0) · · · (t− tp−1)ap. (1.46)

First set [tj ]c := cj for j = 0, 1, . . . , p and then compute [tj , . . . , tj+k]c using (1.45) for
j = 0, 1, . . . , p− k and k = 1, 2, . . . , p.
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@t0,t1,t2,t3Dc
-

1

1

t3-t0

@t0,t1,t2Dc
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1

1

t2-t0

@t0,t1Dc
-

1

1

t1-t0

@t1,t2,t3Dc
-

1

1

t3-t1

@t1,t2Dc
-

1

1

t2-t1

@t2,t3Dc
-

1

1

t3-t2

c0

c1

c2

c3

Figure 1.24. A divided di�erence table.

The computation is shown in Figure 1.24 for p = 3. The coe�cients aj are located
along the top NE-SW diagonal. Note the similarity with the table in Figure 1.7. For the
nodes we replace qj,k by [tj , . . . , tj+k]c. An edge label tj − t is replaced by −1 and t− tj
by +1.

Once we have found the coe�cients aj in the Newton form (1.46) we can evaluate
q0,p(t) for any t by a method known as Horner's rule. We write q0,p(t) in nested form,
illustrated for p = 3 by

q0,3(t) =
((

(t− t2)a3 + a2

)
(t− t1) + a1

)
(t− t0) + a0.

In general we have the following algorithm.

Algorithm 1.7 (Horner's rule). Let p be a positive integer and let the p+1 points (aj)
p
j=0

be the coe�cients in the Newton form (1.46) corresponding to p distinct parameter values
t = (tj)

p−1
j=0. For any t the following algorithm computes the value q0,p(t).

1 q = ap.

2 q = ak + (t− tk)q, k = p− 1, p− 2, . . . , 0.

3 q0,p(t) = q.

This algorithm requires p multiplications and 2p additions and subtractions for a
speci�c t. The algorithm is easily vectorized since t can be a vector.



34 CHAPTER 1. SPLINES AND B-SPLINES AN INTRODUCTION

1.8 Conclusion

Our starting point in this chapter was the need for e�cient and numerically stable meth-
ods for determining smooth curves from a set of points. We considered three possibilities,
namely polynomial interpolation, Bézier curves and spline curves. In their simplest forms,
all three methods produce polynomial curves that can be expressed as

g(t) =

p∑
j=0

ajFj(t),

where p is the polynomial degree, (aj)
p
j=0 are the coe�cients and {Fj}pj=0 are the basis

polynomials. The di�erences between the three methods lie in the choice of basis poly-
nomials, or equivalently, how the given points relate to the �nal curve. In the case of
interpolation the coe�cients are points on the curve with the Lagrange polynomials as
basis polynomials. For Bézier and spline curves the coe�cients are control points with
the property that the curve itself lies inside the convex hull of the control points, while
the basis polynomials are the Bernstein polynomials and (one segment of) B-splines re-
spectively. Although all three methods are capable of generating any polynomial curve,
their di�erences mean that they lead to di�erent representations of polynomials. For
our purposes Bézier and spline curves are preferable since they can be constructed by
forming repeated convex combinations. As we argued in Section 1.1, this should ensure
that the curves are relatively insensitive to round-o� errors.

The use of convex combinations also means that the constructions have simple geo-
metric interpretations. This has the advantage that a Bézier curve or spline curve can
conveniently be manipulated interactively by manipulating the curve's control points,
and as we saw in Section 1.4.3 it also makes it quite simple to link several Bézier curves
smoothly together. The advantage of spline curves over Bézier curves is that smooth-
ness between neighbouring polynomial pieces is built into the basis functions (B-splines)
instead of being controlled by constraining control points according to speci�c rules.

In the coming chapters we are going to study various aspects of splines, primarily
by uncovering properties of B-splines. This means that our point of view will be shifted
somewhat, from spline curves to spline functions (each control point is a real number),
since B-splines are functions. However, virtually all the properties we obtain for spline
functions also make sense for spline curves, and even tensor product spline surfaces, see
Chapters 6 and 7.

We were led to splines and B-splines in our search for approximation methods based
on convex combinations. The method which uses given points (cj)

n
j=1 as control points

for a spline as in

f(t) =

n∑
j=1

cjBj,p(t) (1.47)

is often referred to as Schoenberg's variation diminishing spline approximation. This is
a widely used approximation method that we will study in detail in Section 5.2, and
because of the intuitive relation between the spline and its control points the method is
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often used in interactive design of spline curves. However, there are many other spline
approximation methods. For example, we may approximate certain given points (bj)

m
j=1

by a spline curve that passes through these points, or we may decide that we want a
spline curve that approximates these points in such a way that some measure of the
error is as small as possible. To solve these kinds of problems, we are faced with three
challenges: we must pick a suitable polynomial degree and an appropriate set of knots,
and then determine control points so that the resulting spline curve satis�es our chosen
criteria. Once this is accomplished we can compute points on the curve by Algorithm 1.3
and store it by storing the degree, the knots and the control points. We are going to
study various spline approximation methods of this kind in Chapter 5.

But before turning to approximation with splines, we need to answer some basic
questions: Exactly what functions can be represented as linear combinations of B-splines
as in (1.47)? Is a representation in terms of B-splines unique, or are there several choices
of control points that result in the same spline curve? These and many other questions
will be answered in the next two chapters.

Exercises for Chapter 1

1.1 Recall that a subset A of Rn is said to be convex if whenever we pick two points in
A, the line connecting the two points is also in A. In this exercise we are going to
prove that the convex hull of a �nite set of points is the smallest convex set that
contains the points. This is obviously true if we only have one or two points. To
gain some insight we will �rst show that it is also true in the case of three points
before we proceed to the general case. We will use the notation CH(c1, . . . , cn) to
denote the convex hull of the points c1, . . . , cn.

a) Suppose we have three points c1, c2 and c3. We know that the convex hull
of c1 and c2 is the straight line segment that connects the points. Let c̃ be a
point on this line, i.e.,

c̃ = (1− λ)c1 + λc2 (1.48)

for some λ with 0 ≤ λ ≤ 1. Show that any convex combination of c̃ and
c3 is a convex combination of c1, c2 and c3. Explain why this proves that
CH(c1, c2, c3) contains the triangle with the three points at its vertexes. The
situation is depicted graphically in Figure 1.2.

b) It could be that CH(c1, c2, c3) is larger than the triangle formed by the three
points since the convex combination that we considered above was rather
special. We will now show that this is not the case.

Show that any convex combination of c1, c2 and c3 gives rise to a convex
combination on the form (1.48). Hint: Show that if c is a convex combination
of the three points, then we can write

c = λ1c1 + λ2c2 + λ3c3

= (1− λ3)c̃+ λ3c3,
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where c̃ is some convex combination of c1 and c2. Why does this prove that the
convex hull of three points coincides with the triangle formed by the points?
Explain why this shows that if B is a convex set that contains c1, c2 and c3

then B must also contain the convex hull of the three points which allows us
to conclude that the convex hull of three points is the smallest convex set that
contains the points.

c) The general proof that the convex hull of n points is the smallest convex set
that contains the points is by induction on n. We know that this is true for
n = 2 and n = 3 so we assume that n ≥ 4. Let B be a convex set that contains
c1, . . . , cn. Use the induction hypothesis and show that B contains any point
on a straight line that connects cn and an arbitrary point in CH(c1, . . . , cn−1).

d) From what we have found in (c) it is not absolutely clear that any convex
set B that contains c1, . . . , cn also contains all convex combinations of the
points. To settle this show that any point c in CH(c1, . . . , cn) can be written
c = λc̃+ (1− λ)cn for some λ in [0, 1] and some point c̃ in CH(c1, . . . , cn−1).
Hint: Use a trick similar to that in (b).

Explain why this lets us conclude that CH(c1, . . . , cn) is the smallest convex
set that contains c1, . . . , cn.

1.2 Show that the interpolatory polynomial curve q0,p(t) given by (1.5) can be written
as in (1.6) with `k,p given by (1.7).

1.3 Implement Algorithm 1.1 in a programming language of your choice. Test the code
by interpolating points on a semicircle and plot the results. Perform four tests, with
3, 7, 11 and 15 uniformly sampled points. Experiment with the choice of parameter
values (tj) and try to �nd both some good and some bad approximations.

1.4 Implement Algorithm 1.2 in your favourite programming language. Test the pro-
gram on the same data as in exercise 3.

1.5 In this exercise we are going to write a program for evaluating spline functions.
Use whatever programming language you prefer.

a) Implement Algorithm 1.3 in a procedure that takes as input an integer p (the
degree), p+ 1 control points in the plane, 2p knots and a parameter value t.

b) If we have a complete spline curve f =
∑n

j=1 cjBj,p with knots t = (tj)
n+p+1
j=1

that we want to evaluate at t we must make sure that the correct control
points and knots are passed to the routine in (a). If

tµ ≤ t < tµ+1 (1.49)

then (cj)
µ
j=µ−p and (tj)

µ+p
j=µ−p+1 are the control points and knots needed in

(a). Write a procedure which takes as input all the knots and a value t and
gives as output the integer µ such that (1.49) holds.
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c) Write a program that plots a spline function by calling the two routines from
(a) and (b). Test your program by picking control points from the upper half
of the unit circle and plotting the resulting spline curve. Use cubic splines
and try with n = 4, n = 8 and n = 16 control points. Use the knots t =
(0, 0, 0, 0, 1, 1, 1, 1) when n = 4 and add the appropriate number of knots
between 0 and 1 when n is increased. Experiment with the choice of interior
knots when n = 8 and n = 16. Is the resulting curve very dependent on the
knots?

1.6 Show that a quadratic spline is continuous and has a continuous derivative at a
single knot.

1.7 Show by induction that Bj,p depends only on the knots tj , tj+1, . . . , tj+p+1. Show
also that Bj,p(t) = 0 if t < tj or t > tj+p+1.
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Chapter 2
Basic properties of splines and B-splines

In Chapter 1 we introduced splines through a geometric construction of curves based on
repeated averaging, and it turned out that a natural representation of spline curves was
as linear combinations of B-splines. In this chapter we start with a detailed study of the
most basic properties of B-splines, illustrated by examples and �gures in Section 2.1, and
in Section 2.2 we formally de�ne spline functions and spline curves. In Section 2.3 we
give a matrix representation of splines and B-splines, and this representation is the basis
for our development of much of the theory in later chapters.

2.1 Some simple consequences of the recurrence relation

We saw in Theorem 1.5 that a degree p spline curve f can be constructed from n control
points (cj)

n
j=1 and n+ p+ 1 knots (ti)

n+p+1
j=1 and written as

f =

n∑
j=1

cjBi,p,

where {Bi,p}nj=1 are B-splines of degree p. In this section we will explore B-splines by
considering a number of examples, and deducing some of their most basic properties. For
easy reference we start by recording the de�nition of B-splines. Since we will mainly be
working with functions in this chapter, we use x as the independent variable.

De�nition 2.1. Let p be a nonnegative integer and let t = (tj), the knot vector or knot
sequence, be a nondecreasing sequence of real numbers of length at least p+ 2. The jth
B-spline of degree p with knots t is de�ned by

Bj,p,t(x) =
x− tj
tj+p − tj

Bj,p−1,t(x) +
tj+1+p − x
tj+1+p − tj+1

Bj+1,p−1,t(x), (2.1)

for all real numbers x, with

Bj,0,t(x) =

{
1, if tj ≤ x < tj+1;

0, otherwise.
(2.2)

39
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Figure 2.1. A linear B-spline with simple knots (a) and double knots (b).

Here, the convention is assumed that `0/0 = 0′. When there is no chance of ambiguity,
some of the subscripts will be dropped and the B-spline written as either Bj,p, Bj,t, or
simply Bj .

We say that a knot has multiplicity m if it appears m times in the knot sequence.
Knots of multiplicity one, two and three are also called simple, double and triple knots.

Many properties of B-splines can be deduced directly from the de�nition. One of the
most basic properties is that

Bj,p(x) = 0 for all x when tj = tj+p+1

which we made use of in Chapter 1. This is true by de�nition for p = 0. If it is true
for B-splines of degree p − 1, the zero convention means that if tj = tj+p+1 then both
Bj,p−1(x)/(tj+p − tj) and Bj+1,p−1(x)/(tj+1+p − tj+1) on the right in (2.1) are zero, and
hence Bj,p(x) is zero. The recurrence relation can therefore be expressed more explicitly
as

Bj,p(x) =


0, if tj = tj+1+p;

s1(x), if tj < tj+p and tj+1 = tj+1+p;

s2(x), if tj = tj+p and tj+1 < tj+1+p;

s1(x) + s2(x), otherwise;

(2.3)

where

s1(x) =
x− tj
tj+p − tj

Bj,p−1(x) and s2(x) =
tj+1+p − x
tj+1+p − tj+1

Bj+1,p−1(x)

for all x.

The following example shows that linear B-splines are quite simple.

Example 2.2 (B-splines of degree 1). One application of the recurrence relation gives

Bj,1(x) =
x− tj
tj+1 − tj

Bj,0(x) +
tj+2 − x
tj+2 − tj+1

Bj+1,0(x) =


(x− tj)/(tj+1 − tj), if tj ≤ x < tj+1;

(tj+2 − x)/(tj+2 − tj+1), if tj+1 ≤ x < tj+2;

0, otherwise

.
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Figure 2.2. From left to right we see the quadratic B-splines B[0, 0, 0, 1](x), B[2, 2, 3, 4](x), B[5, 6, 7, 8](x),
B[9, 10, 10, 11](x), B[12, 12, 13, 13](x), B[14, 15, 16, 16](x), and B[17, 18, 18, 18](x).

A plot of this hat function is shown in Figure 2.1 (a) in a typical case where tj < tj+1 < tj+2. The �gure
shows clearly that Bj,1 consists of linear polynomial pieces, with breaks at the knots. In Figure 2.1 (b),
the two knots tj+1 and tj+2 are identical; then the second linear piece is identically zero since Bj+1,0 = 0,
and Bj,1 is discontinuous. This provides an illustration of the smoothness properties of B-splines: a linear
B-spline is discontinuous at a double knot, but continuous at simple knots.

The B-spline Bj,p depends only on the knots (tk)
j+p+1
k=j . For B-splines of degree 0 this

is clear from equation (2.2), and Example 2.2 shows that it is also true for B-splines of
degree 1. To show that it is true in general we use induction and assume that Bj,p−1

only depends on (tk)
j+p
k=j and Bj+1,p−1 only depends on (tk)

j+p+1
k=j+1. By examining the

recurrence relation (2.1) we see that then Bj,p can only depend on the knots (tk)
j+p+1
k=j ,

as we claimed.
The notation Bj,p(x) = B[tj , . . . , tj+p+1](x) will sometimes be used to emphasise the

dependence of a B-spline on the individual knots. For example, if p ≥ 2 and if we set
(tj , tj+1, . . . , tj+p, tj+p+1) = (a, b, . . . , c, d), then (2.1) can be written

B[a, b, . . . , c, d](x) =
x− a
c− a

B[a, b, . . . , c](x) +
d− x
d− b

B[b, . . . , c, d](x). (2.4)

Example 2.3 (Quadratic B-splines). Using the zero convention and (2.4) we �nd

1. B[0, 0, 0, 1](x) = (1− x)B[0, 0, 1](x) = (1− x)2B[0, 1](x).

2. B[0, 0, 1, 2](x) = x(2− 3
2
x)B[0, 1](x) + 1

2
(2− x)2B[1, 2](x).

3. B[0, 1, 2, 3](x) = x2

2
B[0, 1](x) +

(
3
4
− (x− 3

2
)2
)
B[1, 2](x) + (3−x)2

2
B[2, 3](x).

4. B[0, 1, 1, 2](x) = x2B[0, 1](x) + (2− x)2B[1, 2](x).

5. B[0, 0, 1, 1](x) = 2x(1− x)B[0, 1](x).

6. B[0, 1, 2, 2](x) = 1
2
x2B[0, 1](x) + (2− x)( 3

2
x− 1)B[1, 2](x).

7. B[0, 1, 1, 1](x) = x2B[0, 1](x).

Translates (see (2.6)) of these functions are shown in Figure 2.2. Note that the B-spline B[0, 1, 2, 3](x)
consists of three nonzero polynomial pieces, but that in general the number of nonzero pieces depends
on the multiplicity of the knots. For example, the functions B[0, 0, 0, 1](x) and B[0, 0, 1, 1](x) consist of
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Figure 2.3. The di�erent polynomial pieces of a quadratic B-spline.

only one nonzero piece. Figure 2.2 illustrates these smoothness properties of B-splines: At a single knot
a quadratic B-spline is continuous and has a continuous derivative, at a double knot it is continuous,
while at a triple knot it is discontinuous.

Figure 2.3 shows the quadratic B-spline B[0, 1, 2, 3](x) together with its constituent polynomial
pieces. Note how the three parabolas join together smoothly to make the B-spline have continuous �rst
derivative at every point.

By applying the recurrence relation (2.1) twice we obtain an explicit expression for a generic
quadratic B-spline,

Bj,2(x) =
x− tj
tj+2 − tj

[ x− tj
tj+1 − tj

Bj,0(x) +
tj+2 − x
tj+2 − tj+1

Bj+1,0(x)
]

+
tj+3 − x
tj+3 − tj+1

[ x− tj+1

tj+2 − tj+1
Bj+1,0(x) +

tj+3 − x
tj+3 − tj+2

Bj+2,0(x)
]

=
(x− tj)2

(tj+2 − tj)(tj+1 − tj)
Bj,0(x) +

(tj+3 − x)2

(tj+3 − tj+1)(tj+3 − tj+2)
Bj+2,0(x)

+
( (x− tj)(tj+2 − x)

(tj+2 − tj)(tj+2 − tj+1)
+

(tj+3 − x)(x− tj+1)

(tj+3 − tj+1)(tj+2 − tj+1)

)
Bj+1,0(x).

(2.5)

The complexity of this expression gives us a good reason to work with B-splines through other means
than explicit formulas.

Figure 2.4 shows some cubic B-splines. The middle B-spline, B[9, 10, 11, 12, 13](x),
has simple knots and its second derivative is therefore continuous for all real numbers x,
including the knots. In general a cubic B-spline has 3 −m continuous derivatives at a
knot of multiplicity m for m = 1, 2, 3. A cubic B-spline with a knot of multiplicity 4 is
discontinuous at the knot.

Before considering the next example we show that B-splines possess a property called
translation invariance. Mathematically this is expressed by the formula

B[tj + y, . . . , tj+p+1 + y](x+ y) = B[tj , . . . , tj+p+1](x) x, y ∈ R. (2.6)
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We argue by induction, and start by checking the case p = 0. We have

B[tj + y, tj+1 + y](x+ y) =

{
1, if tj + y ≤ x+ y < tj+1 + y;

0, otherwise
=

{
1, if tj ≤ x < tj+1;

0, otherwise,

so equation (2.6) holds for p = 0. Suppose that the translation invariance holds for
B-splines of degree p− 1. In the recurrence (2.1) for the left-hanp-side of (2.6) the �rst
coe�cient (x− tj)/(tj+p − tj) can be written

(x+ y)− (tj + y)

(tj+p + y)− (tj + y)
=

x− tj
tj+p − tj

,

i.e., the same as before translation. This also holds for the other coe�cient (tj+p+1 −
x)/(tj+p+1−tj+1) in (2.1). Since the two B-splines of degree p−1 are translation invariant
by the induction hypothesis, we conclude that (2.6) holds for all polynomial degrees.

Example 2.4 (Uniform B-splines). The B-splines on a uniform knot vector are of special interest.
Let the knots be the set Z of all integers. We index this knot sequence by letting tj = j for all integers
j. We denote the uniform B-spline of degree d ≥ 0 by

Mp(x) = B0,p(x) = B[0, 1, · · · , p+ 1](x), x ∈ R. (2.7)

The functions Md are also called cardinal B-splines. On this knot vector all B-splines can be written as
translates of the function Md. Using (2.6) we have

Bj,p(x) = B[j, j + 1, . . . , j + p+ 1](x) = B[0, 1, . . . , p+ 1](x− j) = Mp(x− j) for all j.

In particular, B1,p−1(x) = B[1, . . . , p+ 1](x) = Mp−1(x− 1) and the recurrence relation implies that for
d ≥ 1

Mp(x) =
x

p
Mp−1(x) +

p+ 1− x
p

Mp−1(x− 1). (2.8)

Using this recurrence we can compute the �rst few uniform B-splines

M1(x) = xM0(x) + (2− x)M0(x− 1)

M2(x) =
x2

2
M0(x) +

(3

4
− (x− 3

2
)2
)
M0(x− 1) +

(3− x)2

2
M0(x− 2)

M3(x) =
x3

6
M0(x) +

(2

3
− 1

2
x(x− 2)2

)
M0(x− 1)

+
(2

3
− 1

2
(4− x)(x− 2)2

)
M0(x− 2) +

(4− x)3

6
M0(x− 3)

(2.9)

(compare with Examples 2.2 and 2.3). As we shall see in Chapter 3, the B-splineMp has p−1 continuous
derivatives at the knots. The quadratic cardinal B-spline M2 is shown in Figure 2.2, translated to the
interval [5, 8], while M3 is shown in Figure 2.4, translated to [9, 13].

Example 2.5 (Bernstein polynomials). The Bernstein polynomials that appeared in the repre-
sentation of Bézier curves in Section 1.4 are special cases of B-splines. In fact it turns out that the jth
Bernstein polynomial on the interval [a, b] is (almost) given by

Bpj (x) = B[

p+1−j︷ ︸︸ ︷
a, . . . , a,

j+1︷ ︸︸ ︷
b, . . . , b](x), for j = 0, . . . , p.
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Figure 2.4. From left to right we see the cubic B-splines B[0, 0, 0, 0, 1](x), B[2, 2, 2, 3, 4](x), B[5, 5, 6, 7, 8](x),
B[9, 10, 11, 12, 13](x)), B[14, 16, 16, 16, 17](x), B[18, 19, 20, 20, 20](x), and B[21, 22, 22, 22, 22](x).

The recurrence relation (2.4) now takes the form

Bpj (x) =
x− a
b− a B[

p+1−j︷ ︸︸ ︷
a, . . . , a,

j︷ ︸︸ ︷
b, . . . , b](x) +

b− x
b− aB[

p−j︷ ︸︸ ︷
a, . . . , a,

j+1︷ ︸︸ ︷
b, . . . , b](x)

=
x− a
b− a B

p−1
j−1 (x) +

b− x
b− aB

p−1
j (x).

(2.10)

This is also valid for j = 0 and j = p if we de�ne Bp−1
j = 0 for j < 0 and j ≥ p. Using induction on p

one can show the explicit formula

Bpj (x) =

(
p

j

)(
x− a
b− a

)j (
b− x
b− a

)p−j
B[a, b](x), for j = 0, 1, . . . , p, (2.11)

see exercise 5. These are essentially the Bernstein polynomials for the interval [a, b], except that the
factor B[a, b) causes Bpj to be zero outside [a, b]. To represent Bézier curves, it is most common to use

the Bernstein polynomials on the interval [0, 1] as in Section 1.4, i.e., with a = 0 and b = 1,

Bpj (x) =

(
p

j

)
xj(1− x)p−jB[0, 1](x) = bj,p(x)B[0, 1](x), for j = 0, 1, . . . , p; (2.12)

here bj,p is the jth Bernstein polynomial of degree p. For example, the quadratic Bernstein basis
polynomials are given by

b0,2(x) = (1− x)2, b1,2(x) = 2x(1− x), b2,2(x) = x2

which agrees with what we found in Chapter 1. These functions can also be recognised as the polynomial
part of the special quadratic B-splines in (1), (5) and (7) in Example 2.3. For Bernstein polynomials on
[0, 1] the recurrence relation (2.10) takes the form

bj,p(x) = xbj−1,p−1(x) + (1− x)bj,p−1(x), j = 0, 1, . . . , p. (2.13)

We have now seen a number of examples of B-splines and some characteristic features
are evident. The following lemma sums up the most basic properties.

Lemma 2.6. Let p be a nonnegative polynomial degree and let t = (tj) be a knot
sequence. The B-splines on t have the following properties:

1. Local knots. The jth B-spline Bj,p depends only on the knots tj , tj+1, . . . , tj+p+1.
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2. Local support.

(a) If x is outside the interval [tj , tj+p+1) then Bj,p(x) = 0. In particular, if
tj = tj+p+1 then Bj,p is identically zero.

(b) If x lies in the interval [tµ, tµ+1) then Bj,p(x) = 0 if j < µ− p or j > µ.

3. Positivity. If x ∈ (tj , tj+p+1) then Bj,p(x) > 0. The closed interval [tj , tj+p+1] is
called the support of Bj,p.

4. Piecewise polynomial. The B-spline Bj,p can be written

Bj,p(x) =

j+p∑
k=j

Bk
j,p(x)Bk,0(x) (2.14)

where each Bk
j,p(x) is a polynomial of degree p.

5. Special values. If z = tj+1 = · · · = tj+p < tj+p+1 then Bj,p(z) = 1 and Bi,p(z) = 0
for i 6= j.

6. Smoothness. If the number z occurs m times among tj , . . . , tj+p+1 then the
derivatives of Bj,p of order 0, 1, . . . , p−m are all continuous at z.

Proof. Properties 1�3 follow directly, by induction, from the recurrence relation, see
exercise 3. In Section 1.5 in Chapter 1 we saw that the construction of splines produced
piecewise polynomials, so this explains property 4. Property 5 is proved in exercise 6
and property 6 will be proved in Chapter 3.

2.2 Linear combinations of B-splines

In Theorem 1.5 we saw that B-splines play a central role in the representation of spline
curves. The purpose of this section is to de�ne precisely what we mean by spline functions
and spline curves and related concepts like the control polygon.

2.2.1 Spline functions

The B-spline Bj,p depends on the knots tj , . . . , tj+1+p. This means that if the knot

vector is given by t = (tj)
n+p+1
j=1 for some positive integer n, we can form n B-splines

{Bj,p}nj=1 of degree p associated with this knot vector. A linear combination of B-splines,
or a spline function, is a combination of B-splines on the form

f =
n∑
j=1

cjBj,p, (2.15)

where c = (cj)
n
j=1 are n real numbers. We formalise this in a de�nition.
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De�nition 2.7 (Spline functions). Let t = (tj)
n+p+1
j=1 be a nondecreasing sequence of

real numbers, i.e., a knot vector for a total of n B-splines. The linear space of all linear
combinations of these B-splines is the spline space Sp,t de�ned by

Sp,t = span{B1,p, . . . , Bn,p} =
{ n∑
j=1

cjBj,p | cj ∈ R for 1 ≤ j ≤ n
}
.

An element f =
∑n

j=1 cjBj,p of Sp,t is called a spline function, or just a spline, of degree
p with knots t, and (cj)

n
j=1 are called the B-spline coe�cients of f .

As we shall see later, B-splines are linearly independent so Sp,t is a linear space of
dimension n.

It will often be the case that the exact length of the knot vector is of little interest.
Then we may write a spline as

∑
j cjBj,p without specifying the upper and lower bounds

on j.

Example 2.8 (A linear spline). Let (xi, yi)
m
j=1 be a set of data points with xi < xi+1 for j = 1,

2, . . . , m− 1. On the knot vector

t = (tj)
m+2
j=1 = (x1, x1, x2, x3, . . . , xm−1, xm, xm)

we consider the linear (p = 1) spline function

s(x) =

m∑
j=1

yjBj,1(x), for x ∈ [x1, xm].

From Example 2.2 we see that s satis�es the interpolatory conditions

s(xi) =

m∑
j=1

yjBj,1(xi) = yi, j = 1, . . . ,m− 1 (2.16)

since Bi,1(xi) = 1 and all other B-splines are zero at xi. At x = xm all the B-splines are zero according
to De�nition 2.1. But the limit of Bm(x) when x tends to xm from the left is 1. Equation (2.16) therefore
also holds for j = m if we take limits from the left at x = xm. In addition s is linear on each subinterval
[tµ, tµ+1) since

s(x) = yµ−1Bµ−1,1(x) + yµBµ,1(x)

=
tµ+1 − x
tµ+1 − tµ

yµ−1 +
x− tµ

tµ+1 − tµ
yµ.

(2.17)

when x is in [tµ, tµ+1). It follows that s is the piecewise linear interpolant to the data. An example is
shown in Figure 2.5 (a).

Example 2.9 (A quadratic spline). Let f : [a, b]→ R be a given function de�ned on some interval

[a, b], and let n be an integer greater than 2. On [a, b] we assume that we have a knot vector t = (tj)
n+3
j=1 ,

where
a = t1 = t2 = t3 < t4 < · · · < tn < tn+1 = tn+2 = tn+3.

We can then de�ne the quadratic spline function

s(x) = Qf(x) =

n∑
j=1

f(t∗j )Bj,2(x),



2.2. LINEAR COMBINATIONS OF B-SPLINES 47

2 4 6 8

-1

-0.5

0.5

1

1.5

2

(a)

0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0.5

1

(b)

Figure 2.5. A linear spline interpolating data (a), and a quadratic spline (solid) that approximates sin(πx/2)

(dashed).

where
t∗j = (tj+1 + tj+2)/2, j = 1, . . . , n.

We note that
a = t∗1 < t∗2 < · · · < t∗n = b.

The function Qf is called the Variation Diminishing Spline Approximation to f of degree 2. As a
particular instance of this approximation we approximate the function f(x) =

√
2 sin (π

2
x) on the interval

[0, 3]. With

t = (tj)
8
j=1 = (0, 0, 0, 1, 2, 3, 3, 3),

we obtain (t∗j )
5
j=1 = (0, 1/2, 3/2, 5/2, 3) and

s(x) = B2,2(x) +B3,2(x)−B4,2(x)−
√

2B5,2(x).

A plot of this function together with f(x) is shown in Figure 2.5 (b).

Example 2.10 (A cubic polynomial in Bernstein form). On the knot vector

t = (tj)
8
j=1 = (0, 0, 0, 0, 1, 1, 1, 1)

we consider the cubic spline function

s(x) = −B1,3(x) + 5B2,3(x)− 5B3,3(x) +B4,3(x).

In terms of the cubic Bernstein basis we have

s(x) = −b0,3(x) + 5b1,3(x)− 5b2,3 + b3,3, 0 ≤ x ≤ 1.

This polynomial is shown in Figure 2.6 (b). It is the cubic Chebyshev polynomial with respect to the
interval [0, 1].

Note that the knot vectors in the above examples all have knots of multiplicity p+ 1
at both ends. If in addition no knot occurs with multiplicity higher than p+ 1 (as in the
examples), the knot vector is said to be p+ 1-regular.

When we introduced spline curves in Chapter 1, we saw that a curve mimicked the
shape of its control polygon in an intuitive way. The control polygon of a spline function
is not quite as simple as for curves since the B-spline coe�cients of a spline function is
a number. What is needed is an abscissa to associate with each coe�cient.
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Figure 2.6. The quadratic spline from Example 2.9 with its control polygon (a) and the cubic Chebyshev
polynomial with its control polygon (b).
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Figure 2.7. Two splines with corresponding control polygons. The spline in (a) is quadratic with knots t =
(0, 0, 0, 1, 1, 2, 3, 3, 3) and B-spline coe�cients c = (1, 0, 2, 1/2, 0, 1), while the spline in (b) is cubic with knots
t = (0, 0, 0, 0, 1, 1, 2, 2, 2, 4, 5, 5, 5, 5) and B-spline coe�cients 0, 3, 1, 4, 6, 1, 5, 3, 0, 4).

De�nition 2.11 (Control polygon for spline functions). Let f =
∑n

j=1 cjBj,p be a spline
in Sp,t. The control points of f are the points with coordinates (t∗j , cj) for j = 1, . . . , n,
where

t∗j =
tj+1 + · · ·+ tj+p

p

are the knot averages of t. The control polygon of f is the piecewise linear function
obtained by connecting neighbouring control points by straight lines.

Some spline functions are shown with their control polygons in Figures 2.6�2.7. It
is quite striking how the spline is a smoothed out version of the control polygon. In
particular we notice that at a knot with multiplicity at least p, the spline and its control
polygon agree. This happens at the beginning and end of all the splines since we have
used p+ 1-regular knot vectors, and also at some points in the interior for the splines in
Figure 2.7. We also note that the control polygon is tangent to the spline function at a
knot of multiplicity p or p + 1. This close relationship between a spline and its control
polygon is a geometric instance of one of the many nice properties possessed by splines
represented in terms of B-splines.

From our knowledge of B-splines we immediately obtain some basic properties of
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splines.

Lemma 2.12. Let t = (tj)
n+p+1
j=1 be a knot vector for splines of degree p with n ≥ p+ 1,

and let f =
∑n

j=1 cjBj,p be a spline in Sp,t. Then f has the following properties:

1. If x is in the interval [tµ, tµ+1) for some µ in the range p+ 1 ≤ µ ≤ n then

f(x) =

µ∑
j=µ−p

cjBj,p(x).

2. If z = tj+1 = · · · = tj+p < tj+p+1 for some j in the range 1 ≤ j ≤ n then f(z) = cj .

3. If z occurs m times in t then f has continuous derivatives of order 0, . . . , p−m at
z.

Proof. This follows directly from Lemma 2.6.

2.2.2 Spline curves

For later reference we give a precise de�nition of spline curves, although we have already
made extensive use of them in Chapter 1.

In many situations spline functions will be the right tool to represent a set of data
or some desired shape. But as we saw in Section 1.2 functions have some inherent
restrictions in that for a given x, a function can only take one scalar value. We saw that
one way to overcome this restriction was by representing the x- and y-components by
two di�erent functions,

f(u) =
(
f1(u), f2(u)

)
.

Vector functions in higher dimensions are obtained by adding more components. We
will be particularly interested in the special case where all the components are spline
functions on a common knot vector.

De�nition 2.13 (Spline curves). Let t = (tj)
n+p+1
j=1 be a nondecreasing sequence of real

numbers, and let s ≥ 2 be an integer. The space of all spline curves in Rs of degree p
and with knots t is de�ned as

Ssp,t =
{ n∑
j=1

cjBj,p | cj ∈ Rs for 1 ≤ j ≤ n
}
.

More precisely, an element f =
∑n

j=1 cjBj,p of Ssp,t is called a spline vector function or
a parametric spline curve of degree p with knots t, and (cj)

n
j=1 are called the B-spline

coe�cients or control points of f .

We have already de�ned what we mean by the control polygon of a spline curve, but
for easy reference we repeat the de�nition here.
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De�nition 2.14 (Control polygon for spline curves). Let t = (tj)
n+p+1
j=1 be a knot vector

for splines of degree p, and let f =
∑n

j=1 cjBj,p be a spline curve in Ssp,t for s ≥ 2. The
control polygon of f is the piecewise linear function obtained by connecting neighbouring
control points (cj)

n
j=1 by straight lines.

Some examples of spline curves with their control polygons can be found in Sec-
tion 1.5.

Spline curves may be thought of as spline functions with B-spline coe�cients that
are vectors. This means that virtually all the algorithms that we develop for spline
functions can be generalised to spline curves by simply applying the functional version
of the algorithm to each component of the curve in turn.

2.3 A matrix representation of B-splines

Mathematical objects de�ned by recurrence relations can become very complex even if
the recurrence relation is simple. This is certainly the case for B-splines. The structure of
the recurrence relation (2.1) is relatively simple, but if we try to determine the symbolic
expressions of the individual pieces of a B-spline in terms of the knots and the variable
x, for degree �ve or six, the algebraic complexity of the expressions is perhaps the most
striking feature. It turns out that these rather complex formulas can be represented
in terms of products of simple matrices, and this is the theme of this section. This
representation will be used in Section 3.1 to show how polynomials can be represented in
terms of B-splines and to prove that B-splines are linearly independent. In Section 2.4
we will make use of the matrix notation to develop algorithms for computing function
values and derivatives of splines. The matrix representation will also be useful in the
theory of knot insertion in Chapter 4.

We start by introducing the matrix representation for linear, quadratic and cubic
splines in three examples.

Example 2.15 (Vector representation of linear B-splines). Consider the case of linear B-
splines with knots t, and focus on one nonempty knot interval [tµ, tµ+1). We have already seen in
previous sections that in this case the B-splines are quite simple. From the support properties of B-
splines we know that the only linear B-splines that are nonzero on this interval are Bµ−1,1 and Bµ,1 and
their restriction to the interval can be given in vector form as

(
Bµ−1,1 Bµ,1

)
=

(
tµ+1−x
tµ+1−tµ

x−tµ
tµ+1−tµ

)
. (2.18)

Example 2.16 (Matrix representation of quadratic B-splines). The matrices appear when
we come to quadratic splines. We consider the same nonempty knot interval [tµ, tµ+1); the only nonzero
quadratic B-splines on this interval are {Bj,2}µj=µ−2. By checking with De�nition 2.1 we see that for x
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in [tµ, tµ+1), the row vector of these B-splines may be written as the product of two simple matrices,

(
Bµ−2,2 Bµ−1,2 Bµ,2

)
=
(
Bµ−1,1 Bµ,1

)
tµ+1−x

tµ+1−tµ−1

x−tµ−1

tµ+1−tµ−1
0

0
tµ+2−x
tµ+2−tµ

x−tµ
tµ+2−tµ



=

(
tµ+1−x
tµ+1−tµ

x−tµ
tµ+1−tµ

)
tµ+1−x

tµ+1−tµ−1

x−tµ−1

tµ+1−tµ−1
0

0
tµ+2−x
tµ+2−tµ

x−tµ
tµ+2−tµ

 .

(2.19)

If these matrices are multiplied together the result would of course agree with that in Example 2.3.
However, the power of the matrix representation lies in the factorisation itself, as we will see in the next
section. To obtain the value of the B-splines we can multiply the matrices together, but this should be
done numerically, after values have been assigned to the variables. In practise this is only done implicitly,
see the algorithms in Section 2.4.

Example 2.17 (Matrix representation of cubic B-splines). In the cubic case the only nonzero
B-splines on [tµ, tµ+1) are {Bj,3}µj=µ−3. Again it can be checked with De�nition 2.1 that for x in this
interval these B-splines may be written

(
Bµ−3,3 Bµ−2,3 Bµ−1,3 Bµ,3

)
=
(
Bµ−2,2 Bµ−1,2 Bµ,2

)

tµ+1−x
tµ+1−tµ−2

x−tµ−2

tµ+1−tµ−2
0 0

0
tµ+2−x

tµ+2−tµ−1

x−tµ−1

tµ+2−tµ−1
0

0 0
tµ+3−x
tµ+3−tµ

x−tµ
tµ+3−tµ



=

(
tµ+1−x
tµ+1−tµ

x−tµ
tµ+1−tµ

)
tµ+1−x

tµ+1−tµ−1

x−tµ−1

tµ+1−tµ−1
0

0
tµ+2−x
tµ+2−tµ

x−tµ
tµ+2−tµ




tµ+1−x
tµ+1−tµ−2

x−tµ−2

tµ+1−tµ−2
0 0

0
tµ+2−x

tµ+2−tµ−1

x−tµ−1

tµ+2−tµ−1
0

0 0
tµ+3−x
tµ+3−tµ

x−tµ
tµ+3−tµ

 .

The matrix notation generalises to B-splines of arbitrary degree in the obvious way.

Theorem 2.18. Let t = (tj)
n+p+1
j=1 be a knot vector for B-splines of degree p, and let µ

be an integer such that tµ < tµ+1 and p + 1 ≤ µ ≤ n. For each positive integer k with
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k ≤ p de�ne the matrix Rµ
k(x) = Rk(x) by

Rk(x) =



tµ+1−x
tµ+1−tµ+1−k

x−tµ+1−k
tµ+1−tµ+1−k

0 · · · 0

0
tµ+2−x

tµ+2−tµ+2−k

x−tµ+2−k
tµ+2−tµ+2−k

. . . 0

...
...

. . . . . .
...

0 0 . . .
tµ+k−x
tµ+k−tµ

x−tµ
tµ+k−tµ


.

(2.20)
Then, for x in the interval [tµ, tµ+1), the p + 1 B-splines {Bj,p}µj=µ−p of degree p that
are nonzero on this interval can be written

BT
p =

(
Bµ−p,p Bµ−p+1,p . . . Bµ,p

)
= R1(x)R2(x) · · ·Rp(x). (2.21)

If f =
∑

j cjBj,p is a spline in Sp,t, and x is restricted to the interval [tµ, tµ+1), then f(x)
is given by

f(x) = R1(x)R2(x) · · ·Rp(x)c0, (2.22)

where the vector c0 is given by c0 = (cµ−p, cµ−p+1, . . . , cµ)T . The matrix Rk is called a
B-spline matrix.

For p = 0 the usual convention of interpreting an empty product as 1 is assumed in
equations (2.21) and (2.22).

Theorem 2.18 shows how one polynomial piece of splines and B-splines are built up, by
multiplying and adding together (via matrix multiplications) certain linear polynomials.
This representation is only an alternative way to write the recurrence relation (2.1), but
the advantage is that all the recursive steps are captured in one equation. This will be
convenient for developing the theory of splines in Section 3.1.2. The factorisation (2.22)
will also be helpful for designing algorithms for computing f(x). This is the theme of
Section 2.4.

It should be emphasised that equation (2.21) is a representation of p+1 polynomials,
namely the p+ 1 polynomials that make up the p+ 1 B-splines on the interval [tµ, tµ+1).
This equation can therefore be written(

Bµ
µ−p,p(x) Bµ

µ−p+1,p(x) . . . Bµ
µ,p(x)

)
= Rµ

1 (x)Rµ
2 (x) · · ·Rµ

p (x),

see Lemma 2.6.
Likewise, equation (2.22) gives a representation of the polynomial fµ that agrees with

the spline f on the interval [tµ, tµ+1),

fµ(x) = R1(x)R2(x) · · ·Rp(x)c0.

Once µ has been �xed we may let x take values outside the interval [tµ, tµ+1) in both
these equations. In this way the B-spline pieces and the polynomial fµ can be evaluated
at any real number x. Figure 2.3 was produced in this way.



2.4. ALGORITHMS FOR EVALUATING A SPLINE 53

Example 2.19 (Matrix representation of a quadratic spline). In Example 2.9 we considered
the spline

s(x) = B2,2(x) +B3,2(x)−B4,2(x)−
√

2B5,2(x)

on the knot vector
t = (tj)

8
j=1 = (0, 0, 0, 1, 2, 3, 3, 3).

Let us use the matrix representation to determine this spline explicitly on each of the subintervals [0, 1],
[1, 2], and [2, 3]. If x ∈ [0, 1) then t3 ≤ x < t4 so s(x) is determined by (2.22) with µ = 3 and p = 2. To
determine the matrices R1 and R2 we use the knots

(tµ−1, tµ, tµ+1, tµ+2) = (0, 0, 1, 2)

and the coe�cients
(cµ−2, cµ−1, cµ) = (0, 1, 1).

Then equation (2.22) becomes

s(x) =
(
1− x, x

)(1− x x 0
0 (2− x)/2 x/2

)0
1
1

 = x(2− x)

If x ∈ [1, 2) then t4 ≤ x < t5 so s(x) is determined by (2.22) with µ = 4 and p = 2. To determine the
matrices R1 and R2 in this case we use the knots

(tµ−1, tµ, tµ+1, tµ+2) = (0, 1, 2, 3)

and the coe�cients
(cµ−2, cµ−1, cµ) = (1, 1,−1).

From this we �nd

s(x) =
1

2

(
2− x, x− 1

)(2− x x 0
0 3− x x− 1

) 1
1
−1

 = 2x− x2.

For x ∈ [2, 3) we use µ = 5, and on this interval s(x) is given by

s(x) =
(
3− x, x− 2

)((3− x)/2 (x− 1)/2 0
0 3− x x− 2

) 1
−1
−
√

2

 =
(
2− x

)(
6− 2

√
2− (2−

√
2)x
)
.

2.4 Algorithms for evaluating a spline

We originally introduced spline curves as the result of the geometric construction given
in Algorithm 1.3 in Chapter 1. In this section we will relate this algorithm to the matrix
representation of B-splines and develop an alternative algorithm for computing splines.

2.4.1 High level description

Recall from Theorem 2.18 that a spline f of degree p with knots t and B-spline coe�cients
c can be expressed as

f(x) = R1(x) · · ·Rp(x)c0 (2.23)

for any x in the interval [tµ, tµ+1). Here c0 = (cµ−p, . . . , cµ) denotes the B-spline coe�-
cients that are active on this interval. To compute f(x) from this representation we have
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two options: We can accumulate the matrix products from left to right or from right to
left.

If we start from the right, the computations are

cp−k+1 = Rkcp−k, for k = p, p− 1, . . . , 1. (2.24)

Upon completion of this we have f(x) = cp (note that cp is a vector of dimension 1, i.e.,
a scalar). We see that this algorithm amounts to post-multiplying each matrix Rk by a
vector which in component form becomes

(Rk(x)cp−k)j =
tj+k−x
tj+k−tj

cj−1,p−k +
x−tj
tj+k−tj

cj,p−k (2.25)

for j = µ− k + 1, . . . , µ. This we immediately recognise as Algorithm 1.3.
The alternative algorithm accumulates the matrix products in (2.23) from left to

right. This is equivalent to building up the nonzero B-splines at x degree by degree until
we have all the nonzero B-splines of degree p, then multiplying with the corresponding
B-spline coe�cients and summing. Computing the B-splines is accomplished by starting
with B0(x)T = 1 and then performing the multiplications

Bk(x)T = Bk−1(x)TRk(x), k = 1, . . . , p.

The vector Bp(x) will contain the value of the nonzero B-splines of degree p at x,

Bp(x) =
(
Bµ−p,p(x), . . . , Bµ,p(x)

)T
.

We can then multiply with the B-spline coe�cients and add up.

Algorithm 2.20 (L). Let the polynomial degree p, the 2p knots tµ−p+1 ≤ tµ < tµ+1 ≤
tµ+p, the B-spline coe�cients c0 = (cj)

µ
j=µ−p of a spline f , and a number x in [tµ, tµ+1)

be given. After evaluation of the products

cp−k+1 = Rk(x)cp−k, k = p, p− 1,. . . , 1,

the function value f(x) is given by

f(x) = cp.

Algorithm 2.21 (R). Let the polynomial degree p, the knots tµ−p+1 ≤ tµ < tµ+1 ≤ tµ+p

and a number x in [tµ, tµ+1) be given and set B0 = 1. After evaluation of the products

Bk(x)T = Bk−1(x)TRk(x), k = 1, . . . , p,

the vector Bp(x) will contain the value of the p+ 1 B-splines at x,

Bp(x) =
(
Bµ−p,p(x), . . . , Bµ,p(x)

)T
.
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Figure 2.8. A triangular algorithm for computation of all the nonzero cubic B-splines at x.
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Figure 2.9. A triangular algorithm for computing the value of a cubic spline with B-spline coe�cients c at
x ∈ [tµ, tµ+1).
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These algorithms have a simple triangular structure, just like Algorithm 1.3, see
�gures 2.8�2.9. Figure 2.8 shows the computation of all the nonzero B-splines at a point
x, while Figure 2.9 shows how the value of a cubic spline can be computed.

In Algorithms 2.20 and 2.21 it is assumed that there are 2p knots to the left and right
of x. This may not always be the case, especially near the ends of the knot vector, unless
it is p+ 1-regular. Exercise 19 discusses evaluation in such a case.

2.4.2 More detailed algorithms

Algorithms 2.20 and 2.21 are high level algorithms. Although they may be implemented
directly by forming the matrices {Rk}pk=1, it is usually better to polish the algorithms a
bit more. In this section we will discuss Algorithm 2.21 in more detail. For more details
on Algorithm 2.20, we refer to Algorithm 1.3 in Chapter 1 and exercise 18 below.

Algorithm 2.21 corresponds to pre-multiplying each matrix Rk by a row vector. In
component form this can be written

(Bk−1(x))TRk(x))j =
x−tj
tj+k−tj

Bj,k−1(x) +
tj+1+k−x
tj+1+k−tj+1

Bj+1,k−1(x) (2.26)

for j = µ− k, . . . , µ. This is of course just the recurrence relation for B-splines. Here it
should be noted that Bµ−k,k−1(x) = Bµ+1,k−1(x) = 0 when x ∈ [tµ, tµ+1). For j = µ−k,
the �rst term on the right in (2.26) is therefore zero, and similarly, for j = µ, the last
term in (2.26) is zero.

We are going to give two more detailed versions of Algorithm 2.21. In the �rst one, we
make use of vector operations. This version would be suitable for a language like Matlab
or Mathematica where for-loops are relatively slow, but the built-in vector operations
are fast.

We assume that the elementary arithmetic operations may be applied to vectors of
the same size. For example, the vector operation a/b would produce a vector of the same
length as a and b, with entry i equal to ai/bi. We can also combine a scalar and a vector
as in x + a; then the �rst operand is converted to a vector of the same length as a by
duplicating x the correct number of times.

We will need two more vector operations which we denote a+l and a+f . The �rst
denotes the vector obtained by appending a zero to the end of a, while a+f denotes the
result of prepending a zero element at the beginning of a. In Matlab syntax this would
be written as a+l = [a, 0] and a+f = [0,a]. We leave it to the reader to verify that
Algorithm 2.21 can then be written in the following more explicit form. A vector version
of Algorithm 2.20 can be found in exercise 18.

Algorithm 2.22 (R�vector version). Let the polynomial degree p, the knots tµ−p+1 ≤
tµ < tµ+1 ≤ tµ+p and a number x in [tµ, tµ+1) be given. After evaluation of

1. b = 1;

2. For k = 1, 2, . . . , p

1. t1 = (tµ−k+1, . . . , tµ);

2. t2 = (tµ+1, . . . , tµ+k);
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3. ω = (x− t1)/(t2− t1);

4. b =
(
(1− ω) ∗ b

)
+l

+
(
ω ∗ b

)
+f
;

the vector b will contain the value of the p+ 1 B-splines at x,

b =
(
Bµ−p,p(x), . . . , Bµ,p(x)

)T
.

When programming in a traditional procedural programming language, the vector
operations will usually have to be replaced by for-loops. This can be accomplished as
follows.

Algorithm 2.23 (R�scalar version). Let the polynomial degree p, the knots tµ−p+1 ≤
tµ < tµ+1 ≤ tµ+p and a number x in [tµ, tµ+1) be given. After evaluation of

1. bp+1 = 1; bj = 0, j = 1, . . . , p;

2. For r = 1, 2, . . . , p

1. k = µ− r + 1;

2. ω2 = (tk+r − x)/(tk+r − tk);
3. bp−r = ω2 bp−r+1;

4. For j = p− r + 1, p− r + 2, . . . , p− 1

1. k = k + 1;

2. ω1 = ω2;

3. ω2 = (tk+r − x)/(tk+r − tk);
4. bi = (1− ω1) bi + ω2 bi+1;

5. bd = (1− ω2) bd

the vector b will contain the value of the p+ 1 B-splines at x,

b =
(
Bµ−p,p(x), . . . , Bµ,p(x)

)T
.

Exercises for Chapter 2

2.1 Show that

B[0, 3, 4, 6](x) =
1

12
x2B[0, 3](x) +

1

12
(−7x2 + 48x− 72)B[3, 4](x)

+
1

6
(6− x)2B[4, 6](x).

2.2 Find the individual polynomial pieces of the following cubic B-splines and discuss
smoothness properties at knots

a) B[0, 0, 0, 0, 1](x) and B[0, 1, 1, 1, 1](x)

b) B[0, 1, 1, 1, 2](x)
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2.3 Show that the B-spline Bj,p satis�es properties 1�3 of Lemma 2.6.

2.4 Show that Bj,p is a piecewise polynomial by establishing equation 2.14. Use induc-
tion on the degree p.

2.5 In this exercise we are going to establish some properties of the Bernstein polyno-
mials.

a) Prove the di�erentiation formula

Dbj,p(x) = p(bj−1,p−1(x)− bj,p−1(x)).

b) Show that the Bernstein basis function bj,p(x) has a maximum at x = j/p,
and that this is the only maximum.

c) Show that ∫ 1

0
Bj,p(x)dx = 1/(p+ 1).

2.6 a) When a B-spline is evaluated at one of its knots it can be simpli�ed according
to the formula

B(ti | tj , . . . , tj+1+p) = B(ti | tj , . . . , ti−1, ti+1, . . . , tj+1+p) (2.27)

which is valid for j = j, j + 1, . . . , j + 1 + p. Prove this by induction on the
degree p.

b) Use the formula in (2.27) to compute the following values of a quadratic B-
spline at the interior knots:

Bj,2(tj+1) =
tj+1 − tj
tj+2 − tj

, Bj,2(tj+2) =
tj+3 − tj+2

tj+3 − tj+1
. (2.28)

c) Prove property (5) of Lemma 2.6.

2.7 Prove the following formula using (2.4) and (2.11)

B[a,

p︷ ︸︸ ︷
b, . . . , b, c](x) =

(x− a)p

(b− a)p
B[a, b](x) +

(c− x)p

(c− b)p
B[b, c](x).

Show that this function is continuous at all real numbers.
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2.8 Prove the following formulas by induction on p.

B[

p︷ ︸︸ ︷
a, . . . , a, b, c](x) =

x− a
b− a

p−1∑
j=0

(c− x)i(b− x)p−1−i

(c− a)i(b− a)p−1−iB[a, b](x)

+
(c− x)p

(c− a)p−1(c− b)
B[b, c](x),

B[a, b,

p︷ ︸︸ ︷
c, . . . , c](x) =

(x− a)p

(c− a)p−1(b− a)
B[a, b](x)

+
c− x
c− b

p−1∑
j=0

(x− a)i(x− b)p−1−i

(c− a)i(c− b)p−i
B[b, c](x).

2.9 When the knots are simple we can give explicit formulas for the B-splines.

a) Show by induction that if tj < · · · < tj+1+p then

Bj,p(x) = (tj+1+p − tj)
j+1+p∑
i=j

(x− ti)p+∏j+1+p
k=j
k 6=i

(tk − ti)

where

(x− ti)p+ =

{
(x− ti)p, if x ≥ ti;
0, otherwise.

b) Show that Bj,p can also be written

Bj,p(x) = (tj+1+p − tj)
j+1+p∑
i=j

(ti − x)p+∏j+1+p
k=j
k 6=i

(ti − tk)

but now the (·)+-function must be de�ned by

(ti − x)p+ =

{
(ti − x)p, if ti > x;

0, otherwise.

2.10 Write down the matrix R3(x) for µ = 4 in the case of uniform splines (tj = j for
all j). Do the same for the Bernstein basis (t = (0, 0, 0, 0, 1, 1, 1, 1](x)).

2.11 Given a knot vector t = (tj)
n+p+1
j=1 and a real number x with x ∈ [t1, tn+p+1), write

a procedure for determining the index µ such that tµ ≤ x < tµ+1. A call to this
routine is always needed before Algorithms 2.20 and 2.21 are run. By letting µ be
an input parameter as well as an output parameter you can minimise the searching
for example during plotting when the routine is called with many values of x in the
same knot interval.
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2.12 Implement Algorithm 2.21 in your favourite programming language.

2.13 Implement Algorithm 2.20 in your favourite programming language.

2.14 Count the number of operations (additions, multiplications, divisions) involved in
Algorithm 2.20.

2.15 Count the number of operations (additions, multiplications, divisions) involved in
Algorithm 2.21.

2.16 Write a program that plots the cubic B-spline B[0, 1, 3, 5, 6] and its polynomial
pieces. Present the results as in Figure 2.3.

2.17 a) What is computed by Algorithm 2.20 if x does not belong to the interval
[tµ, tµ+1)?

b) Repeat (a) for Algorithm 2.21.

2.18 Algorithm 2.22 gives a vector version of Algorithm 2.21 for computing the nonzero
B-splines at a point x. Below is a similar vector version of Algorithm 2.20 for
computing the value of a spline at x. Verify that the algorithm is correct and
compare it with Algorithm 2.22.

Let f =
∑

i cjBi,p,t be a spline in Sp,t, and let x be a real number in the interval
[tµ, tµ+1). Then f(x) can be computed as follows:

1. c = (cµ−p, . . . , cµ);

2. For k = p, p− 1, . . . , 1

1. t1 = (tµ−k+1, . . . , tµ);

2. t2 = (tµ+1, . . . , tµ+k);

3. ω = (x− t1)/(t2− t1);

4. c = (1− ω) ∗ c−l + ω ∗ c−f ;

After these statements c will be a vector of length 1 that contains the number f(x).
Here the notation c−l and c−f denote the vectors obtained by dropping the last,
respectively the �rst, entry from c.

2.19 Suppose that p = 3 and that the knot vector is given by

t̂ = (tj)
5
j=1 = (0, 1, 2, 3, 4).

With this knot vector we can only associate one cubic B-spline, namely B1,3. There-
fore, if we are to compute B1,3(x) for some x in (0, 4), none of the algorithms of
this section apply. De�ne the augmented knot vector t by

t = (−1,−1,−1,−1, 0, 1, 2, 3, 4, 5, 5, 5, 5).

Explain how this knot vector can be exploited to compute the B-spline B1,3(x) by
Algorithms 2.20 or 2.21.



Chapter 3
Further properties of splines and B-splines

In Chapter 2 we established some of the most elementary properties of B-splines. In
this chapter, our focus is on the question �What kind of functions can be represented
as linear combinations of B-splines?� This may seem like a rather theoretical and un-
interesting issue from a practical point of view. However, if our spline spaces contain
su�ciently many interesting functions, we will gain the �exibility that is required for
practical applications.

The answer to the question above is that our spline space contains a large class of
piecewise polynomials, and this ensures that splines are reasonably �exible, much more
so than polynomials. To prove this, we start by showing that polynomials of degree p can
be represented in terms of splines of degree p in Section 3.1. This is proved by making
use of some simple properties of the B-spline matrices. As a bonus, we also prove that
B-splines are linearly independent and therefore provide a basis for spline spaces, a result
that is crucial for practical computations. In Section 3.2, we investigate the smoothness
of splines and B-splines in detail, and this allows us to conclude in Section 3.3 that spline
spaces contain a large class of piecewise polynomials.

3.1 Linear independence and representation of polynomials

Our aim in this section is to show that any polynomial can be represented as a linear
combination of B-splines, and also that B-splines are linearly independent. To do this,
we �rst need some simple properties of the B-spline matrices de�ned in Theorem 2.18.

3.1.1 Some properties of the B-spline matrices

To study the B-spline matrices, we associate a certain polynomial with each B-spline.
We start by associating the polynomial ρj,0(y) = 1 with Bj,0 and, more generally, the
polynomial in y given by

ρj,p(y) = (y − tj+1)(y − tj+2) · · · (y − tj+p), (3.1)

is associated with the B-spline Bj,p for p ≥ 1. This polynomial is called the dual

polynomial of the B-spline Bj,p. On the interval [tµ, tµ+1), we have the p + 1 nonzero

61
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B-splines Bp = (Bµ−p,p, . . . , Bµ,p)
T . We collect the corresponding dual polynomials in

the vector

ρp = ρp(y) = (ρµ−p,p(y), . . . , ρµ,p(y))T . (3.2)

The following lemma shows the e�ect of applying the matrix Rd to ρp.

Lemma 3.1. Let µ be an integer such that tµ < tµ+1 and let ρp(y) be the dual polyno-
mials de�ned by (3.2). For p ≥ 1 the relation

Rp(x)ρp(y) = (y − x)ρp−1(y). (3.3)

holds for all x, y ∈ R.

Proof. Writing out (3.3) in component form, we see that what we need to prove is

(x− tj)ρj,p(y) + (tj+p − x)ρj−1,p(y)

tj+p − tj
= (y − x)ρj,p−1(y), (3.4)

for j = µ − p + 1, . . . , µ. Since ρj,p(y) = (y − tj+p)ρj,p−1(y) and ρj−1,p(y) = (y −
tj)ρj,p−1(y), the numerator on the left-hand side of (3.4) can be written(

(x− tj)(y − tj+p) + (tj+p − x)(y − tj)
)
ρj,p−1(y).

A simple calculation reveals that

(x− tj)(y − tj+p) + (tj+p − x)(y − tj) = (y − x)(tj+p − tj). (3.5)

Inserting this on the left in (3.4) and simplifying, we obtain the right-hand side.

The crucial relation (3.5) is an example of linear interpolation. For if we de�ne the
linear function g by g(x) = y − x for a �xed number y, then linear interpolation at tj
and tj+p gives the relation

tj+p − x
tj+p − tj

g(tj) +
x− tj
tj+p − tj

g(tj+p) = g(x),

see Section 1.3 in Chapter 1. If we multiply both sides of this equation by tj+p − tj , we
obtain equation (3.5).

In equation 3.3, the p + 1-vector ρp is transformed to a vector with p components.
We can reduce the number of components further by applying more R's. By making use
of all the matrices R1, . . . , Rp we end up with a scalar.

Corollary 3.2. Let µ be an integer such that tµ < tµ+1 and let ρp(y) be the dual
polynomials de�ned by (3.2). Then the relation

R1(x1)R2(x2) · · ·Rp(xp)ρp(y) = (y − x1)(y − x2) · · · (y − xp). (3.6)

holds for all real numbers x1, x2, . . . , xp and y.
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We need one more property of the B-spline matrices. This property cannot be estab-
lished completely until we have proved that the dual polynomials are linearly indepen-
dent.

Lemma 3.3. For p ≥ 2 and for any x and z in R, the matrices Rp−1 and Rp satisfy the
relation

Rp−1(z)Rp(x) = Rp−1(x)Rp(z). (3.7)

Proof. Applying (3.3) twice, we obtain

Rp−1(x)Rp(z)ρp(y) = (y − x)(y − z)ρp−2(y).

By symmetry we also have

Rp−1(z)Rp(x)ρp(y) = (y − x)(y − z)ρp−2(y),

Equivalently,
Bρp(y) = 0 (3.8)

for all y, where the (p− 1)× (p+ 1) matrix B is de�ned by

B = Rp−1(x)Rp(z)−Rp−1(z)Rp(x).

To complete the proof, we must show that B = 0. Let a be any vector in Rp−1. Then
we know from (3.8) that aTBρp(y) = 0 for all y. Since the p+ 1 polynomials in ρp are

linearly independent, see Lemma 3.7, this means that aTB = 0. But a was arbitrary,
so B maps all vectors to 0, in other words B = 0.

3.1.2 Marsden's identity and representation of polynomials

The relation (3.6) is a key to �nding the B-spline representation of polynomials. If we
set x1 = · · · = xp = x and remember that R1(x) · · ·Rp(x) = Bp(x), the relation becomes

(y − x)p = Bp(x)Tρp(y) =

µ∑
j=µ−p

Bj,p(x)ρj,p(y), (3.9)

provided x is in the interval [tµ, tµ+1). The interpretation of this is that if for �xed y, we
use the sequence of numbers (ρj,p(y))µj=µ−p as B-spline coe�cients, the resulting spline
is the polynomial (y − x)p, as long as we restrict our attention to the interval [tµ, tµ+1).
But since the coe�cients (ρj,p(y))µj=µ−p are independent of µ and therefore of the knot
interval, the polynomial formula (3.9) can be generalised to a statement about how the
polynomial (y − x)p is represented in terms of B-splines.

Theorem 3.4 (Marsden's identity). Let the knot vector t = (tj)
n+p+1
j=1 be given. Then

the relation

(y − x)p =
n∑
j=1

ρj,p(y)Bj,p(x) (3.10)

holds for all real numbers y, and all real numbers x in the interval [tp+1, tn+1).
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The restriction on x cannot be avoided since we do not have a complete set of B-
splines outside the interval [tp+1, tn+1). The relation (3.9) is therefore not valid if x is
outside this interval.

The power of Theorem 3.4 lies in the fact that the coe�cients ρp depend on y. Making
use of this result, we can show explicitly how the powers 1, x, . . . , xp can be written in
terms of B-splines.

Corollary 3.5. On the interval [tp+1, tn+1), the power basis {xi}pi=0 can be expressed
in terms of B-splines through the relations

1 =
n∑
j=1

Bj,p(x), for p ≥ 0, (3.11)

x =

n∑
j=1

t∗j,pBj,p(x), for p ≥ 1, (3.12)

x2 =

n∑
j=1

t∗∗j,pBj,p(x), for p ≥ 2, (3.13)

where

t∗j,p = (tj+1 + · · ·+ tj+p)/p (3.14)

t∗∗j,p =

j+p−1∑
i=j+1

j+p∑
k=i+1

titk/

(
p

2

)
. (3.15)

In general, for r = 0, 1, . . . , p, the relation

xr =

n∑
j=1

σrj,pBj,p(x) (3.16)

holds for any x in the interval [tp+1, tn+1). Here σrj,p are the symmetric polynomials given
by

σrj,p =
(∑

tj1tj2 · · · tjr
)
/

(
p

r

)
, for r = 0, 1, . . . , p, (3.17)

where the sum is over all integers j1, . . . , jr with j + 1 ≤ j1 < · · · < jr ≤ j + p, a total
of
(
p
r

)
terms.

Proof. If we di�erentiate both sides of equation (3.10) a total of p−r times with respect
to y, set y = 0, and rearrange constants, we end up with

xr = (−1)r
r!

p!
Bp(x)TDp−rρp(0) = (−1)r

r!

p!

∑
j

Bj,p(x)Dp−rρj,p(0). (3.18)

Multiplying together the factors of ρj,p, we �nd

ρj,p(y) = yp − t∗j,pyp−1 + t∗∗j,py
p−2 + lower order terms. (3.19)
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From this it follows that

Dpρj,p(0) = p!, Dp−1ρj,p(0) = −(p− 1)!t∗j,p, Dp−2ρj,p(0) = (p− 2)!t∗∗j,p. (3.20)

Setting r = 0, 1 and 2 in (3.18) and inserting the appropriate formula in (3.20), leads to
equations (3.11), (3.12), and (3.13). In general, we have the formula

ρj,p(y) =

p∑
r=0

(−1)r
(
p

r

)
σrj,py

p−r.

Using the same reasoning as above, we therefore �nd that

(−1)r
r!

p!
Dp−rρj,p(0) =

r!(p− r)!
p!

(
p

r

)
σrj,p = σrj,p,

so (3.16) follows from (3.18).

The coe�cients σrj,p are scaled versions of the elementary symmetric polynomials of
degree p. They play an important role in the study of polynomial rings.

Example 3.6. In the cubic case, the relations (3.11)�(3.13) are

1 =

n∑
j=1

Bj,3(x), (3.21)

x =

n∑
j=1

tj+1 + tj+2 + tj+3

3
Bj,3(x), (3.22)

x2 =

n∑
j=1

tj+1tj+2 + tj+1tj+3 + tj+2tj+3

3
Bj,3(x), (3.23)

x3 =

n∑
j=1

tj+1tj+2tj+3Bj,3(x), (3.24)

which are valid for all x in [tp+1, tn+1).

3.1.3 Linear independence of B-splines

Recall from Appendix A that a set of functions {φj}nj=1 are linearly independent on an
interval I if

∑n
j=1 cjφj(x) = 0 for all x ∈ I implies that cj = 0 for all j. In other words,

the only way to represent the 0-function on I is by letting all the coe�cients be zero. A
consequence of this is that any function that can be represented by (φj)

n
j=1 has a unique

representation.

To prove that B-splines are linearly independent, we start by showing that the B-
splines that are nonzero on a single knot interval are linearly independent.

Lemma 3.7. The B-splines {Bj,p}µj=µ−p and the dual polynomials {ρj,p}µj=µ−p are both
linearly independent on the interval [tµ, tµ+1).
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Proof. From Corollary 3.5, we know that the power basis 1, x, . . . , xp, and therefore any
polynomial of degree p, can be represented by linear combinations of B-splines. Recall
that the linear space of polynomials of degree p has dimension p + 1. On the interval
[tµ, tµ+1), the only nonzero B-splines are {Bj,p}µj=µ−p. Since all polynomials of degree
p can be written in terms of these p + 1 B-splines, they must be linearly independent.
These B-splines therefore form a basis for polynomials of degree p on [tµ, tµ+1). The
symmetry of x and y in (3.9) leads to the same conclusion for the dual polynomials.

From this local result, we are going to obtain a global linear independence result
for B-splines. But �rst we need to be more precise about the type of knot vectors we
consider.

De�nition 3.8. A knot vector t = (tj)
n+p+1
j=1 is said to be p+ 1-extended if

1. n ≥ p+ 1,

2. tp+1 < tp+2 and tn < tn+1,

3. tj < tj+p+1 for j = 1, 2, . . . , n.

A p + 1-extended knot vector for which t1 = tp+1 and tn+1 = tn+p+1 is said to be
p+ 1-regular or open.

The norm is to use p+ 1-regular knot vectors, but linear independence can be proved
in the more general situation of a p+ 1-extended knot vector.

Theorem 3.9. Suppose that t is a p + 1-extended knot vector. Then the B-splines in
Sp,t are linearly independent on the interval [tp+1, tn+1).

Proof. Suppose that the spline f =
∑n

j=1 cjBj,p is identically zero on [tp+1, tn+1); we
must prove that cj = 0 for j = 1, . . . , n. Let j be an arbitrary integer in the range
[1, n]. Since no knot occurs more than p+ 1 times, there is a nonempty interval [tµ, tµ+1)
contained in [tj , tj+p+1], the support of Bj,p. But all the nonzero B-splines on [tµ, tµ+1)
are linearly independent, so f(x) = 0 on this interval implies that ck = 0 for k = µ− p,
. . . , µ. Since Bj,p is one of the nonzero B-splines, we have in particular that cj = 0.

The condition that no knot must occur with multiplicity higher than p+1 is essential,
for otherwise one of the B-splines will be identically zero and then they will certainly be
linearly dependent. The other conditions are not essential for the linear independence,
see Exercise 2.

3.2 Di�erentiation and smoothness of B-splines

Our study of di�erentiation and smoothness is based on the matrix representation of B-
splines. But �rst of all we need to be fairly precise about what we mean by smoothness
and jumps in the derivatives of a function.
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3.2.1 Piecewise smooth functions

A Cr-function is a function whose derivatives up to order r are continuous at all points of
its domain of de�nition. A piecewise smooth function is a function that is smooth except
at some isolated points. The points of discontinuity are called jumps. Although these
concepts are quite simple, we need to be precise about the de�nition as we are going to
computations with the jumps in a derivative of a spline.

De�nition 3.10. A function f de�ned on some interval [a, b] is piecewise continuous on
[a, b] provided f is continuous on [a, b] except at a �nite number of points (xi) where the
one-sided limits

f(z+) = lim
x→z
x>z

f(x), f(z−) = lim
x→z
x<z

f(x). (3.25)

exist for z = xi, and i = 1, 2, . . . , n. The number

Jzf = f(z+)− f(z−) (3.26)

is called the jump of f at z.

Note that we require the jumps to be �nite. Of course there are many functions with
in�nite jumps, but since the functions we study are piecewise polynomials, all jumps will
be �nite.

We will also need to consider functions with piecewise continuous derivatives.

De�nition 3.11. If the function f has piecewise continuous rth derivative f (r) on [a, b]
for some integer r ≥ 0, it is said to be piecewise Cr. If Jz(f (k)) = 0 for k = 0, . . . , r
at some z ∈ (a, b), then f is said to be Cr at z. Di�erentiation of functions that are
piecewise Cr is de�ned by

Drf(x) =

{
Dr

+f(x), x ∈ [a, b),
Dr
−f(x), x = b,

where the right derivative Dr
+ and the left derivative Dr

− are de�ned by

Dr
+f(x) = f (r)(x+), x ∈ [a, b),

Dr
−f(x) = f (r)(x−), x ∈ (a, b].

At a point where the rth derivative of f is continuous, this de�nition of di�erentiation
agrees with the standard one since the two one-sided derivatives Dr

+f and Dr
−f are equal

at such a point.

Example 3.12. It is easy to check that the quadratic B-spline

B[0, 0, 1, 2](x) = (2x− 3

2
x2)B[0, 1](x) +

1

2
(2− x)2B[1, 2](x)

is continuous on R. The �rst derivative

DB[0, 0, 1, 2](x) = (2− 3x)B[0, 1](x)− (2− x)B[1, 2](x)

is piecewise continuous on R with a discontinuity at x = 0, and the second derivative

D2B[0, 0, 1, 2](x) = −3B[0, 1](x) +B[1, 2](x)

is piecewise continuous on R with discontinuities at 0, 1, and 2. The third derivative is identically zero
and continuous everywhere. This B-spline is therefore C0 at x = 0, it is C1 at x = 1 and x = 2, and at
all other real numbers it has in�nitely many continuous derivatives.
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3.2.2 Derivatives of B-splines

From De�nition 3.11 and equation (2.14), we see that the rth derivative of a B-spline
Bj,p is given by

DrBj,p =

j+p∑
k=j

DrBk
j,pBk,0, r ≥ 0, (3.27)

where DrBk
j,p is the ordinary rth derivative of the polynomial representing Bj,p on the

interval [tk, tk+1). This explicit formula is of little interest in practice because it is di�cult
to compute. What we want is something similar to the recurrence relation (2.1).

Our approach to derivatives of B-splines will instead follow a customary strategy:
We start by considering what happens on one knot interval. We will then see that the
formulas we obtain are independent of the speci�c knot interval so they can be generalized
to splines.

Recall from Theorem 2.18 that on a knot interval [tµ, tµ+1), the row vector of the
nonzero B-splines Bp is given by

Bp(x) = R1(x) · · ·Rp(x). (3.28)

It turns out that we can di�erentiate this product of matrices as if the factors were
numbers. Indeed, let A be a matrix where each entry is a function of x. The derivative
DA ofA is de�ned as the matrix obtained by di�erentiating each entry ofA with respect
to x. We have the following familiar rule for di�erentiating a product of two matrices.

Lemma 3.13. Let A and B be two matrices with entries that are functions of x and
with dimensions such that the matrix product AB makes sense. Then

D(AB) = (DA)B +A(DB).

Proof. Let (AB)ij be an arbitrary entry of the matrix AB. Then

D(AB)ij = D
(∑

k

aikbkj

)
=
∑
k

D(aikbkj)

=
∑
k

(
(Daik)bkj + aik(Dbkj)

)
=
∑
k

(Daik)bkj +
∑
k

aik(Dbkj)

=
(
(DA)B

)
ij

+
(
A(DB)

)
ij

which proves the lemma.

Applying this rule to the product (3.28), we get

DBp(x) =

p∑
k=1

R1(x) · · ·Rk−1(x)DRk(x)Rk+1(x) . . .Rp(x), (3.29)
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where DRk denotes the matrix obtained by di�erentiating each entry in Rk(x) with
respect to x,

DRk =


−1

tµ+1−tµ+1−k

1

tµ+1−tµ+1−k
· · · 0

...
. . .

. . .
...

0 . . .
−1

tµ+k−tµ
1

tµ+k−tµ

 . (3.30)

The dimensions of the matrix DRk are the same as those of Rk, so both are transfor-
mations from Rk+1 to Rk.

The following lemma will help us simplify equation 3.29.

Lemma 3.14. For k ≥ 2 and any real number x, the matrices Rk and Rk+1 satisfy the
relation

DRkRk+1(x) = Rk(x)DRk+1. (3.31)

Proof. Equation 3.31 follows by di�erentiating both sides of 3.7 with respect to z and
letting p = k + 1.

By making use of equation 3.31, we can move the di�erentiation operator D in (3.29)
from Rk to Rp in term k of the sum. The end result is

DBp(x) = pR1(x) · · ·Rp−1(x)DRp = pBp−1(x)DRp. (3.32)

Let us now see how higher derivatives of B-splines can be determined. To �nd the
second derivative, we di�erentiate (3.32). Since D(DRp) = 0, we obtain

D2Bp(x)T = pDBp−1(x)TDRp.

If we apply (3.32)) to DBp−1, we �nd

D2Bp(x)T = p(p−1)Bp−2(x)TDRp−1DRp.

In general, for the rth derivative, we �nd

DrBp(x)T =
p !

(p−r)!
Bp−r(x)TDRp−r+1 · · ·DRp.

Since in addition Bp−r(x)T = R1(x) · · ·Rp−r(x), the following theorem has been proved.

Theorem 3.15. Let x be a number in [tµ, tµ+1). Then the rth derivative of the vector
of B-splines Bp(x) = (Bµ−p,p(x), . . . , Bµ,p(x))T is given by

DrBp(x)T =
p !

(p−r)!
Bp−r(x)TDRp−r+1 · · ·DRp. (3.33)
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Suppose that f(x) =
∑n

j=1 cjBj,p(x). With c0 = (cµ−p, . . . , cµ)T the r'th derivative of f
at x is given by

Drf(x) =
p !

(p−r)!
R1(x) · · ·Rp−r(x)DRp−r+1 · · ·DRpc0, (3.34)

for any integer r such that 0 ≤ r ≤ p.
Note that the symmetry property (3.31) gives us a curious freedom in how to represent

the rth derivative: It does not matter which of the p matrices Rk we di�erentiate as long
as we di�erentiate r of them. In Theorem 3.15 it is the r matrices of largest dimension
that have been di�erentiated.

Theorem 3.15 is the basis for algorithms for di�erentiating splines and B-splines,
see Section 3.2.3 below. But let us �rst record the following recurrence relation for the
derivative of a B-spline.

Theorem 3.16. The derivative of the jth B-spline of degree p on t is given by

DBj,p(x) = p

(
Bj,p−1(x)

tj+p − tj
− Bj+1,p−1(x)

tj+1+p − tj+1

)
(3.35)

for p ≥ 1 and for any real number x. The derivative of Bj,p can also be expressed as

DBj,p(x) =
p

p− 1

(
x− tj
tj+p − tj

DBj,p−1(x) +
tj+1+p − x
tj+1+p − tj+1

DBj+1,p−1(x)

)
(3.36)

for p ≥ 2 and any x in R. Here the ′0/0 = 0′ convention is used.

Proof. Equation (3.35) clearly holds if x /∈ [tj , tj+1+p), as then both sides of the equation
are identically zero. Suppose therefore that x ∈ [tµ, tµ+1) for some j ≤ µ ≤ j + p.
Equation (3.33) with r = 1 states that(

DBµ−p,p(x), . . . , DBµ,p(x)
)

= p
(
Bµ−p+1,p−1(x), . . . , Bµ,p−1(x)

)
DRp.

Carrying out the matrix multiplication on the right and comparing the jth component
on both sides, we obtain (3.35), with x restricted to the interval [tµ, tµ+1). But since
(3.35) is independent of µ, it actually holds for all x ∈ [tj , tj+p+1).

Equation (3.36) is proved in a similar way, we just use Lemma 3.14 and di�erentiate
the matrix R1 instead of Rp, see Exercise 5.

3.2.3 Computing derivatives of splines and B-splines

From Theorem 3.15, we know that the rth derivative of a spline f is given by

Drf(x) =
p !

(p−r)!
R1(x) · · ·Rp−r(x)DRp−r+1 · · ·DRpc0. (3.37)

Just as for evaluation (see Section 2.4), there are two algorithms for computing this
derivative; either from left to right or from right to left.
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As before, we assume that x lies in the interval [tµ, tµ+1) and that the vector c0 =
(cµ−p, . . . , cµ)T contains the B-spline coe�cients that multiply the B-splines that are
nonzero on [tµ, tµ+1). We then have the DL (Derivative Left) Algorithm which computes
Drf(x) by accumulating matrix products from right to left in (3.37). The DR (Deriva-
tive Right) Algorithm computes the rth derivative of all the nonzero B-splines at x by
accumulating matrix products from left to right, then multiplying with the coe�cients
and summing.

Algorithm 3.17 (DL). Let the polynomial degree p, the 2p knots tµ−p+1 ≤ tµ < tµ+1 ≤
tµ+p, the B-spline coe�cients c(0)

0 = c0 = (cµ−p . . . , cµ)T of a spline f , and a number x
in [tµ, tµ+1) be given. After evaluation of the products

c
(p−k+1)
p−k+1 = DRkc

(p−k)
p−k , k = p, . . . , p− r + 1,

c
(r)
p−k+1 = Rk(x)c

(r)
p−k, k = p− r, . . . , 1,

the rth derivative of f at x is given by

Drf(x) = p! c(r)
p /(p− r)!.

Algorithm 3.18 (DR). Let the polynomial degree p, the knots tµ−p+1 ≤ tµ < tµ+1 ≤
tµ+p and a number x in [tµ, tµ+1) be given and set B0 = 1. After evaluation of the
products

Bk(x)T = Bk−1(x)TRk(x), k = 1, . . . , p− r,
Dk−p+rBk(x)T = Dk−p+r−1Bk−1(x)TDRk, k = p− r + 1, . . . , p,

the vector p!
(p−r)!D

rBp(x) will contain the value of the rth derivative of the nonzero
B-splines at x,

p!

(p− r)!
DrBp(x) =

(
DrBµ−p,p(x), . . . , DrBµ,p(x)

)T
.

Figure 3.1 shows how the second derivative of a cubic spline can be computed, while
Figure 3.2 shows the computation of the �rst derivative of all the nonzero B-splines at a
point. In Algorithm 3.17, we have to compute the two matrix-vector products DRkcp−k
and Rk(x)cp−k. The component form of the latter product is given in (2.25), while the
component form of the former is obtained by di�erentiating the linear factors in (2.25)
with respect to x. The result is

(DRkcp−k)j =
cp−k,j − cp−k,j−1

tj+k−tj
(3.38)

for j = µ− k + 1, . . . , µ.
The alternative algorithm accumulates the matrix products in (2.23) from left to

right. The component form of the product Bk−1(x)TRk is given in (2.26), while the
component form of the product Bk−1(x)TDRk is(

Bk−1(x)TDRk

)
j

=
Bj,k−1(x)

tj+k−tj
−
Bj+1,k−1(x)

tj+1+k−tj+1
(3.39)

for j = µ− k, . . . , µ.



72 CHAPTER 3. FURTHER PROPERTIES OF SPLINES AND B-SPLINES

cΜ,3
H3L

Τ Μ+1
-x

x-Τ
Μ

ΤΜ+1-ΤΜ

cΜ-1,2
H2L

-1

1

ΤΜ+1-ΤΜ-1

cΜ-2,1
H1L

-1

1

ΤΜ+1-ΤΜ-2

cΜ,2
H2L

-1

1

ΤΜ+2-ΤΜ

cΜ-1,1
H1L

-1

1

ΤΜ+2-ΤΜ-1

cΜ,1
H1L

-1

1

ΤΜ+3-ΤΜ

cΜ-3,0

cΜ-2,0

cΜ-1,0

cΜ,0

Figure 3.1. A triangular algorithm for computation of the second derivative of a cubic spline at x.
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Figure 3.2. A triangular algorithm for computation of the derivative of the nonzero cubic B-splines at x.
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3.2.4 Smoothness of B-splines

A characteristic feature of splines is their smoothness properties as stated in Theorem 1.4
in Chapter 1. In this section we will prove the smoothness properties of splines. We start
by stating the precise smoothness of a B-spline.

Theorem 3.19. Suppose that the number z occurs m times among the knots tj , tj+1,
. . . , tj+p+1, de�ning the B-spline Bj,p. If 1 ≤ m ≤ p+ 1, then DrBj,p is continuous at z
for r = 0, 1, . . . , p−m, but Dp−m+1Bj,p is discontinuous at z.

This theorem will proved via a sequence of steps. We �rst note from the explicit
formula (2.11) for the Bernstein basis that Theorem 3.19 holds for m = p + 1. At such
a knot the B-spline is discontinuous with a jump of size 1. In the general case the proof
is based on the following recurrence relations for jumps in B-splines.

Lemma 3.20. The jump in Bj,p at x satis�es the recurrence relation

Jx(Bj,p) =
x− tj
tj+p − tj

Jx(Bj,p−1) +
tj+1+p − x
tj+1+p − tj+1

Jx(Bj+1,p−1), (3.40)

with

Jx(Bj,0) =


1, if x = tj ,

−1, if x = tj+1,

0, otherwise.

(3.41)

For r ≥ 1, the jump in the rth derivative at any x ∈ R is given by

Jx(DrBj,p) = p

(
Jx(Dr−1Bj,p−1)

tj+p − tj
− Jx(Dr−1Bj+1,p−1)

tj+1+p − tj+1

)
, for x ∈ R and r ≥ 1. (3.42)

The convention that ′0/0 = 0′ is used in (3.40) and (3.42).

Proof. Evaluating the recurrence relation (2.1) at x+ and x− and subtracting, we obtain
(3.40) since the linear coe�cients are both continuous at x. Equation (3.41) follows
directly from the de�nition of Bj,0. Di�erentiating the di�erentiation formula (3.35) a
total of r − 1 times leads to

DrBj,p(x) = p

(
Dr−1Bj,p−1(x)

tj+p − tj
− Dr−1Bj+1,p−1(x)

tj+1+p − tj+1

)
for any real number x. The same formula holds if we replace D = D+ by D−. Taking
the di�erence of the two formulas leads to (3.42).

The �rst step in the proof of Theorem 3.19 is to show that a B-spline is continuous
at a knot of multiplicity at most p.

Lemma 3.21. Suppose that no knot among tj , tj+1, . . . , tj+p+1 occurs more than p
times. Then the B-spline Bj,p is continuous everywhere.
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Proof. The proof is by induction on the degree p. For a B-spline of degree 0, the
lemma does not apply, so the induction starts with p = 1. It is easy to see from the
explicit representation in Example 2.2 that a linear B-spline with three distinct knots
is continuous. For the induction step we assume that the lemma holds for B-splines of
degree p − 1. To prove that it is also true for B-splines of degree p, suppose �rst that
no knots occur more than p− 1 times. Then the two B-splines Bj,p−1 and Bj+1,p−1 are
both continuous which means that Bj,p is also continuous. Suppose next that x is equal
to a knot which occurs exactly p times among tj , tj+1, . . . , tj+p+1. There are three cases.
Suppose �rst that x = tj . Since tj+p−1 < tj+p, it follows from the induction hypothesis
that Jx(Bj+1,p−1) = 0, while Jx(Bj,p−1) = 1. From (3.40) we then obtain Jx(Bj,p) = 0,
since (x− tj)Jx(Bj,p−1) = 0 · 1 = 0. The proof in the case x = tj+1+p is similar. Finally,
if tj < x < tj+1+p, then x = tj+1 = · · · = tj+p so (3.40) yields

Jx(Bj,p) =
x− tj
tj+p − tj

· 1 +
tj+1+p − x
tj+1+p − tj+1

(−1) = 0.

This completes the proof.

Proof. [The continuity part of Theorem 3.19]
For r = 0 the result follows from Lemma 3.21, while for r in the range 1 ≤ r ≤ p−m, it
follows from (3.42) and induction on p that Jz(D

rBj,p) = 0.

To complete the proof of the continuity property, we determine the jump in the �rst
discontinuous derivative of a B-spline.

Lemma 3.22. Suppose that the number z occurs exactly m times among the knots
tj , . . . , tj+1+p. Then the p−m+ 1th derivative of Bj,p has a jump at z given by

Jz(D
p−m+1Bj,p) =

p!

(m− 1)!
(tj+1+p − tj)/

j+1+p∏
k=j
tk 6=z

(tk − z) 6= 0. (3.43)

Proof. As usual, the proof is by induction of the degree p. We �rst note that (3.43) holds
in the case where m = p+ 2, so we may assume that m ≤ p+ 1. It is easy to check that
equation (3.43) holds when p = 0 and m = 1. Suppose that (3.43) holds for B-splines of
degree p− 1. For a B-spline of degree p, we apply (3.42) with r = p−m+ 1. There are
three cases to consider. Suppose �rst that z = tj . Since z occurs m− 1 times among the
knots of Bj+1,p−1, it follows from the continuity property that Jz(D

p−mBj+1,p−1) = 0.
In view of the induction hypothesis, equation (3.42) therefore takes the form

Jz(D
p−m+1Bj,p) = p

Jz(D
p−mBj,p−1)

tj+p − tj
=

p!

(m− 1)!
/

j+p∏
k=j
tk 6=tj

(tk − tj).

Multiplying the numerator and denominator by tj+1+p − tj proves (3.43) in this case. A
similar argument is valid when z = tj+1+p.
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The remaining situation is tj < z < tj+1+p. In this case both Bj,p−1 and Bj+1,p−1

have a knot of multiplicity m at z. Applying (3.42) and the induction hypothesis, we
then obtain

Jz(D
p−m+1Bj,p) =

p!

(m− 1)!

( j+p∏
k=j
tk 6=z

(tk − z)−1 −
j+1+p∏
k=j+1
tk 6=z

(tk − z)−1

)

=
p!

(m− 1)!

j+p∏
k=j+1
tk 6=z

(tk − z)−1

(
1

tj − z
− 1

tj+1+p − z

)

=
p!

(m− 1)!
(tj+1+p − tj)/

j+1+p∏
k=j
tk 6=z

(tk − z)

which completes the proof.

Using the continuity property and di�erentiation formula we can show a formula for
the integral of a B-spline.

Theorem 3.23. The integral of the jth B-spline of degree p ≥ 0 on t is given by∫ tj+p+1

tj

Bj,p,t(x)dx =
tj+p+1 − tj
p+ 1

. (3.44)

Proof. If tj+p+1 = tj there is nothing to prove. Assume �rst tj+p > tj . De�ne a knot

vector s = (si)
2p+3
i=1 by

s1 = · · · = sp+1 = a, sp+2+k = tj+k, k = 0, 1, . . . , p+ 1,

where a is any number strictly less than tj . Integrating the di�erentiation formula (3.35)
for B-splines of degree p+ 1 on s gives∫ si+p+2

si

DBi,p+1,s(x)dx = Ji − Ji+1, i = 1, 2, . . . , p+ 1, (3.45)

where

Jr =
p+ 1

sr+p+1 − sr

∫ sr+p+1

sr

Br,p,s(x)dx, r = i, i+ 1,

and we used the local support property of Br,p,s. Since no knot in s occurs more than
p+1 times it follows from Lemma 3.21 that each Bi,p+1,s is continuous. Therefore Bi,p+1,s

vanishes at the endpoints si and si+p+2 of its support. Moreover, since tj+p > tj each
Bi,p+1,s has a continuous derivative in the interior of its support. Therefore the integral
on the left of (3.45) is zero and Ji+1 = Ji for i = 1, . . . , p + 1. In particular, Jp+2 = J1

and this implies (3.44). Indeed, since sp+2 = tj , s2p+3 = tj+p+1 and s1 = · · · sp+1 we
have

Jp+2 =
p+ 1

tj+p+1 − tj

∫ tj+p+1

tj

Bj,p,t(x)dx = J1 =
p+ 1

sp+2 − s1

∫ sp+2

s1

(sp+2 − x)p

(sp+2 − s1)p
dx = 1.
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Finally, if tj = tj+p < tj+p+1 then (3.44) follows by direct calculation, (Cf. the calculation
for J1).

3.3 B-splines as a basis for piecewise polynomials

Our ultimate purpose is to use B-splines as building blocks for constructing and repre-
senting functions and data, but what exactly are the functions in a spline space Sp,t?
We know that they are piecewise polynomials, with di�erent polynomial pieces meeting
at the knots. We also know that the exact continuity between two pieces is controlled
by the multiplicity of the knot at the join. If the knot z occurs with multiplicity m, we
know from Theorem 3.19 that there is at least one B-spline with its �rst p−m derivatives
continuous, but with the derivative of order p−m+1 discontinuous. When we take linear
combinations of the B-splines and form Sp,t, the spline functions will in general inherit
this smoothness at z, although there will be some functions that will be even smoother,
like for example the function with all coe�cients zero, the zero function. In this section
we will start by de�ning piecewise polynomial spaces in terms of the smoothness at the
joins and show that Sp,t can be characterised in this way. We start by de�ning piecewise
polynomial spaces.

De�nition 3.24. Let p be a nonnegative integer, let [a, b] be a real interval, let the
sequence ∆ = (ξi)

N
i=1 be a partition of [a, b],

a = ξ1 < ξ2 < · · · < ξN−1 < ξN = b,

and let r = (ri)
N−1
i=2 be a sequence of integers. By Srp(∆) we denote the linear space of

piecewise polynomials of degree p on [a, b] with ri continuous derivatives at ξi. In other
words f ∈ Srp(∆) if and only if the restriction of f to (ξi−1, ξi) is a polynomial of degree
p for i = 2, . . . , N , and Dkf is continuous at ξi for k = 0, . . . , ri and i = 2, . . . , N − 1.

It is quite simple to check that linear combinations of functions in Srp(∆) are again
in Srp(∆); it is therefore a linear space.

Lemma 3.25. The dimension of Srp(∆) is n = (N − 1)p+ 1−
∑N−1

i=2 ri.

To see why Lemma 3.25 is reasonable, we can argue as follows. If there were no
smoothness conditions (ri = −1 for all i), we would have a space of dimension (N −
1)(p + 1) (there are N − 1 subintervals and on each we have a space of polynomials of
degree p). All together there are

∑N−1
i=2 (ri + 1) smoothness conditions so

dimSrp(∆) ≥ (N − 1)(p+ 1)−
N−1∑
i=2

(ri + 1) = (N − 1)p+ 1−
N−1∑
i=2

ri. (3.46)

A priori we only get a lower bound since we cannot be sure that each continuity constraint
reduces the dimension by one. A more careful investigation reveals that the dimension
agrees with this lower bound, see Exercise 6.

There are many ways to represent the piecewise polynomials in Srp(∆). One possibility
is to pick one's favourite polynomial basis and represent each piece as a polynomial of
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degree p and ignore the smoothness conditions. Another possibility is to use the truncated
power basis that is employed to prove Lemma 3.25 in Exercise 6. The following theorem
shows that Srp(∆) can in fact be represented in terms of B-splines on an appropriate knot
vector.

Theorem 3.26 (Curry-Schoenberg). Let Srp(∆) be a given space of piecewise polyno-

mials and let the p+ 1-extended knot vector t = (tj)
n+p+1
j=1 be de�ned by

t = (t1, . . . , tp+1,

p−r2︷ ︸︸ ︷
ξ2, . . . , ξ2, . . . ,

p−ri︷ ︸︸ ︷
ξi, . . . , ξi, . . . ,

p−rN−1︷ ︸︸ ︷
ξN−1, . . . , ξN−1, tn+1, . . . , tn+p+1)

where n is given in Lemma 3.25 and the end knots satisfy t1 ≤ · · · ≤ tp+1 ≤ a and
b ≤ tn+1 ≤ · · · ≤ tn+p+1. Then

Srp(∆) = Sp,t|[a,b],

where Sp,t|[a,b] is the space obtained by restricting the functions in Sp,t to the interval
[a, b].

Proof. Let S = Sp,t|[a,b]. We note that by the construction of the knot vector, the B-
splines in S satisfy the smoothness conditions of Srp(∆) so S ⊆ Srp(∆). On the other hand,
the length of the knot vector t is n+ p+ 1 so dimS = dimSrp(∆). But a subspace that
has the same dimension as the full space must agree with the full space so S = Srp(∆).

Exercises for Chapter 3

3.1 Suppose that p = 3 and that t̂ = (0, 0, 1, 3, 4, 5) so we can associate two cubic
B-splines B̂1,3 and B̂2,3 with t̂. We want to prove that these two B-splines are
linearly independent on [1, 3].

a) Let t denote the augmented knot vector t = (0, 0, 0, 1, 3, 4, 5, 5). Show that
we can associate 4 B-splines {Bi,3}4i=1 with t and that these are linearly inde-
pendent on [1, 3].

b) Show that the two B-splines B̂1,3 and B̂2,3 are linearly independent.

3.2 Let t = (tj)
n+p+1
j=1 be knot vector with n ≥ 1 and such that no knot occurs more

than p + 1 times. Show that the B-splines {Bj,p}nj=1 are linearly independent on
the interval [t1, tn+p+1).

3.3 Let A be matrix where each entry is a function of x and let α be a scalar function
of x. Prove the formula

D(αA) = (Dα)A+ α(DA).
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3.4 a) Count the number of operations (additions/subtractions, multiplications, di-
visions) involved in computing the matrix Rk(x) de�ned in (2.20). Do the
same for the matrix DRk de�ned in (3.30).

b) Recall that in the formula (3.34) for the rth derivative of f , we have the
freedom to di�erentiate any r of the p matrices {Rk(x)}pk=1. Based on the
count in (a), show that the choice made in (3.34) is the most e�cient.

3.5 In this exercise we are going to prove the di�erentiation formula (3.36).

a) Show that

(DBµ−p,p(x), . . . , DBµ,p(x)) = dDR1R2(x) · · ·Rp(x) (3.47)

for any x in [tµ, tµ+1).

b) Show that (3.47) leads to (3.36) and that the latter equation is valid for any
x. Why do we need the restriction p ≥ 2?

3.6 In this exercise we will provide a proof of Lemma 3.25. Let Πp denote the linear
space of polynomials of degree at most p. Recall that the powers 1, x, . . . , xp is a
basis for Πp on any interval [a, b] with a < b and that the dimension of Πp is p+ 1.

a) Let ∆ = (ξi)
N
i= be a partition of some interval [a, b],

a = ξ1 < ξ2 < · · · < ξN−1 < ξN = b

and let S−1
p (∆) denote the set of functions that are polynomials of degree

p+ 1 on each subinterval (ξi−1, ξi) for i = 2, . . . , N (no continuity is assumed
between the di�erent pieces). Show that the dimension of S−1

p (∆) is (N −
1)(p+ 1). Hint: Show that the functions {ηi,k}N−1,p

i=1,k=0 de�ned by

ηi,k(x) =

{
(x− ξi)k, if ξi ≤ x < ξi−1;

0, otherwise;

form a basis for S−1
p (∆).

b) Show that a di�erent basis for S−1
p (∆) is given by the functions {θi,k}N−1,p

i=1,k=0

de�ned by

θi,k(x) = (x− ξi)k+,

where

ak+ =

{
ak, if a > 0;

0, otherwise;

except that we use the convention 00 = 1.
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c) Let J denote the jump-operator de�ned in De�nition 3.10. Show that

Jξi(D
`θj,k) = k!δ`,kδi,j

where δm,n = 1 if m = n and zero otherwise.

d) Let Srp(∆) be as in De�nition 3.24. Show that Srp(∆) is a subspace of S−1
p (∆).

Show also that if f =
∑N−1

i=1

∑p
k=0 ci,kηi,k is in Srp(∆) then ci,k = 0 for k = 0,

1, . . . , ri and i = 2, 3, . . . , N − 1. Hint: Make use of (c). Conclude that

{θi,k}N−1,d
i=1,k=ri

, where r1 = 0, is a basis for Srp(∆), and that

dimSrp(∆) = (N − 1)p+ 1−
N−1∑
i=2

ri.



80 CHAPTER 3. FURTHER PROPERTIES OF SPLINES AND B-SPLINES



Chapter 4
Knot insertion

In Chapter 1 we were led to B-splines, de�ned via the recurrence relation, as a convenient
way to represent spline functions. In Chapters 2 and 3 we then established some of the
basic properties of splines, with the recurrence relation as the major tool. We have seen
that splines can be evaluated e�ciently and stably, we have studied the smoothness of
splines, we have shown that B-splines are linearly independent and that they form a basis
for certain spaces of piecewise polynomials.

This chapter supplements the recurrence relation for B-splines with another very
versatile tool, namely the idea of knot insertion or knot re�nement. We have already
seen that the control polygon of a spline provides a rough sketch of the spline itself. It
turns out that the control polygon approaches the spline it represents as the distance
between the knots of a spline is reduced, a fact that will be proved in Chapter 9. This
indicates that it is of interest to see how the B-spline coe�cients of a �xed spline depend
on the knots.

Knot insertion amounts to what the name suggests, namely insertion of knots into an
existing knot vector. The result is a new spline space with more B-splines and therefore
more �exibility than the original spline space. This can be useful in many situations,
for example in interactive design of spline curves. It turns out that the new spline space
contains the original spline space as a subspace, so any spline in the original space can
also be represented in terms of the B-splines in the re�ned space. As mentioned above,
an important property of this new representation is that the control polygon will have
moved closer to the spline itself. This provides us with a new and very powerful tool
both for algorithmic manipulation and theoretical investigations of spline functions.

We start, in Section 4.1, by showing some simple examples of knot insertion. In
Section 4.2 we then develop algorithms for expressing the B-spline coe�cients relative
to a re�ned knot vector in terms of the B-spline coe�cients relative to the original knot
vector. It turns out that the B-spline coe�cients of a spline are completely characterised
by three simple properties, and this is the topic of Section 4.3. This characterisation is
often useful for developing the theory of splines, and in Section 4.4 this characterisation
is used to obtain formulas for inserting one new knot into a spline function. Finally, in

81
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Figure 4.1. A line segment represented as a linear spline with no interior knots (a), and with one interior knot
(b).

Section 4.5, we make use of knot insertion to prove that the number of sign changes in a
spline is bounded by the number of sign changes in its control polygon; another instance
of the close relationship between a spline and its control polygon.

4.1 The control polygon relative to di�erent knot vectors

In this introductory section we will consider some examples of knot insertion with the
purpose of gaining an intuitive understanding of this important concept.

Figure 4.1 shows spline representations of a line segment. We all know that a straight
line is uniquely determined by two points and in (a) the line segment is represented by
its two end points. Although one may wonder what the point is, we can of course also
represent the line segment by cutting it into smaller pieces and represent each of these
pieces. This is what is shown in Figure 4.1 (b) where the line segment is represented
by a linear spline with an interior knot at 1 which in e�ect means that we are using a
redundant representation of three points to represent a line segment.

The redundancy in the representation is obvious and seems useless in the linear case.
But let us increase the degree and consider a quadratic example. Figure 4.2 shows part
of the parabola y = (4x − x2)/6 represented as a spline without interior knots in (a)
and with one interior knot in (b). In general, the representation in (b) requires a spline
function and its �rst derivative to be continuous at x = 1, whereas a jump is allowed
in the second derivative. The parabola in the �gure is certainly continuous and has
continuous �rst derivative at x = 1, but the jump in the second derivative happens to
be 0. The knot at x = 1 is therefore redundant, but it has the nice e�ect of bringing the
control polygon closer to the spline. We shall see later that there may be many other
good reasons for inserting knots into a spline function.

An example with a cubic spline is shown in Figure 4.3. The situation is the same as
before: The re�ned knot vector allows jumps in the second derivative at x = 1 and the
third derivative at x = 2, but the jumps may be 0. For the speci�c spline in (a) these
jumps are indeed 0, but one advantage of representing it in the re�ned spline space is
that the control polygon comes closer to the spline.

The examples have hopefully shown that insertion of knots can be useful; at the
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Figure 4.2. A piece of a parabola represented as a quadratic spline with no interior knots (a), and with one
interior knot (b).

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 4.3. A cubic spline with one interior knot (a). In (b) the same spline is represented with two extra knots
(the knot at x = 1 is now double).
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very least it seems like it may be a useful tool for plotting splines. In the next sections
we are going to develop algorithms for computing the B-spline coe�cients on a re�ned
knot vector and deduct various properties of the B-splines coe�cients as functions of the
knots. A proof of the fact that the control polygon converges to the spline it represents
as the knot spacing goes to zero has to wait until Chapter 9.

4.2 Knot insertion

In this section we are going to develop two algorithms for computing the B-spline coef-
�cients of a given spline relative to a re�ned knot vector. The two algorithms for knot
insertion are closely related to Algorithms 2.20 and 2.21; in fact these two algorithms are
special cases of the algorithms we develop here.

4.2.1 Basic idea

Knot insertion is exactly what the name suggests: extension of a given knot vector by
adding new knots. Let us �rst de�ne precisely what we mean by knot insertion, or knot
re�nement as it is also called.

De�nition 4.1. A knot vector t is said to be a re�nement of a knot vector τ if any real
number occurs at least as many times in t as in τ .

Note that if t is a re�nement of τ then τ is a subsequence of t, and this we will write
τ ⊆ t even though knot vectors are sequences and not sets. The term knot insertion is
used because in most situations the knot vector τ is given and t is obtained by `inserting'
knots into τ . A simple example of a knot vector and a re�nement is given by

τ = (0, 0, 0, 3, 4, 5, 5, 6, 6, 6) and t = (0, 0, 0, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 6).

Here two knots have been inserted at 2, one at 3 and one at 5.

With some polynomial degree p given, we can associate the spline spaces Sp,τ and
Sp,t with the two knot vectors τ and t. When τ is a subsequence of t, the two spline
spaces are also related.

Lemma 4.2. Let p be a positive integer and let τ be a knot vector with at least p+ 2
knots. If t is a knot vector which contains τ as a subsequence then Sp,τ ⊆ Sp,t.

Proof. Suppose �rst that both τ and t are p + 1-regular knot vectors with common
knots at the ends. By the Curry-Schoenberg theorem (Theorem 3.26) we know that Sp,t
contains all splines with smoothness prescribed by the knot vector t. Since all knots
occur at least as many times in t as in τ , we see that at any knot, a spline f in Sp,τ is
at least as smooth as required for a spline in Sp,t. But then f ∈ Sp,τ and Sp,τ ⊆ Sp,t.

A proof in the general case where τ and t are not p+ 1-regular with common knots
at the ends, is outlined in exercise 5.

Suppose that f =
∑n

j=1 cjBj,p,τ is a spline in Sp,τ with B-spline coe�cients c = (cj).
If τ is a subsequence of t, we know from Lemma 4.2 that Sp,τ is a subspace of Sp,t so
f must also lie in Sp,t. Hence there exist real numbers b = (bi) with the property that
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f =
∑m

i=1 biBi,p,t, i.e., the vector b contains the B-spline coe�cients of f in Sp,t. Knot
insertion is therefore nothing but a change of basis from the B-spline basis in Sp,τ to the
B-spline basis in Sp,t.

Since Sp,τ ⊆ Sp,t, all the B-splines in Sp,τ are also in Sp,t. We can therefore write

Bj,p,τ =
m∑
i=1

αj,p(i)Bi,p,t, j = 1, 2, . . . , n, (4.1)

for certain numbers αj,p(i). In the matrix form we have used earlier this can be written

BT
τ = BT

t A, (4.2)

where BT
τ = (B1,p,τ , . . . , Bn,p,τ ) and BT

t = (B1,p,t, . . . , Bm,p,t) are row vectors, and the
m× n-matrix A =

(
αj,p(i)

)
is the basis transformation matrix. Using this notation and

remembering equation (4.2), we can write f in the form

f = BT
t b = BT

τ c = BT
t Ac.

The linear independence of the B-splines in Sd,t therefore means that b and c must be
related by

b = Ac, or bi =
n∑
j=1

ai,jcj for i = 1, 2, . . . , m. (4.3)

The basis transformation A is called the knot insertion matrix of degree p from τ to

t and we will use the notation αj,p(i) = αj,p,τ ,t(i) for its elements. The discrete function
αj,p has many properties similar to those of Bj,p, and it is therefore called a discrete

B-spline on t with knots τ .

To illustrate these ideas, let us consider a couple of simple examples of knot insertion
for splines.

Example 4.3. Let us determine the transformation matrix A for splines with p = 0, when the coarse
knot vector is given by τ = (0, 1, 2), and the re�ned knot vector is t = (0, 1/2, 1, 3/2, 2) = (ti)

5
i=1. In

this case
Sp,τ = span{B1,0,τ , B2,0,τ} and Sp,t = span{B1,0,t, B2,0,t, B3,0,t, B4,0,t}.

We clearly have
B1,0,τ = B1,0,t +B2,0,t, B2,0,τ = B3,0,t +B4,0,t.

This means that the knot insertion matrix in this case is given by

A =

1 0
1 0
0 1
0 1

 .

Example 4.4. Let us also consider an example with linear splines. Let p = 1, and let τ and t be as
in the preceding example. In this case dim Sp,τ = 1 and we �nd that

B[0, 1, 2] =
1

2
B[0,

1

2
, 1] +B[

1

2
, 1,

3

2
] +

1

2
B[1,

3

2
, 2].
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Figure 4.4. Re�ning a linear B-spline.

The situation is shown in Figure 4.4. The linear B-spline on τ is a weighted sum of the three B-splines
(dashed) on t. The knot insertion matrix A is therefore the 3× 1-matrix, or row vector, given by

A =

1/2

1

1/2

 .

4.2.2 Formulas and algorithms for knot insertion

For simplicity we will make the assumption that τ = (τj)
n+p+1
j=1 and t = (ti)

m+p+1
i=1 are

both p + 1-regular knot vectors with p + 1 common knots at the two ends. Exercise 6
shows that this causes no loss of generality.

Both the B-splines on τ and t, and the corresponding dual polynomials given for any
y ∈ R by

ρj,p,τ (y) = (y − τj+1) · · · (y − τj+p), j = 1, . . . , n,

ρi,p,t(y) = (y − ti+1) · · · (y − ti+p), i = 1, . . . ,m,
(4.4)

are related through discrete B-splines.

Lemma 4.5. Let τ ⊆ t be p+ 1-regular knot vectors with common end knots and let

Bj,p,τ =

m∑
i=1

αj,p(i)Bi,p,t, j = 1, . . . , n.

Suppose for a �xed integer i, with 1 ≤ i ≤ m, that the integer µ is such that τµ ≤ ti <
τµ+1. Then

1. αj,p(i) = 0 for j < µ− p and j > µ.
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2. If f ∈ Sp,τ has B-spline coe�cients (cj) in Sp,τ and (bi) in Sp,t then

bi =

µ∑
j=µ−p

αj,p(i)cj = αp(i)
Tcp, i = 1, . . . ,m, (4.5)

where
αp(i)

T := (αµ−p,p(i), . . . , , αµ,p(i)) , cp := (cµ−p, . . . , cµ)T .

3. The dual polynomials on the re�ned knot vector can be expanded in terms of the
dual polynomials on the coarse knot vector using dicrete B-splines as coe�cients

ρi,p,t =

µ∑
j=µ−p

αj,p(i)ρj,p,τ = αp(i)
Tρp,τ , i = 1, . . . ,m, (4.6)

where
ρp,τ = (ρµ−p,p,τ , . . . , ρµ,p,τ )T .

Proof. To show 1. for �xed i we also �x j with j < µ − p or j > µ and show that
αj,p(i) = 0. Let ti = ti+1 = · · · = tν < tν+1. Since τ ⊆ t it follows that [tν , tν+1] ⊆
[τµ, τµ+1], and since ti+p+1 > ti we have i ≤ ν ≤ i + p or ν − p ≤ i ≤ ν. Thus, it is
enough to show that αj,p(`) = 0 for ν − p ≤ ` ≤ ν. If x ∈ [tν , tν+1) then

Bj,p,τ (x) =

ν∑
`=ν−p

αj,p(i)B`,p,t(x).

Now Bj,p,τ (x) = 0 since x ∈ [τµ, τµ+1) and j /∈ {µ − p, . . . , µ}. But then αj,p(`) = 0 for
` = ν − p, . . . , ν by the linear independence of {Bν−p,p,t, . . . , Bν,p,t} on [tν , tν+1).

2. follows from (4.3) and what we just proved. Indeed,

bi =

n∑
j=1

αj,p(i)cj =

µ∑
j=µ−p

αj,p(i)cj = αp(i)
Tcp.

For 3. we use Marsden's identity (3.10) on both τ and t. For �xed y ∈ R,

(y − x)p =
n∑
j=1

cjBj,p,τ (x) =
m∑
i=1

biBi,p,t(x), cj = ρj,p,τ (y), bi = ρi,p,t(y),

and (4.6) follows from (4.5).

It is now easy to derive recurrence relations for discrete B-splines.

Theorem 4.6. Let the polynomial degree p be given, and let τ = (τj)
n+p+1
j=1 and t =

(ti)
m+p+1
i=1 be two p+ 1-regular knot vectors with common knots at the ends and τ ⊆ t.

Suppose for a �xed integer i, with 1 ≤ i ≤ m, that the integer µ is such that

τµ ≤ ti < τµ+1. (4.7)
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Then

αp(i)
T =

(
αµ−p,p(i), . . . , αµ,p(i)

)
=

{
1, if p = 0,

R1(ti+1) · · ·Rp(ti+p), if p > 0,
(4.8)

where Rk = Rµ
k,τ is the usual k × (k + 1) B-spline matrix on τ

Rk(x) =



τµ+1−x
τµ+1−τµ+1−k

x−τµ+1−k
τµ+1−τµ+1−k

0 · · · 0

0
τµ+2−x

τµ+2−τµ+2−k

x−τµ+2−k
τµ+2−τµ+2−k

. . . 0

...
...

. . . . . .
...

0 0 . . .
τµ+k−x
τµ+k−τµ

x−τµ
τµ+k−τµ


.

If f =
∑

j cjBj,p,τ is a spline in Sp,τ , with B-spline coe�cients b in Sp,t, then bi is given
by

bi =

µ∑
j=µ−p

αj,p(i)cj = R1(ti+1) · · ·Rp(ti+p)cp, (4.9)

where cp = (cµ−p, . . . , cµ)T .

Proof. The case p = 0 is easy so we concentrate on p ≥ 1. Recall the discrete Marsden
identity (3.6) given by

(y − x1)(y − x2) · · · (y − xp) = R1(x1)R2(x2) · · ·Rp(xp)ρp(y).

This is valid for all real numbers x1, x2, . . . , xp and y. Choosing xj = ti+j for j = 1, . . . , p
we obtain

ρi,p,t(y) = R1(ti+1) · · ·Rp(ti+p)ρp,τ (y) = αp(i)
Tρp,τ (y),

where the last equality follows from (4.6). By the linear independence of the dual poly-
nomials in ρp,τ we obtain (4.8). The equation (4.9) is a consequence of (4.5).

A couple of examples will illustrate the use of Theorem 4.6.

Example 4.7. We consider quadratic splines (p = 2) on the knot vector τ = (−1,−1,−1, 0, 1, 1, 1),
and insert two new knots, at −1/2 and 1/2 so t = (−1,−1,−1,−1/2, 0, 1/2, 1, 1, 1). We note that
τ3 ≤ ti < τ4 for 1 ≤ i ≤ 4 so the �rst three elements of the �rst four rows of the 6 × 4 knot insertion
matrix A are given by

α2(i) = R3
1,τ (ti+1)R3

2,τ (ti+2)

for i = 1, . . . , 4. Since

R3
1,τ (x) =

[
−x 1 + x

]
, R3

2,τ (x) =

[
−x 1 + x 0
0 (1− x)/2 (1 + x)/2

]
,

we have from (4.8)

α2(i) =
1

2

[
2ti+1ti+2, 1− ti+1 − ti+2 − 3ti+1ti+2, (1 + ti+1)(1 + ti+2)

]
.
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Figure 4.5. A quadratic spline together with its control polygon relative to a coarse and a �ner knot vector (a),
and the same spline as in (a) with its control polygon relative to an even more re�ned knot vector (b).

Inserting the correct values for ti+1 and ti+2 and adding one zero at the end of each row, we �nd that
the �rst four rows of A are given by  1 0 0 0

1/2 1/2 0 0
0 3/4 1/4 0
0 1/4 3/4 0

 .
To determine the remaining two rows of A we have to move to the interval [τ4, τ5) = [0, 1). Here we
have

R4
1,τ (x) =

[
1− x x

]
R4

2,τ (x) =

[
(1− x)/2 (1 + x)/2 0

0 1− x x

]
,

so

a2(i) = R4
1,τ (ti+1)R4

2,τ (ti+2) =
1

2

[
(1− ti+1)(1− ti+2), 1 + ti+1 + ti+2 − 3ti+1ti+2, 2ti+1ti+2

]
.

Evaluating this for i = 5, 6 and inserting one zero as the �rst entry, we obtain the last two rows as[
0 0 1/2 1/2
0 0 0 1

]
.

To see visually the e�ect of knot insertion, let f = B1,2,τ − 2B2,2,τ + 2B3,2,τ −B4,2,τ be a spline in Sp,τ
with B-spline coe�cients c = (1,−2, 2,−1)T . Its coe�cients b = (bi)

6
i=1 are then given by

b = Ac =


1 0 0 0

1/2 1/2 0 0
0 3/4 1/4 0
0 1/4 3/4 0
0 0 1/2 1/2
0 0 0 1


 1
−2
2
−1

 =


1
−1/2
−1
1

1/2
−1

 .

Figure 4.5 (a) shows a plot of f together with its control polygons relative to τ and t. We note
that the control polygon relative to t is much closer to f and that both control polygons give a rough
estimate of f .

The knot insertion process can be continued. If we insert one new knot halfway between each old
knot in t, we obtain the new knot vector

t1 = (−1,−1,−1,−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4, 1, 1, 1).

A plot of f and its control polygon relative to this knot vector is shown in Figure 4.5 (b).
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Example 4.8. Let us again consider quadratic splines on a uniform knot vector with multiple knots
at the ends,

τ = (τj)
n+3
j=1 = (3, 3, 3, 4, 5, 6, . . . , n, n+ 1, n+ 1, n+ 1),

and form t by inserting one knot half way between each pair of old knots,

t = (ti)
2n+1
i=1 = (3, 3, 3, 7/2, 4, 9/2, 5, . . . , n, (2n+ 1)/2, n+ 1, n+ 1, n+ 1).

Since dim Sp,τ = n and dim Sp,t = 2n− 2, the knot insertion matrix A is now a (2n− 2)× n matrix. As
in Example 4.7 we �nd that the �rst three columns of the �rst four rows of A are 1 0 0

1/2 1/2 0
0 3/4 1/4
0 1/4 3/4

 .
To determine rows 2µ − 3 and 2µ − 2 with 4 ≤ µ ≤ n − 1, we need the matrices Rµ

1,τ and Rµ
2,τ which

are given by

Rµ
1,τ (x) =

[
µ+ 1− x x− µ

]
, Rµ

2,τ (x) =

[
(µ+ 1− x)/2 (x+ 1− µ)/2 0

0 (µ+ 2− x)/2 (x− µ)/2

]
.

Observe that τi = i for i = 3, . . . , n + 1 and ti = (i + 3)/2 for i = 3, . . . , 2n − 1. Entries µ − 2, µ − 1
and µ of row 2µ− 3 are therefore given by

Rµ
1,τ (t2µ−2)Rµ

2,τ (t2µ−1) = Rµ
1,τ (µ+ 1/2)Rµ

2,τ (µ+ 1) =
[
1/2 1/2

] [0 1 0
0 1/2 1/2

]
=
[
0 3/4 1/4

]
.

Similarly, elements µ− 3, µ− 2 and µ of row 2µ− 2 are given by

Rµ
1,τ (t2µ−1)Rµ

2,τ (t2µ) = Rµ
1,τ (µ+ 1)Rµ

2,τ (µ+ 3/2) =
[
0 1

] [−1/4 5/4 0
0 1/4 3/4

]
=
[
0 1/4 3/4

]
.

Finally, we �nd as in Example 4.7 that the last three elements of the last two rows are[
0 1/2 1/2
0 0 1

]
.

The complete knot insertion matrix is therefore

A =



1 0 0 0 . . . 0 0 0
1/2 1/2 0 0 . . . 0 0 0
0 3/4 1/4 0 . . . 0 0 0
0 1/4 3/4 0 . . . 0 0 0
0 0 3/4 1/4 . . . 0 0 0
0 0 1/4 3/4 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . 3/4 1/4 0
0 0 0 0 . . . 1/4 3/4 0
0 0 0 0 . . . 0 1/2 1/2
0 0 0 0 . . . 0 0 1


.

The formula for αp(i) shows very clearly the close relationship between B-splines
and discrete B-splines, and it will come as no surprise that αj,p(i) satis�es a recurrence
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relation similar to that of B-splines, see De�nition 2.1. The recurrence for αj,p(i) is
obtained by setting x = ti+p in the recurrence (2.1) for Bj,p(x),

αj,p(i) =
ti+p − τj
τj+p − τj

αj,p−1(i) +
τj+1+p − ti+p
τj+1+p − τj+1

αj+1,p−1(i), (4.10)

starting with αj,0(i) = Bj,0(ti).
The two evaluation algorithms for splines, Algorithms 3.17 and 3.18, can be adapted

to knot insertion quite easily. For historical reasons these algorithms are usually referred
to as the Oslo algorithms.

Algorithm 4.9 (Oslo-Algorithm 1). Let the polynomial degree p, and the two p + 1-
regular knot vectors τ = (τj)

n+p+1
j=1 and t = (ti)

m+p+1
i=1 with common knots at the ends

be given. To compute the m × n knot insertion matrix A =
(
αj,p(i)

)m,n
i,j=1

from τ to t
perform the following steps:

1. For i = 1, . . . , m.

1.1 Determine µ such that τµ ≤ ti < τµ+1.

1.2 Compute elements µ− p, . . . , µ of row i by evaluating

αp(i)
T =

(
αµ−p,p(i), . . . , αµ,p(i)

)T
=

{
1, if p = 0.

R1(ti+1) · · ·Rp(ti+p), if p > 0.

All other elements in row i are zero.

An algorithm for converting a spline from a B-spline representation in Sp,τ to Sp,t is
as follows.

Algorithm 4.10 (Oslo-Algorithm 2). Let the polynomial degree p, and the two p + 1-
regular knot vectors τ = (τj)

n+p+1
j=1 and t = (ti)

m+p+1
i=1 with common knots at the ends

be given together with the spline f in Sp,τ with B-spline coe�cients c = (cj)
n
j=1. To

compute the B-spline coe�cients b = (bi)
m
i=1 of f in Sp,t perform the following steps:

1. For i = 1, . . . , m.

1.1 Determine µ such that τµ ≤ ti < τµ+1.

1.2 Set cp = (cj)
µ
j=µ−p and compute bi by evaluating

bi =

{
cµ, if p = 0.

R1(ti+1) · · ·Rp(ti+p)cp, if p > 0.

Theorem 4.6 shows that the knot insertion matrix is banded: In any row, there are
�rst some zeros, then some nonzero elements, and then more zeros. As we have already
noted there are several possibilities when it comes to computing the nonzero elements
since a B-spline consists of di�erent polynomial pieces which are all transformed in the
same way. In Theorem 4.6 we compute the nonzero elements in row i by considering the
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knot interval in t which has ti as its left end and the knot interval in τ whose left end
is closest to ti. In general, there are many other possibilities. With i given, we could for
example choose µ by requiring that τµ+p ≤ ti+p+1 < τµ+p+1.

It should be noted that, in general, not all the p + 1 elements of row i of A given
by (4.8) will be nonzero. It is in fact quite easy to see that αj(i) will only be nonzero if
the whole support of Bi,t is a subset of the support of Bj,τ . More speci�cally, it can be
shown that if there are r new knots among ti+1, . . . , ti+p then there will be r+1 nonzero
elements in row i of A.

Note that if no new knots are inserted (τ = t) then the two sets of B-spline coe�cients
c and b are obviously the same. Equation (4.9) then shows that

ci = R1(τi+1) · · ·Rp(τi+p)cp. (4.11)

This simple observation will be useful later.

4.3 B-spline coe�cients as functions of the knots

Knot insertion allows us to represent the same spline function on di�erent knot vectors.
In fact, any spline function can be given any real numbers as knots, as long as we also
include the original knots. It therefore makes sense to consider the B-spline coe�cients
as functions of the knots, and we shall see that this point of view allows us to characterise
the B-spline coe�cients completely by three simple properties.

Initially, we assume that the spline f =
∑n

j=1 cjBj,p,τ is a polynomial represented on
a p + 1-extended knot vector τ . On the knot interval [τµ, τµ+1) we know that f can be
written as

f(x) = R1(x) · · ·Rp(x)cp, (4.12)

where cp = (cµ−p, . . . , cµ)T , see Section 2.3. Since f is assumed to be a polynomial this
representation is valid for all real numbers x, although when x is outside [τµ, τµ+1) it is
no longer a true B-spline representation.

Consider the function

F (x1, . . . , xp) = R1(x1) · · ·Rp(xp)cp. (4.13)

We recognise the right-hand side of this expression from equation (4.9) in Theorem 4.6:
If we have a knot vector that includes the knots (x0, x1, . . . , xp, xp+1), then F (x1, . . . , xp)
gives the B-spline coe�cient that multiplies the B-spline B(x | x0, . . . , xp+1) in the
representation of the polynomial f on the knot vector x. When f is a polynomial, it
turns out that the function F is completely independent of the knot vector τ that underlie
the de�nition of the R-matrices in (4.13). The function F is referred to as the blossom

of f , and the whole theory of splines can be built from properties of this function.

4.3.1 The blossom

In this subsection we develop some of the properties of the blossom. We will do this
in an abstract fashion, by starting with a formal de�nition of the blossom. In the next
subsection we will then show that the function F in (4.13) satis�es this de�nition.
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De�nition 4.11. A function on the form f(x) = ax, where a is a real number, is called
a linear function. A function on the form f(x) = ax + b with a and b real constants is
called an a�ne function. A function of p variables f(x1, . . . , xp) is said to be a�ne if it
is a�ne viewed as a function of each xi for i = 1, . . . , p, with the other variables �xed.
A symmetric a�ne function is an a�ne function that is not altered when the order of
the variables is changed.

It is common to say that a polynomial p(x) = a + bx of degree one is a linear
polynomial, even when a is nonzero. According to De�nition 4.11 such a polynomial is
an a�ne polynomial, and this (algebraic) terminology will be used in the present section.
Outside this section however, we will use the term linear polynomial.

For a linear function of one variable we have

f(αx+ βy) = αf(x) + βf(y), x, y ∈ R (4.14)

for all real numbers α and β, while for an a�ne function f with b 6= 0 equation (4.14)
only holds if α+ β = 1. This is in fact a complete characterisation of a�ne functions: If
(4.14) holds with α+ β = 1, then f is a�ne, see exercise 9.

A general a�ne function of 2 variables is given by

f(x1, x2) = ax2 + b = (a2x1 + b2)x2 + a1x1 + b1

= c0 + c1x1 + c2x2 + c1,2x1x2.
(4.15)

Similarly, an a�ne function of three variables is a function on the form

f(x1, x2, x3) = c0 + c1x1 + c2x2 + c3x3 + c1,2x1x2 + c1,3x1x3 + c2,3x2x3 + c1,2,3x1x2x3.

In general, an a�ne function can be written as a linear combination of 2p terms. This
follows by induction as in (4.15) where we passed from one argument to two.

A symmetric and a�ne function satis�es the equation

f(x1, x2, . . . , xp) = f(xπ1 , xπ2 , . . . , xπp),

for any permutation (π1, π2, . . . , πp) of the numbers 1, 2, . . . , p. We leave it as an exercise
to show that symmetric, a�ne functions of two and three variables can be written in the
form

f(x1, x2) = a0 + a1(x1 + x2) + a2x1x2,

f(x1, x2, x3) = a0 + a1(x1 + x2 + x3) + a2(x1x2 + x1x3 + x2x3) + a3x1x2x3.

We are now ready to give the de�nition of the blossom of a polynomial.

De�nition 4.12. Let g be a polynomial of degree at most p. The blossomB[g](x1, . . . , xp)
of g is a function of p variables with the properties:

1. Symmetry. The blossom is a symmetric function of its arguments,

B[g](x1, . . . , xp) = B[g](xπ1 , . . . , xπp)

for any permutation π1, . . . , πp of the integers 1, . . . , p.



94 CHAPTER 4. KNOT INSERTION

2. A�ne. The blossom is a�ne in each of its variables,

B[g](. . . , αx+ βy, . . .) = αB[g](. . . , x, . . .) + βB[g](. . . , y, . . .)

whenever α+ β = 1.

3. Diagonal property. The blossom agrees with g on the diagonal,

B[g](x, . . . , x) = g(x)

for all real numbers x.

The blossom of a polynomial exists and is unique.

Theorem 4.13. Each polynomial g ∈ Πp has a unique blossom B[g](x1, . . . , xp). The
blossom acts linearly on g, i.e., if g1 and g2 are two polynomials and c1 and c2 are two
real constants then

B[c1g1 + c2g2](x1, . . . , xp) = c1B[g1](x1, . . . , xp) + c2B[g2](x1, . . . , xp). (4.16)

Proof. The proof of uniqueness follows along the lines sketched at the beginning of this
section for small p. Start with a general a�ne function F of p variables

F (x1, . . . , xp) = c0 +

p∑
j=1

∑
1≤i1<···<ij≤p

ci1,...,ijxi1 · · ·xij .

Symmetry forces all the coe�cients multiplying terms of the same degree to be identical.
To see this we note �rst that

F (1, 0, . . . , 0) = c0 + c1 = F (0, . . . , 1, . . . , 0) = c0 + ci

for all i with 1 ≤ i ≤ p. Hence we have c1 = · · · = cp. To prove that the terms of degree
j all have the same coe�cients we use induction and set j of the variables to 1 and the
rest to 0. By the induction hypothesis we know that all the terms of degree less than j
are symmetric; denote the contribution from these terms by gj−1. Symmetry then gives

gj−1 + c1,2,...,j = gj−1 + c1,2,...,j−1,j+1 = · · · = gj−1 + cp−j+1,...,p.

From this we conclude that all the coe�cients multiplying terms of degree j must be
equal. We can therefore write F as

F (x1, . . . , xp) = a0 +

p∑
j=1

aj
∑

1≤i1<···<ij≤p
xi1 · · ·xij , (4.17)

for suitable constants (aj)
p
j=0. From the diagonal property F (x, . . . , x) = f(x) the coef-

�cients (aj)
p
j=0 are all uniquely determined (since 1, x, . . . , xp is basis for Πp).

The linearity of the blossom with regards to p follows from its uniqueness: The
right-hand side of (4.16) is a�ne in each of the xi, it is symmetric, and it reduces to
c1g1(x) + c2g2(x) on the diagonal x1 = · · · = xp = x.
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Recall that the elementary symmetric polynomials

sj(x1, . . . , xp) =
( ∑

1≤i1<···<ij≤p
xi1xi2 · · ·xij

)
/

(
p

j

)
that appear in (4.17) (apart from the binomial coe�cient) agree with the B-spline coef-
�cients of the polynomial powers,

σjk,p = sj(τk+1, . . . , τk+p),

see Corollary 3.5. In fact, the elementary symmetric polynomials are the blossoms of the
powers,

B[xj ](x1, . . . , xp) = sj(x1, . . . , xp) for j = 0, . . . , p.

They can also be de�ned by the relation

(x− x1) · · · (x− xp) =

p∑
k=0

(−1)p−k
(
p

k

)
sp−k(x1, . . . , xp)x

k.

Note that the blossom depends on the degree of the polynomial in a nontrivial way.
If we consider the polynomial p(x) = x to be of degree one, then B[g](x1) = x1. But we
can also think of p as a polynomial of degree three (the cubic and quadratic terms are
zero); then we obviously have B[g](x1, x2, x3) = (x1 + x2 + x3)/3.

4.3.2 B-spline coe�cients as blossoms

Earlier in this chapter we have come across a function that is both a�ne and symmetric.
Suppose we have a knot vector τ for B-splines of degree p. On the interval [τµ, τµ+1) the
only nonzero B-splines are Bp = (Bµ−p,p, . . . , Bµ,p)

T which can be expressed in terms of
matrices as

Bp(x)T = R1(x) · · ·Rp(x).

If we consider the polynomial piece f = BT
p cp with coe�cients cp = (cµ−p, . . . , cµ)T we

can de�ne a function F of p variables by

F (x1, . . . , xp) = R1(x1) · · ·Rp(xp)cp. (4.18)

From equation (4.9) we recognise F (x1, . . . , xp) as the coe�cient multiplying a B-spline
with knots x0, x1, . . . , xp+1 in the representation of the polynomial f .

Equation (3.7) in Lemma 3.3 shows that F is a symmetric function. It is also a�ne in
each of its variables. To verify this, we note that because of the symmetry it is su�cient
to check that it is a�ne with respect to the �rst variable. Recall from Theorem 2.18 that
R1 = R1,τ is given by

R1(x) =

[
τµ+1 − x
τµ+1 − τµ

,
x− τµ

τµ+1 − τµ

]
which is obviously an a�ne function of x.

The function F is also related to the polynomial f in that F (x, . . . , x) = f(x). We
have proved the following lemma.
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Lemma 4.14. Let f =
∑µ

j=µ−p cjBj,p be a polynomial represented in terms of the B-

splines in Sp,τ on the interval [τµ, τµ+1), with coe�cients cp = (cµ−p, . . . , cµ)T . Then the
function

F (x1, . . . , xp) = R1(x1) · · ·Rp(xp)cp

is symmetric and a�ne, and agrees with f on the diagonal,

F (x, . . . , x) = f(x).

Lemma 4.14 and Theorem 4.13 show that the blossom of f is given by

B[f ](x1, . . . , xp) = R1(x1) · · ·Rp(xp)cp.

Blossoming can be used to give explicit formulas for the B-spline coe�cients of a
spline.

Theorem 4.15. Let f =
∑n

j=1 cjBj,p,τ be a spline on a p + 1-regular knot vector τ =

(τj)
n+p+1
j=1 . Its B-spline coe�cients are then given by

cj = B[fk](τj+1, . . . , τj+p), for k = j, j + 1, . . . , j + p, (4.19)

provided τk < τk+1. Here fk = f |(τk,τk+1) is the restriction of f to the interval (τk, τk+1).

Proof. Let us �rst restrict x to the interval [τµ, τµ+1) and only consider one polynomial
piece fµ of f . From Lemma 4.14 we know that B[fµ](x1, . . . , xp) = R1(x1) · · ·Rp(xp)cp,
where cp = (cj)

µ
j=µ−p are the B-spline coe�cients of f active on the interval [τµ, τµ+1).

From (4.11) we then obtain

cj = B[fµ](τj+1, . . . , τj+p) (4.20)

which is (4.19) in this special situation.
To prove (4.19) in general, �x j and choose the integer k in the range j ≤ k ≤ j + p.

We then have

fk(x) =

k∑
i=k−p

ciBi,p(x), (4.21)

By the choice of k we see that the sum in (4.21) includes the term cjBj,p. Equation (4.19)
therefore follows by applying (4.20) to fk.

The a�ne property allows us to perform one important operation with the blossom;
we can change the arguments.

Lemma 4.16. The blossom of g satis�es the relation

B[g](. . . , x, . . .) =
b− x
b− a

B[g](. . . , a . . .) +
x− a
b− a

B[g](. . . , b, . . .) (4.22)

for all real numbers a, b and x with a 6= b.
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Proof. Observe that x can be written as an a�ne combination of a and b,

x =
b− x
b− a

a+
x− a
b− a

b.

Equation (4.22) then follows from the a�ne property of the blossom.

The next result will be useful later.

Lemma 4.17. Let Bx

[
g(x, y)

]
denote the blossom of g with respect to the variable x.

Then

Bx

[
(y − x)k

]
(x1, . . . , xp) =

k!

p!
Dp−k((y − x1) · · · (y − xp)

)
, (4.23)

for k = 0, 1, . . . , p, and

Bx

[
(y1 − x) · · · (y` − x)

]
(x1, . . . , xp) =

(p− `)!
p!

∑
1≤i1,...,i`≤p

(y1 − xi1) · · · (y` − xi`), (4.24)

where the sum is over all distinct choices i1, . . . , i` of ` integers from the p integers 1,
. . . , p.

Proof. For k = p equation (4.23) follows since the right-hand side is symmetric and a�ne
in each of the variables xi and it agrees with (y−x)p on the diagonal x1 = · · · = xp = x.
The general result is then obtained by di�erentiating both sides k times.

Equation (4.24) follows since the right-hand side is a�ne, symmetric and reduces to
(y1 − x) · · · (y` − x) when x = x1 = · · · = xp, i.e., it must be the blossom of (y − x)p.

4.4 Inserting one knot at a time

With blossoming we have a simple but powerful tool for determining the B-spline coe�-
cients of splines. Here we will apply blossoming to develop an alternative knot insertion
strategy. Instead of inserting all new knots simultaneously we can insert them sequen-
tially. We insert one knot at a time and update the B-spline coe�cients between each
insertion. This leads to simple, explicit formulas.

Lemma 4.18 (Böhm's method). Let τ = (τj)
n+p+1
j=1 be a given knot vector and let

t = (ti)
n+p+2
i=1 be the knot vector obtained by inserting a knot z in τ in the interval

[τµ, τµ+1). If

f =
n∑
j=1

cjBj,p,τ =
n+1∑
i=1

biBi,p,t,

then (bi)
n+1
i=1 can be expressed in terms of (cj)

n
j=1 through the formulas

bi =


ci, if 1 ≤ i ≤ µ− p;
z − τi
τi+p − τi

ci +
τi+p − z
τi+p − τi

ci−1, if µ− p+ 1 ≤ i ≤ µ;

ci−1, if µ+ 1 ≤ i ≤ n+ 1.

(4.25)
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Proof. Observe that for j ≤ µ we have τj = tj . For i ≤ µ − p and with k an integer
such that i ≤ k ≤ i+ p it therefore follows from (4.19) that

bi = B[fk](ti+1, . . . , ti+p) = B[fk](τi+1, . . . , τi+p) = ci.

Similarly, we have ti = τi−1 for i ≥ µ+ 1 so

bi = B[fk](ti+1, . . . , ti+p) = B[fk](τi, . . . , τi+p−1) = ci−1

for such values of i.
When i satis�es µ − p + 1 ≤ i ≤ µ we note that z will appear in the sequence

(ti+1, . . . , ti+p). From (4.19) we therefore obtain

bi = B[fµ](ti+1, . . . , z, . . . , ti+p) = B[fµ](τi+1, . . . , z, . . . , τi+p−1)

since we now may choose k = µ. Applying Lemma 4.16 with x = z, a = τi and b = τi+p
yields

bi =
τi+p − z
τi+p − τi

B[fµ](τi+1, . . . , τi, . . . , τi+p) +
z − τi
τi+p − τi

B[fµ](τi, . . . , τi+p, . . . , τi+p−1).

Exploiting the symmetry of the blossom and again applying (4.19) leads to the middle
formula in (4.25).

It is sometimes required to insert the same knot several times; this can of course be
accomplished by applying the formulas in (4.25) several times. Since blossoms have the
property B[f ](z, . . . , z) = f(z), we see that inserting a knot p times in a spline of degree
p gives as a by-product the function value of f at z. This can be conveniently illustrated
by listing old and new coe�cients in a triangular scheme. Consider the following triangle
(p = 3),

· · · c0
µ−4 c0

µ−3 c0
µ−2 c0

µ−1 c0
µ c0

µ+1 · · ·
c1
µ−2 c1

µ−1 c1
µ

c2
µ−1 c2

µ

c3
µ

In the �rst row we have the coe�cients of f on the original knot vector τ . After inserting
z in (τµ, τµ+1) once, the coe�cients relative to the knot vector τ 1 = τ ∪ {z} are

(. . . , c0µ−4, c
0
µ−3, c

1
µ−2, c

1
µ−1, c

1
µ, c

0
µ, c

0
µ+1, . . .),

i.e., we move down one row in the triangle. Suppose that z is inserted once more. The
new B-spline coe�cients on τ 2 = τ 1 ∪ {z} are now found by moving down to the second
row, across this row, and up the right hand side,

(. . . , c0µ−4, c
0
µ−3, c

1
µ−2, c

2
µ−1, c

2
µ, c

1
µ, c

0
µ, c

0
µ+1, . . .).
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Similarly, if z is inserted 3 times, we move around the whole triangle. We can also insert
z a full p = 4 times. We then simply repeat c3

µ two times in the last row.
Lemma 4.18 shows that Oslo Algorithm 2 (Algorithm 4.10) is not always e�cient.

To compute a new coe�cient in the case where only one new knot is inserted requires
at most one convex combination according to Lemma 4.18 while Algorithm 4.10 requires
the computation of a full triangle (two nested loops). More e�cient versions of the Oslo
algorithms can be developed, but this will not be considered here.

The simplicity of the formulas (4.25) indicates that the knot insertion matrix A
must have a simple structure when only one knot is inserted. Setting c = (ci)

n
i=1 and

b = (bi)
n+1
i=1 and remembering that b = Ac, we see that A is given by the (n + 1) × n

matrix

A =



1 0
. . .

. . .

1 0
1− λµ−p+1 λµ−p+1

. . .
. . .

1− λµ λµ
0 1

. . .
. . .

0 1


, (4.26)

where λi = (z − τi)/(τi+p − τi) for µ − p + 1 ≤ i ≤ µ. All the elements o� the two
diagonals are zero and such matrices are said to be bi-diagonal. Since z lies in the
interval [τµ, τµ+1) all the elements in A are nonnegative. This property generalises to
arbitrary knot insertion matrices.

Lemma 4.19. Let τ = (τj)
n+p+1
j=1 and t = (ti)

m+p+1
i=1 be two knot vectors for splines of

degree p with τ ⊆ t. All the elements of the knot insertion matrix A from Sp,τ to Sp,t
are nonnegative and A can be factored as

A = Am−nAm−n−1 · · ·A1, (4.27)

where Ai is a bi-diagonal (n+ i)× (n+ i− 1)-matrix with nonnegative elements.

Proof. Let us denote the m−n knots that are in t but not in τ by (zi)
m−n
i=1 . Set t0 = τ

and ti = ti−1 ∪ (zi) for i = 1, . . . , m− n. Denote by Ai the knot insertion matrix from
ti−1 to ti. By applying Böhm's method m − n times we obtain (4.27). Since all the
elements in each of the matrices Ai are nonnegative the same must be true of A.

4.5 Bounding the number of sign changes in a spline

In this section we will make use of Böhm's method for knot insertion to prove that the
number of sign changes in a spline function is bounded by the number of sign changes in
its B-spline coe�cient vector. This provides a generalisation of an interesting property of
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polynomials known as Descartes' rule of signs. Bearing the name of Descartes, this result
is of course classical, but it is rarely mentioned in elementary mathematics textbooks.
Before stating Descartes' rule of signs let us record what we mean by sign changes in a
de�nition.

De�nition 4.20. Let c = (ci)
n
i=1 be a vector of real numbers. The number of sign

changes in c (zeros are ignored) is denoted S−(c). The number of sign changes in a
function f in an interval (a, b) is denoted S−(a,b)(f) = S−(f), provided this number is
�nite. It is given by the largest possible integer r such that an increasing sequence
of r + 1 real numbers x1 < · · · < xr+1 in (a, b) can be found with the property that
S−
(
f(x1), . . . , f(xr+1)

)
= r.

Example 4.21. Let us consider some simple examples of counting sign changes. It is easily checked
that

S−(1,−2) = 1,

S−(1, 0, 2) = 0,

S−(1,−1, 2) = 2,

S−(1, 0,−1, 3) = 2,

S−(2, 0, 0, 0,−1) = 1,

S−(2, 0, 0, 0, 1) = 0.

As stated in the de�nition, we simply count sign changes by counting the number of jumps from positive
to negative values and from negative to positive, ignoring all components that are zero.

Descartes' rule of signs bounds the number of zeros in a polynomial by the number
of sign changes in its coe�cients. Recall that z is a zero of a polynomial f of multiplicity
r ≥ 1 if f(z) = Df(z) = · · · = Dr−1f(z) = 0 but Drf(z) 6= 0.

Theorem 4.22 (Descartes' rule of signs). Let g =
∑p

i=0 cix
i be a polynomial of degree

p with coe�cients c = (c0, . . . , cp)
T , and let Z(g) denote the total number of zeros of g

in the interval (0,∞), counted with multiplicities. Then

Z(g) ≤ S−(c),

i.e., the number of positive zeros of g is bounded by the number of sign changes in its
coe�cients.

Figures 4.6 (a)�(d) show some polynomials and their zeros in (0,∞).
Our aim is to generalise this result to spline functions, written in terms of B-splines.

This is not so simple because it is di�cult to count zeros for splines. In contrast to
polynomials, a spline may for instance be zero on an interval without being identically
zero. In this section we will therefore only consider zeros that are also sign changes. In
the next section we will then generalise and allow multiple zeros.

To bound the number of sign changes of a spline we will investigate how knot insertion
in�uences the number of sign changes in the B-spline coe�cients. Let Sp,τ and Sp,t be
two spline spaces of degree p, with Sp,τ ⊆ Sp,t. Recall from Section 4.4 that to get from
the knot vector τ to the re�ned knot vector t, we can insert one knot at a time. If there
are ` more knots in τ than in t, this leads to a factorisation of the knot insertion matrix
A as

A = A`A`−1 · · ·A1, (4.28)

where Ak is a (n + k) × (n + k − 1) matrix for k = 1, . . . , `, if dimSp,τ = n. Each of
the matrices Ak corresponds to insertion of only one knot, and all the nonzero elements
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(a) g(x) = 1− x.
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(b) g(x) = 1− 3x+ x2.
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(c) g(x) = 2− 3x+ x2.
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(d) g(x) = 1− 4x+ 4x2 − x3.

Figure 4.6. Illustrations of Descartes' rule of signs: the number of zeros in (0,∞) is no greater than the number
of strong sign changes in the coe�cients.

of the bi-diagonal matrix Ak are found in positions (i, i) and (i + 1, i) for i = 1, . . . ,
n+ k− 1, and these elements are all nonnegative (in general many of them will be zero).

We start by showing that the number of sign changes in the B-spline coe�cients is
reduced when the knot vector is re�ned.

Lemma 4.23. Let Sp,τ and Sp,t be two spline spaces such that t is a re�nement of τ .
Let f =

∑n
j=1 cjBj,p,τ =

∑m
i=1 biBi,p,t be a spline in Sp,τ with B-spline coe�cients c in

Sp,τ and b in Sp,t. Then b has no more sign changes than c, i.e.,

S−(Ac) = S−(b) ≤ S−(c), (4.29)

where A is the knot insertion matrix from τ to t.

Proof. Since we can insert the knots one at a time, it clearly su�ces to show that (4.29)
holds in the case where there is only one more knot in t than in τ . In this case we know
from Lemma 4.18 that A is bidiagonal so

bi = αi−1(i)ci−1 + αi(i)ci, for i = 1, . . .n+ 1,

where
(
αj(i)

)n+1,n

i,j=1
are the elements of A (for convenience of notation we have introduced

two extra elements that are zero, α0(1) = αn+1(n+1) = 0). Since αi−1(i) and αi(i) both
are nonnegative, the sign of bi must be the same as either ci−1 or ci (or be zero). Since
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Figure 4.7. A quadratic spline (a) and a cubic spline (b) with their control polygons.

the number of sign changes in a vector is not altered by inserting zeros or a number with
the same sign as one of its neighbours we have

S−(c) = S−(b1, c1, b2, c2, . . . , bn−1, cn−1, bn, cn, bn+1) ≥ S−(b).

The last inequality follows since the number of sign changes in a vector is always reduced
when elements are removed.

From Lemma 4.23 we can quite easily bound the number of sign changes in a spline
in terms of the number of sign changes in its B-spline coe�cients.

Theorem 4.24. Let f =
∑n

j=1 cjBj,p be a spline in Sp,τ . Then

S−(f) ≤ S−(c) ≤ n− 1. (4.30)

Proof. Suppose that S−(f) = `, and let (xi)
`+1
i=1 be `+ 1 points chosen so that S−(f) =

S−
(
f(x1), . . . , f(x`+1)

)
. We form a new knot vector t that includes τ as a subsequence,

but in addition each of the xi occurs exactly p + 1 times in t. From our study of knot
insertion we know that f may be written f =

∑
j bjBj,p,t for suitable coe�cients (bj),

and from Lemma 2.6 we know that each of the function values f(xi) will appear as a
B-spline coe�cient in b. We therefore have

S−(f) ≤ S−(b) ≤ S−(c),

the last inequality following from Lemma 4.23. The last inequality in (4.30) follows since
an n-vector can only have n− 1 sign changes.

The validity of Theorem 4.24 can be checked with the two plots in Figure 4.7 as well
as all other �gures which include both a spline function and its control polygon.
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Exercises for Chapter 4

4.1 In this exercise we are going to study a change of polynomial basis from the Bern-
stein basis to the Monomial basis. Recall that the Bernstein basis of degree p is
de�ned by

Bp
j (x) =

(
p

j

)
xj(1− x)p−j , for j = 0, 1, . . . , p. (4.31)

A polynomial g of degree p is said to be written in Monomial form if g(x) =∑p
j=0 bjx

j and in Bernstein form if g(x) =
∑p

j=0 cjB
p
j (x). In this exercise the

binomial formula

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k (4.32)

will be useful.

a) By applying (4.32), show that

Bp
j (x) =

p∑
i=j

(−1)i−j
(
p

j

)(
p− j
i− j

)
xi, for j = 0, 1, . . . , p.

Also show that
(
p
j

)(
p−j
i−j
)

=
(
p
i

)(
i
j

)
for i = j, . . . , p and j = 0, . . . , p.

b) The two basis vectors Bp =
(
Bp

0(x), . . . , Bp
p(x)

)T
and P p = (1, x, . . . , xp)T

are related by BT
p = P T

pAp where Ap is a (p+ 1)× (p+ 1)-matrix. Show that
the elements of Ap = (ai,j)

p
i,j=0 are given by

ai,j =

{
0, if i < j,

(−1)i−j
(
p
i

)(
i
j

)
, otherwise.

c) Show that the elements of Ap satisfy the recurrence relation

ai,j = βi (ai−1,j−1 − ai−1,j) , where βi = (p− i+ 1)/i.

Give a detailed algorithm for computing Ap based on this formula.

d) Explain how we can �nd the coe�cients of a polynomial relative to the Mono-
mial basis if Ap is known and the coe�cients relative to the Bernstein basis
are known.

4.2 In this exercise we are going to study the opposite conversion of that in Exercise 1,
namely from the Monomial basis to the Bernstein basis.

a) With the aid of (4.32), show that for all x and t in R we have

(
tx+ (1− x)

)p
=

p∑
k=0

Bp
k(x)tk. (4.33)

The function G(t) =
(
tx + (1 − x)

)p
is called a generating function for the

Bernstein polynomials.
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b) Show that
∑p

k=0B
p
k(x) = 1 for all x by choosing a suitable value for t in

(4.33).

c) Find two di�erent expressions for G(j)(1)/j! and show that this leads to the
formulas (

p

j

)
xj =

p∑
i=j

(
i

j

)
Bp
k(x), for j = 0, . . . , p. (4.34)

d) Show that the elements of the matrix Bp = (bi,j)
p
i,j=0 such that P T

p = BT
pBp

are given by

bi,j =

{
0, if i < j,(
i
j

)
/
(
p
j

)
, otherwise.

4.3 Let P denote the cubic Bernstein basis on the interval [0, 1] and let Q denote the
cubic Bernstein basis on the interval [2, 3]. Determine the matrix A3 such that
P (x)T = Q(x)TA3 for all real numbers x.

4.4 Let A denote the knot insertion matrix for the linear (p = 1) B-splines on τ =
(τj)

n+2
j=1 to the linear B-splines in t = (ti)

m+2
i=1 . We assume that τ and t are 2-

extended with τ1 = t1 and τn+2 = tm+2 and τ ⊆ t.

a) Determine A when τ = (0, 0, 1/2, 1, 1) and t = (0, 0, 1/4, 1/2, 3/4, 1, 1).

b) Device a detailed algorithm that computes A for general τ and t and requires
O(m) operations.

c) Show that the matrix ATA is tridiagonal.

4.5 Prove Lemma 4.2 in the general case where τ and t are not p + 1-regular. Hint:
Augment both τ and t by inserting p+ 1 identical knots at the beginning and end.

4.6 Prove Theorem 4.6 in the general case where the knot vectors are not p+ 1-regular
with common knots at the ends. Hint: Use the standard trick of augmenting τ
and t with p+ 1 identical knots at both ends to obtain new knot vectors τ̂ and t̂.
The knot insertion matrix from τ to t can then be identi�ed as a sub-matrix of the
knot insertion matrix from τ̂ to t̂.

4.7 Show that if τ and t are p+ 1-regular knot vectors with τ ⊆ t whose knots agree
at the ends then

∑
j αj,p(i) = 1.

4.8 Implement Algorithm 4.10 and test it on two examples. Verify graphically that the
control polygon converges to the spline as more and more knots are inserted.

4.9 Let f be a function that satis�es the identity

f(αx+ βy) = αf(x) + βf(y) (4.35)
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for all real numbers x and y and all real numbers α and β such that α + β = 1.
Show that then f must be an a�ne function. Hint: Use the alternative form of
equation (4.35) found in Lemma 4.16.

4.10 Find the cubic blossom B[g](x1, x2, x3) when g is given by:

a) g(x) = x3.

b) g(x) = 1.

c) g(x) = 2x+ x2 − 4x3.

d) g(x) = 0.

e) g(x) = (x− a)2 where a is some real number.
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Chapter 5
Spline Approximation

of Functions and Data

This chapter introduces a number of methods for obtaining spline approximations to given
functions, or more precisely, to data obtained by sampling a function. We �rst focus on
local methods where the approximation at a point x only depends on data values near x.
Connecting neighbouring data points with straight lines is one such method where the
value of the approximation at a point only depends on the two nearest data points.

In order to get smoother approximations, we must use splines of higher degree. We
�rst discuss a very simple approximation method, the Variation Diminishing Spline Ap-

proximation. This approximation scheme has the desirable ability to transfer the sign of
some of the derivatives of a function to the approximation. This is important since many
important characteristics of the shape of a function is closely related to the sign of the
derivatives.

The Variation Diminishing Spline Approximation does not interpolate the data for
degree greater than two. With cubic polynomials we can prescribe, or interpolate, position
and �rst derivatives at two points. Therefore, given a set of points with associated
function values and �rst derivatives, we can determine a sequence of cubic polynomials
that interpolate the data, joined together with continuous �rst derivatives. This is the
cubic Hermite interpolant of Section 5.3.

In Section 5.4 we study global cubic spline approximation methods where we have
to solve a system of equations involving all the data points in order to obtain the ap-
proximation. These methods interpolate the data, which now only are positions. The
gain in turning to global methods is that the approximation may have more continuous
derivatives and still be as accurate as the local methods.

The cubic spline interpolant with so called natural end conditions solves an inter-
esting extremal problem. Among all functions with a continuous second derivative that
interpolate a set of data, the natural cubic spline interpolant is the one whose integral
of the square of the second derivative is the smallest. This is the foundation for various
interpretations of splines, and is all discussed in Section 5.4.

107
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Two approximation methods for splines of arbitrary degree are described in the last
two sections of this chapter. The �rst method is spline interpolation with B-splines
de�ned on some rather arbitrary knot vector.

The disadvantage of using interpolation methods is that the approximations have a
tendency to oscillate. If we reduce the dimension of the approximating spline space, and
instead minimize the error at the data points this problem can be greatly reduced. Such
least squares methods are studied in Section 5.6.

5.1 Piecewise linear interpolation

The simplest way to obtain a continuous approximation to a set of ordered data points is
to connect neighbouring data points with straight lines. This approximation is naturally
enough called the piecewise linear interpolant to the data. It is clearly a linear spline
and can therefore be written as a linear combination of B-splines on a suitable knot
vector. The knots must be at the data points, and since the interpolant is continuous,
each interior knot only needs to occur once in the knot vector. The construction is given
in the following proposition.

Proposition 5.1. Let (xi, yi)
m
i=1 be a set of data points with xi < xi+1 for i = 1, . . . ,

m− 1, and construct the 2-regular knot vector t as

t = (ti)
m+2
i=1 = (x1, x1, x2, x3, . . . , xm−1, xm, xm).

Then the linear spline g given by

g(x) =

m∑
i=1

yiBi,1(x)

satis�es the interpolation conditions

g(xi) = yi, for i = 1, . . . , m− 1, and lim
x→x−m

g(x) = ym. (5.1)

The last condition states that the limit of g from the left at xm is ym. If the data are
taken from a function f so that yi = f(xi) for i = 1, . . . , m, the interpolant g is often
denoted by I1f .

Proof. From Example 2.2 in Chapter 2, we see that the B-spline Bi,1 for 1 ≤ i ≤ m is
given by

Bi,1(x) =


(x− xi−1)/(xi − xi−1), if xi−1 ≤ x < xi,

(xi+1 − x)/(xi+1 − xi), if xi ≤ x < xi+1,

0, otherwise,

where we have set x0 = x1 and xm+1 = xm. This means that Bi,1(xi) = 1 for i < m and
limx→x−m Bm,1(x) = 1, while Bi,1(xj) = 0 for all j 6= i, so the interpolation conditions
(5.1) are satis�ed.
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The piecewise linear interpolant preserves the shape of the data extremely well. The
obvious disadvantage of this approximation is its lack of smoothness.

Intuitively, it seems reasonable that if f is continuous, it should be possible to ap-
proximate it to within any accuracy by piecewise linear interpolants, if we let the distance
between the data points become small enough. This is indeed the case. Note that the
symbol Cj [a, b] denotes the set of all functions de�ned on [a, b] with values in R whose
�rst j derivatives are continuous.

Proposition 5.2. Suppose that a = x1 < x2 < · · · < xm = b are given points, and set
∆x = max1≤i≤m−1{xi+1 − xi}.

1. If f ∈ C[a, b], then for every ε > 0 there is a δ > 0 such that if ∆x < δ, then
|f(x)− I1f(x)| < ε for all x ∈ [a, b].

2. If f ∈ C2[a, b] then for all x ∈ [a, b],

|f(x)− (I1f)(x)| ≤ 1

8
(∆x)2 max

a≤z≤b
|f ′′(z)|, (5.2)

|f ′(x)− (I1f)′(x)| ≤ 1

2
∆x max

a≤z≤b
|f ′′(z)|. (5.3)

Part (i) of Proposition 5.2 states that piecewise linear interpolation to a continuous
function converges to the function when the distance between the data points goes to
zero. More speci�cally, given a tolerance ε, we can make the error less than the tolerance
by choosing ∆x su�ciently small.

Part (ii) of Proposition 5.2 gives an upper bound for the error in case the function f is
smooth, which in this case means that f and its �rst two derivatives are continuous. The
inequality in (5.2) is often stated as �piecewise linear approximation has approximation
order two�, meaning that ∆x is raised to the power of two in (5.2).

The bounds in Proposition 5.2 depend both on ∆x and the size of the second deriva-
tive of f . Therefore, if the error is not small, it must be because one of these quantities
are large. If in some way we can �nd an upper bound M for f ′′, i.e.,

|f ′′(x)| ≤M, for x ∈ [a, b], (5.4)

we can determine a value of ∆x such that the error, measured as in (5.2), is smaller than
some given tolerance ε. We must clearly require (∆x)2M/8 < ε. This inequality holds
provided ∆x <

√
8ε/M. We conclude that for any ε > 0, we have the implication

∆x <

√
8ε

M
=⇒ |f(x)− I1f(x)| < ε, for x ∈ [x1, xm]. (5.5)

This estimate tells us how densely we must sample f in order to have error smaller than
ε everywhere.

We will on occasions want to compute the piecewise linear interpolant to a given
higher degree spline f . A spline does not necessarily have continuous derivatives, but
at least we know where the discontinuities are. The following proposition is therefore
meaningful.
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Proposition 5.3. Suppose that f ∈ Sp,t for some p and t with interior knots of mul-
tiplicity at most p (so f is continuous). If the break points (xi)

m
i=1 are chosen so as to

include all the knots in t where f ′ is discontinuous, the bounds in (5.2) and (5.3) continue
to hold.

5.2 The Variation Diminishing Spline Approximation

In this section we describe a simple, but very useful method for obtaining a local spline
approximations to a function f de�ned on an interval [a, b]. This method is a general-
ization of piecewise linear interpolation and has a nice shape preserving behaviour. For
example, if the function f is positive, then the spline approximation will also be positive.

De�nition 5.4. Let f be a given continuous function on the interval [a, b], let p be a
given positive integer, and let τ = (τ1, . . . , τn+p+1) be a p + 1-regular knot vector with
boundary knots τp+1 = a and τn+1 = b. The spline given by

(V f)(x) =
n∑
j=1

f(τ∗j )Bj,p(x) (5.6)

where τ∗j = (τj+1+· · ·+τj+p)/p are the knot averages, is called the Variation Diminishing
Spline Approximation of degree p to f on the knot vector τ .

Evaluating f at the knot averages ensures that V f reproduces linear functions, V f =
f for any linear function f(x) = αx+ β. See Problem 1.

The approximation method that assigns to f the spline approximation V f is about
the simplest method of approximation that one can imagine. Unlike some of the other
methods discussed in this chapter there is no need to solve a linear system. To obtain
V f , we simply evaluate f at certain points and use these function values as B-spline
coe�cients directly.

Note that if all interior knots occur less than p+ 1 times in τ , then

a = τ∗1 < τ∗2 < . . . < τ∗n−1 < τ∗n = b. (5.7)

This is because τ1 and τn+p+1 do not occur in the de�nition of τ∗1 and τ∗n so that all
selections of p consecutive knots must be di�erent.

Example 5.5. Suppose that p = 3 and that the interior knots of τ are uniform in the interval [0, 1],
say

τ = (0, 0, 0, 0, 1/m, 2/m, . . . , 1− 1/m, 1, 1, 1, 1). (5.8)

For m ≥ 2 we then have

τ ∗ = (0, 1/(3m), 1/m, 2/m, . . . , 1− 1/m, 1− 1/(3m), 1). (5.9)

Figure 5.1 (a) shows the cubic variation diminishing approximation to the exponential function on the
knot vector in (5.8) with m = 5, and the error is shown in Figure 5.1 (b). The error is so small that it
is di�cult to distinguish between the two functions in Figure 5.1 (a).

The variation diminishing spline can also be used to approximate functions with
singularities, that is, functions with discontinuities in a derivative of �rst or higher orders.
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Figure 5.1. The exponential function together with the cubic variation diminishing approximation of Example 5.5
in the special case m = 5 is shown in (a). The error in the approximation is shown in (b).

Example 5.6. Suppose we want to approximate the function

f(x) = 1− e−50|x|, x ∈ [−1, 1], (5.10)

by a cubic spline V f . In order to construct a suitable knot vector, we take a closer look at the function,
see Figure 5.2 (a). The graph of f has a cusp at the origin, so f ′ is discontinuous and changes sign there.
Our spline approximation should therefore also have some kind of singularity at the origin. Recall from
Theorem 3.19 that a B-spline can have a discontinuous �rst derivative at a knot provided the knot has
multiplicity at least p. Since we are using cubic splines, we therefore place a triple knot at the origin.
The rest of the interior knots are placed uniformly in [−1, 1]. A suitable knot vector is therefore

τ = (−1,−1,−1,−1,−1 + 1/m, . . . ,−1/m, 0, 0, 0, 1/m, . . . , 1− 1/m, 1, 1, 1, 1). (5.11)

The integer m is a parameter which is used to control the number of knots and thereby the accuracy of
the approximation. The spline V f is shown in Figure 5.2 (a) for m = 4 together with the function f
itself. The error is shown in Figure 5.2 (b), and we note that the error is zero at x = 0, but quite large
just outside the origin.

Figures 5.2 (c) and 5.2 (d) show the �rst and second derivatives of the two functions, respectively.
Note that the sign of f and its derivatives seem to be preserved by the variation diminishing spline
approximation.

The variation diminishing spline approximation is a very simple procedure for obtain-
ing spline approximations. In Example 5.6 we observed that the approximation has the
same sign as f everywhere, and more than this, even the sign of the �rst two derivatives is
preserved in passing from f to the approximation V f . This is important since the sign of
the derivative gives important information about the shape of the graph of the function.
A nonnegative derivative for example, means that the function is nondecreasing, while a
nonnegative second derivative roughly means that the function is convex, in other words
it curves in the same direction everywhere. Approximation methods that preserve the
sign of the derivative are therefore important in practical modelling of curves. We will
now study such shape preservation in more detail.

5.2.1 Preservation of bounds on a function

Sometimes it is important that the maximum and minimum values of a function are
preserved under approximation. Splines have some very useful properties in this respect.
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Figure 5.2. Figure (a) shows the function f(x) = 1− e−50|x| (dashed) and its cubic variation diminishing spline
approximation (solid) on the knot vector described in Example 5.6, and the error in the approximation is shown
in Figure (b). The �rst derivative of the two functions is shown in (c), and the second derivatives in (d).
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Lemma 5.7. Let g be a spline in some spline space Sp,τ of dimension n. Then g is
bounded by its smallest and largest B-spline coe�cients,

min
i
{ci} ≤

∑
i

ciBi(x) ≤ max
i
{ci}, for all x ∈ [τp+1, τn+1). (5.12)

Proof. Let cmax be the largest coe�cient. Then we have∑
i

ciBi(x) ≤
∑
i

cmaxBi(x) = cmax

∑
i

Bi(x) = cmax,

since
∑

iBi(x) = 1. This proves the second inequality in (5.12). The proof of the �rst
inequality is similar.

Note that this lemma only says something interesting if n ≥ p+1. Any plot of a spline
with its control polygon will con�rm the inequalities (5.12), see for example Figure 5.3.
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4

Figure 5.3. A cubic spline with its control polygon. Note how the extrema of the control polygon bound the
extrema of the spline.

With Lemma 5.7 we can show that bounds on a function are preserved by its variation
diminishing approximation.

Proposition 5.8. Let f be a function that satis�es

fmin ≤ f(x) ≤ fmax for all x ∈ R.

Then the variation diminishing spline approximation to f from some spline space Sp,τ
has the same bounds,

fmin ≤ (V f)(x) ≤ fmax for all x ∈ R. (5.13)

Proof. Recall that the B-spline coe�cients ci of V f are given by

ci = f(τ∗i ) where τ∗i = (τi+1 + · · ·+ τi+p)/p.

We therefore have that all the B-spline coe�cients of V f are bounded below by fmin and
above by fmax. The inequalities in (5.13) therefore follow as in Lemma 5.7.
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5.2.2 Preservation of monotonicity

Many geometric properties of smooth functions can be characterized in terms of the
derivative of the function. In particular, the sign of the derivative tells us whether
the function is increasing or decreasing. The variation diminishing approximation also
preserves information about the derivatives in a very convenient way. Let us �rst de�ne
exactly what we mean by increasing and decreasing functions.

De�nition 5.9. A function f de�ned on an interval [a, b] is increasing if the inequality
f(x0) ≤ f(x1) holds for all x0 and x1 in [a, b] with x0 < x1. It is decreasing if f(x0) ≥
f(x1) for all x0 and x1 in [a, b] with x0 < x1. A function that is increasing or decreasing
is said to be monotone.

The two properties of being increasing and decreasing are clearly completely sym-
metric and we will only prove results about increasing functions.

If f is di�erentiable, monotonicity can be characterized in terms of the derivative.

Proposition 5.10. A di�erentiable function is increasing if and only if its derivative is
nonnegative.

Proof. Suppose that f is increasing. Then (f(x+h)−f(x))/h ≥ 0 for all x and positive
h such that both x and x+ h are in [a, b]. Taking the limit as h tends to zero, we must
have f ′(x) ≥ 0 for an increasing di�erentiable function. At x = b a similar argument
with negative h may be used.

If the derivative of f is nonnegative, let x0 and x1 be two distinct points in [a, b] with
x0 < x1. The mean value theorem then states that

f(x1)− f(x0)

x1 − x0
= f ′(θ)

for some θ ∈ (x0, x1). Since f ′(θ) ≥ 0, we conclude that f(x1) ≥ f(x0).

Monotonicity of a spline can be characterized in terms of some simple conditions on
its B-spline coe�cients.

Proposition 5.11. Let τ be a p + 1-extended knot vector for splines on the interval
[a, b] = [τp+1, τn+1], and let g =

∑n
i=1 ciBi be a spline in Sp,τ . If the coe�cients are

increasing, that is ci ≤ ci+1 for i = 1, . . . , n− 1, then g is increasing. If the coe�cients
are decreasing then g is decreasing.

Proof. The proposition is certainly true for p = 0, so we can assume that p ≥ 1. Suppose
�rst that there are no interior knots in τ of multiplicity p + 1. If we di�erentiate g we
�nd g′(x) =

∑n
i=1 ∆ciBi,p−1(x) for x ∈ [a, b], where

∆ci = p
ci − ci−1

τi+p − τi
.

Since all the coe�cients of g′ are nonnegative we must have g′(x) ≥ 0 (really the one
sided derivative from the right) for x ∈ [a, b]. Since we have assumed that there are no
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knots of multiplicity p+ 1 in (a, b), we know that g is continuous and hence that it must
be increasing.

If there is an interior knot at τi = τi+p of multiplicity p + 1, we conclude from the
above that g is increasing on both sides of τi. But we also know that g(τi) = ci while the
limit of g from the left is ci−1. The jump is therefore ci − ci−1 which is nonnegative so g
increases across the jump.

An example of an increasing spline with its control polygon is shown in Figure 5.4 (a).
Its derivative is shown in Figure 5.4 (b) and is, as expected, positive.
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Figure 5.4. An increasing cubic spline (a) and its derivative (b).

From Proposition 5.11 it is now easy to deduce that V f preserves monotonicity in f .

Proposition 5.12. Let f be function de�ned on the interval [a, b] and let τ be a p+ 1-
extended knot vector with τp+1 = a and τn+1 = b. If f is increasing (decreasing) on
[a, b], then the variation diminishing approximation V f is also increasing (decreasing) on
[a, b].

Proof. The variation diminishing approximation V f has as its i'th coe�cient ci = f(t∗i ),
and since f is increasing these coe�cients are also increasing. Proposition 5.11 then shows
that V f is increasing.

That V f preserves monotonicity means that the oscillations we saw could occur in
spline interpolation are much less pronounced in the variation diminishing spline approx-
imation. In fact, we shall also see that V f preserves the sign of the second derivative of
f which reduces further the possibility of oscillations.

5.2.3 Preservation of convexity

From elementary calculus, we know that the sign of the second derivative of a function
tells us in whether the function curves upward or downward, or whether the function
is convex or concave. These concepts can be de�ned for functions that have no a priori
smoothness.

De�nition 5.13. A function f is said to be convex on an interval (a, b) if

f
(
(1− λ)x0 + λx2

)
≤ (1− λ)f(x0) + λf(x2) (5.14)
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Figure 5.5. A convex function and the cord connecting two points on the graph.

for all x0 and x2 in [a, b] and for all λ in [0, 1]. If −f is convex then f is said to be
concave.

From De�nition 5.13 we see that f is convex if the line between two points on the
graph of f is always above the graph, see Figure 5.5. It therefore `curves upward' just
like smooth functions with nonnegative second derivative.

Convexity can be characterized in many di�erent ways, some of which are listed in
the following lemma.

Lemma 5.14. Let f be a function de�ned on the open interval (a, b).

1. The function f is convex if and only if

f(x1)− f(x0)

x1 − x0
≤ f(x2)− f(x1)

x2 − x1
(5.15)

for all x0, x1 and x2 in (a, b) with x0 < x1 < x2.

2. If f is di�erentiable on (a, b), it is convex if and only if f ′(y0) ≤ f ′(y1) when
a < y0 < y1 < b, that is, the derivative of f is increasing.

3. If f is two times di�erentiable it is convex if and only if f ′′(x) ≥ 0 for all x in (a, b).

Proof. Let λ = (x1 − x0)/(x2 − x0) so that x1 = (1 − λ)x0 + λx2. Then (5.14) is
equivalent to the inequality

(1− λ)
(
f(x1)− f(x0)

)
≤ λ

(
f(x2)− f(x1)

)
.

Inserting the expression for λ gives (5.15), so (i) is equivalent to De�nition 5.13.
To prove (ii), suppose that f is convex and let y0 and y1 be two points in (a, b) with

y0 < y1. From (5.15) we deduce that

f(y0)− f(x0)

y0 − x0
≤ f(y1)− f(x1)

y1 − x1
,
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for any x0 and x1 with x0 < y0 < x1 < y1. Letting x0 and x1 tend to y0 and y1

respectively, we see that f ′(y0) ≤ f ′(y1).
For the converse, suppose that f ′ is increasing, and let x0 < x1 < x2 be three points

in (a, b). By the mean value theorem we have

f(x1)− f(x0)

x1 − x0
= f ′(θ0) and

f(x2)− f(x1)

x2 − x1
= f ′(θ1),

where x0 < θ0 < x1 < θ1 < x2. Since f ′ is increasing, conclude that (5.15) holds and
therefore that f is convex.

For part (iii) we use part (ii) and Proposition 5.10. From (ii) we know that f is convex
if and only if f ′ is increasing, and by Proposition 5.10 we know that f ′ is increasing if
and only if f ′′ is nonnegative.

It may be a bit confusing that the restrictions on x0 < x1 < x2 in Lemma 5.14
are stronger than the restrictions on x0, x2 and λ in De�nition 5.13. But this is only
super�cial since in the special cases x0 = x2, and λ = 0 and λ = 1, the inequality (5.14)
is automatically satis�ed.

It is di�cult to imagine a discontinuous convex function. This is not so strange since
all convex functions are in fact continuous.

Proposition 5.15. A function that is convex on an open interval is continuous on that
interval.

Proof. Let f be a convex function on (a, b), and let x and y be two points in some
subinterval (c, d) of (a, b). Using part (i) of Lemma 5.14 repeatedly, we �nd that

f(c)− f(a)

c− a
≤ f(y)− f(x)

y − x
≤ f(b)− f(d)

b− d
. (5.16)

Set M = max{(f(c)− f(a))/(c− a), (f(b)− f(d))/(b− d)}. Then (5.16) is equivalent to

|f(y)− f(x)| ≤M |y − x|.

But this means that f is continuous at each point in (c, d). For if z is in (c, d) we can
choose x = z and y > z and obtain that f is continuous from the right at z. Similarly,
we can also choose y = z and x < z to �nd that f is continuous from the left as well.
Since (c, d) was arbitrary in (a, b), we have showed that f is continuous in all of (a, b).

The assumption in Proposition 5.15 that f is de�ned on an open interval is essential.
On the interval (0, 1] for example, the function f that is identically zero except that
f(1) = 1, is convex, but clearly discontinuous at x = 1. For splines however, this is
immaterial if we assume a spline to be continuous from the right at the left end of the
interval of interest and continuous from the left at the right end of the interval of interest.
In addition, since a polynomial never is in�nite, we see that our results in this section
remain true for splines de�ned on some closed interval [a, b].

We can now give a simple condition that ensures that a spline function is convex.
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Proposition 5.16. Let τ be a p + 1-extended knot vector for some p ≥ 1, and let
g =

∑n
i=1 ciBi,p be a spline in Sp,τ . De�ne ∆ci by

∆ci =

{
(ci − ci−1)/(τi+p − τi), if τi < τi+p,

∆ci−1, if τi = τi+p;

for i = 2, . . . , n. Then g is convex on [τp+1, τn+1] if it is continuous and

∆ci−1 ≤ ∆ci for i = 2, . . . , n. (5.17)

Proof. Note that (∆ci)
n
i=2 are the B-spline coe�cients of g′ on the interval [τp+1, τn+1],

bar the constant p. Since (5.17) ensures that these are increasing, we conclude from
Proposition 5.11 that g′ is increasing. If g is also di�erentiable everywhere in [τp+1, τn+1],
part (ii) of Lemma 5.14 shows that g is convex.

In the rest of the proof, the short hand notation

δ(u, v) =
g(v)− g(u)

v − u
will be convenient. Suppose now that there is only one point z where g is not di�eren-
tiable, and let x0 < x1 < x2 be three points in [τp+1, τn+1]. We must show that

δ(x0, x1) ≤ δ(x1, x2). (5.18)

The case where all three x's are on one side of z are covered by the �rst part of the proof.
Suppose therefore that x0 < z ≤ x1 < x2. Since δ(u, v) = g′(θ) with u < θ < v when g
is di�erentiable on [a, b], and since g′ is increasing, we certainly have δ(x0, z) ≤ δ(z, x2),
so that (5.18) holds in the special case where x1 = z. When x1 > z we use the simple
identity

δ(x0, x1) = δ(x0, z)
z − x0

x1 − x0
+ δ(z, x1)

x1 − z
x1 − x0

,

which shows that δ(x0, x1) is a weighted average of δ(x0, z) and δ(z, x1). But then we
have

δ(x0, x1) ≤ δ(z, x1) ≤ δ(x1, x2),

the �rst inequality being valid since δ(x0, z) ≤ δ(z, x1) and the second one because g is
convex to the right of z. This shows that g is convex.

The case where x0 < x1 < z < x2 and the case of several discontinuities can be
treated similarly.

An example of a convex spline is shown in Figure 5.6, together with its �rst and
second derivatives in.

With Proposition 5.16 at hand, it is simple to show that the variation diminishing
spline approximation preserves convexity.

Proposition 5.17. Let f be a function de�ned on the interval [a, b], let p ≥ 1 be an
integer, and let τ be a p + 1-extended knot vector with τp+1 = a and τn+1 = b. If f is
convex on [a, b] then V f is also convex on [a, b].
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Figure 5.6. A convex spline with its control polygon (a), its �rst derivative (b) and its second derivative (c).

Proof. Recall that the coe�cients of V f are
(
f(τ∗i )

)n
i=1

so that the di�erences in Propo-
sition 5.16 are

∆ci =
f(τ∗i )− f(τ∗i−1)

τi+p − τi
=
f(τ∗i )− f(τ∗i−1)

(τ∗i − τ∗i−1)p
,

if τi < τi+p. Since f is convex, these di�erences must be increasing. Proposition 5.16
then shows that V f is convex.

At this point, we can undoubtedly say that the variation diminishing spline approx-
imation is a truly remarkable method of approximation. In spite of its simplicity, it
preserves the shape of f both with regards to convexity, monotonicity and bounds on
the function values. This makes it very attractive as an approximation method in for
example design where the shape of a curve is more important than how accurately it
approximates given data.

It should be noted that the shape preserving properties of the variation diminishing
approximation is due to the properties of B-splines. When we determine V f we give
its control polygon directly by sampling f at the knot averages, and the results that
we have obtained about the shape preserving properties of V f are all consequences of
relationships between a spline and its control polygon: A spline is bounded by the extrema



120 CHAPTER 5. SPLINE APPROXIMATION OF FUNCTIONS AND DATA

of its control polygon, a spline is monotone if the control polygon is monotone, a spline

is convex if the control polygon is convex. In short: A spline is a smoothed out version of

its control polygon. We will see many more realisations of this general principle in later
chapters

5.3 Cubic Hermite interpolation

The piecewise linear interpolant has the nice property of being a local construction: The
interpolant on an interval [xi, xi+1] is completely de�ned by the value of f at xi and
xi+1. The other advantage of f is that it does not oscillate between data points and
therefore preserves the shape of f if ∆x is small enough. In this section we construct an
interpolant which, unlike the piecewise linear interpolant, has continuous �rst derivative,
and which, like the piecewise linear interpolant, only depends on data values locally. The
price of the smoothness is that this interpolant requires information about derivatives,
and shape preservation in the strong sense of the piecewise linear interpolant cannot be
guaranteed. The interpolant we seek is the solution of the following problem.

Problem 5.18 (Piecewise Cubic Hermite Interpolation). Let the discrete data
(xi, f(xi), f

′(xi))
m
i=1 with a = x1 < x2 < · · · < xm = b be given. Find a function g = H3f

that satis�es the following conditions:

1. On each subinterval (xi, xi+1) the function g is a cubic polynomial.

2. The given function f is interpolated by g in the sense that

g(xi) = f(xi), and g′(xi) = f ′(xi), for i = 1, . . . , m. (5.19)

A spline g that solves Problem 5.18 must be continuous and have continuous �rst
derivative since two neighbouring pieces meet with the same value f(xi) and �rst deriva-
tive f ′(xi) at a join xi. Since Hf should be a piecewise cubic polynomial, it is natural
to try and de�ne a knot vector so that Hf can be represented as a linear combination of
B-splines on this knot vector. To get the correct smoothness, we need at least a double
knot at each data point. Since p = 3 and we have 2m interpolation conditions, the length
of the knot vector should be 2m+ 4, and we might as well choose to use a 4-regular knot
vector. We achieve this by making each interior data point a knot of multiplicity two
and place four knots at the two ends. This leads to the knot vector

τ = (τi)
2m+4
i=1 = (x1, x1, x1, x1, x2, x2, . . . , xm−1, xm−1, xm, xm, xm, xm), (5.20)

which we call the Cubic Hermite knot vector on x = (x1, . . . , xm). This allows us to
construct the solution to Problem 5.18.

Proposition 5.19. Problem 5.18 has a unique solution Hf in the spline space S3,τ ,
where τ is given in equation (5.20). More speci�cally, the solution is given by

Hf =
2m∑
i=1

ciBi,3, (5.21)
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where

c2i−1 = f(xi)−
1

3
∆xi−1f

′(xi),

c2i = f(xi) +
1

3
∆xif

′(xi),

 for i = 1, . . . , m, (5.22)

where ∆xj = xj+1 − xj , and the points x0 and xm+1 are de�ned by x0 = x1 and
xm+1 = xm.

Proof. We leave the proof that the spline de�ned by (5.22) satis�es the interpolation
conditions in Problem 5.18 to the reader.

By construction, the solution is clearly a cubic polynomial. That there is only one
solution follows if we can show that the only solution that solves the problem with
f(xi) = f ′(xi) = 0 for all i is the function that is zero everywhere. For if the general
problem has two solutions, the di�erence between these must solve the problem with all
the data equal to zero. If this di�erence is zero, the two solutions must be equal.

To show that the solution to the problem where all the data are zero is the zero
function, it is clearly enough to show that the solution is zero in one subinterval. On
each subinterval the function Hf is a cubic polynomial with value and derivative zero
at both ends, and it therefore has four zeros (counting multiplicity) in the subinterval.
But the only cubic polynomial with four zeros is the polynomial that is identically zero.
From this we conclude that Hf must be zero in each subinterval and therefore identically
zero.

Let us see how this method of approximation behaves in a particular situation.

Example 5.20. We try to approximate the function f(x) = x4 on the interval [0, 1] with only one
polynomial piece so that m = 2 and [a, b] = [x1, xm] = [0, 1]. Then the cubic Hermite knots are just the
Bernstein knots. From (5.22) we �nd (c1, c2, c3, c4) = (0, 0,−1/3, 1), and

(Hf)(x) = −1

3
3x2(1− x) + x3 = 2x3 − x2.

The two functions f and Hf are shown in Figure 5.7.

Example 5.21. Let us again approximate f(x) = x4 on [0, 1], but this time we use two poly-
nomial pieces so that m = 3 and x = (0, 1/2, 1). In this case the cubic Hermite knots are τ =
(0, 0, 0, 0, 1/2, 1/2, 1, 1, 1, 1), and we �nd the coe�cients c = (0, 0,−1/48, 7/48, 1/3, 1). The two func-
tions f and Hf are shown in Figure 5.7 (a). With the extra knots at 1/2 (cf. Example 5.20), we get
a much more accurate approximation to x4. In fact, we see from the error plots in Figures 5.7 (b)
and 5.7 (b) that the maximum error has been reduced from 0.06 to about 0.004, a factor of about 15.

Note that in Example 5.20 the approximation becomes negative even though f is
nonnegative in all of [0, 1]. This shows that in contrast to the piecewise linear interpolant,
the cubic Hermite interpolant Hf does not preserve the sign of f . However, it is simple
to give conditions that guarantee Hf to be nonnegative.

Proposition 5.22. Suppose that the function f to be approximated by cubic Hermite
interpolation satis�es the conditions

f(xi)−
1

3
∆xi−1f

′(xi) ≥ 0,

f(xi) +
1

3
∆xif

′(xi) ≥ 0,

 for i = 1, . . . , m.
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Figure 5.7. Figure (a) shows the cubic Hermite interpolant (solid) to f(x) = x4 (dashed), see Example 5.20,
while the error in this approximation is shown in (b).
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Figure 5.8. Figure (a) shows the cubic Hermite interpolant (solid) to f(x) = x4 (dashed) with two polynomial
pieces, see Example 5.21, while the error in the approximation is shown in (b).
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Then the cubic Hermite interpolant Hf is nonnegative on [a, b].

Proof. In this case, the spline approximation Hf given by Proposition 5.19 has nonneg-
ative B-spline coe�cients, so that (Hf)(x) for each x is a sum of nonnegative quantities
and therefore nonnegative.

As for the piecewise linear interpolant, it is possible to relate the error to the spacing
in x and the size of some derivative of f .

Proposition 5.23. Suppose that f has continuous derivatives up to order four on the
interval [x1, xm]. Then

|f(x)− (Hf)(x)| ≤ 1

384
(∆x)4 max

a≤z≤b
|f (iv)(z)|, for x ∈ [a, b]. (5.23)

This estimate also holds whenever f is in some spline space Sp,τ provided f has a con-
tinuous derivative at all the xi.

Proof. See a text on numerical analysis.

The error estimate in (5.23) says that if we halve the distance between the interpo-
lation points, then we can expect the error to decrease by a factor of 24 = 16. This is
usually referred to as �fourth order convergence�. This behaviour is con�rmed by Exam-
ples 5.20 and 5.21 where the error was reduced by a factor of about 15 when ∆x was
halved.

From Proposition 5.23, we can determine a spacing between data points that guar-
antees that the error is smaller than some given tolerance. Suppose that

|f (iv)(x)| ≤M, for x ∈ [a, b].

For any ε > 0 we then have

∆x ≤
(

384ε

M

)1/4

=⇒ |f(x)− (Hf)(x)| ≤ ε, for x ∈ [a, b].

When ε→ 0, the number ε1/4 goes to zero more slowly than the term ε1/2 in the corre-
sponding estimate for piecewise linear interpolation. This means that when ε becomes
small, we can usually use a larger ∆x in cubic Hermite interpolation than in piecewise
linear interpolation, or equivalently, we generally need fewer data points in cubic Hermite
interpolation than in piecewise linear interpolation to obtain the same accuracy.

5.3.1 Estimating the derivatives

Sometimes we have function values available, but no derivatives, and we still want a
smooth interpolant. In such cases we can still use cubic Hermite interpolation if we can
somehow estimate the derivatives. This can be done in many ways, but one common
choice is to use the slope of the parabola interpolating the data at three consecutive
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data-points. To �nd this slope we observe that the parabola qi such that qi(xj) = f(xj),
for j = i− 1, i and i+ 1, is given by

qi(x) = f(xi−1) + (x− xi−1)δi−1 + (x− xi−1)(x− xi)
δi − δi−1

∆xi−1 + ∆xi
,

where

δj =
(
f(xj+1)− f(xj)

)
/∆xj .

We then �nd that

q′i(xi) = δi−1 + ∆xi−1
δi − δi−1

∆xi−1 + ∆xi
.

After simpli�cation, we obtain

q′i(xi) =
∆xi−1δi + ∆xiδi−1

∆xi−1 + ∆xi
, for i = 2, . . . , m− 1, (5.24)

and this we use as an estimate for f ′(xi). Using cubic Hermite interpolation with the
choice (5.24) for derivatives is known as cubic Bessel interpolation. It is equivalent to
a process known as parabolic blending. The end derivatives f ′(x1) and f ′(xm) must be
estimated separately. One possibility is to use the value in (5.24) with x0 = x3 and
xm+1 = xm−2.

5.4 Cubic Spline Interpolation

The methods we have considered so far are local methods, i.e. the approximation at a
point x only depends on the data near x. If this is the case, changing the data in some
small area will only a�ect the approximation in the same area. The methods we consider
now are global methods, i.e. the approximation at a point x depends on all the data.

Cubic Hermite interpolation works well in many cases, but it is inconvenient that the
derivatives have to be speci�ed. In Section 5.3.1 we saw one way in which the derivatives
can be estimated from the function values. There are many other ways to estimate the
derivatives at the data points; one possibility is to demand that the interpolant should
have a continuous second derivative at each interpolation point. As we shall see in this
section, this leads to a system of linear equations for the unknown derivatives so the
locality of the construction is lost, but we gain one more continuous derivative which
is important in some applications. A surprising property of this interpolant is that
it has the smallest second derivative of all C2-functions that satisfy the interpolation
conditions. The cubic spline interpolant therefore has a number of geometric and physical
interpretations that we discuss brie�y in Section 5.4.1.

Our starting point ism points a = x1 < x2 < · · · < xm = b with corresponding values
yi = f(xi). We are looking for a piecewise cubic polynomial that interpolates the given
values and belongs to C2[a, b]. In this construction, it turns out that we need two extra
conditions to specify the interpolant uniquely. One of the following boundary conditions
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is often used.

(i) g′(a) = f ′(a) and g′(b) = f ′(b); H(ermite)

(ii) g′′(a) = g′′(b) = 0; N(atural)

(iii) g′′′ is continuous at x2 and xm−1. F(ree)

(iv) Djg(a) = Djg(b) for j = 1, 2. P(eriodic)

(5.25)

The periodic boundary conditions are suitable for closed parametric curves where f(x1) =
f(xm).

In order to formulate the interpolation problems more precisely, we will de�ne the
appropriate spline spaces. Since we want the splines to have continuous derivatives up to
order two, we know that all interior knots must be simple. For the boundary conditions
H, N, and F, we therefore de�ne the 4-regular knot vectors

τH = τN = (τi)
m+6
i=1 = (x1, x1, x1, x1, x2, x3, . . . , xm−1, xm, xm, xm, xm),

τF = (τi)
m+4
i=1 = (x1, x1, x1, x1, x3, x4, . . . , xm−2, xm, xm, xm, xm).

(5.26)

This leads to three cubic spline spaces S3,τH , S3,τN and S3,τF , all of which will have
two continuous derivatives at each interior knot. Note that x2 and xm−1 are missing
in τF . This means that any h ∈ S3,τF will automatically satisfy the free boundary
conditions.

We consider the following interpolation problems.

Problem 5.24. Let the data (xi, f(xi))
m
i=1 with a = x1 < x2 < · · · < xm = b be given,

together with f ′(x1) and f ′(xm) if they are needed. For Z denoting one of H,N , or F ,
we seek a spline g = gZ = IZf in the spline space S3,τZ , such that g(xi) = f(xi) for
i = 1, 2, . . . ,m, and such that boundary condition Z holds.

We consider �rst Problem 5.24 in the case of Hermite boundary conditions. Our aim
is to show that the problem has a unique solution, and this requires that we study it in
some detail.

It turns out that any solution of Problem 5.24 H has a remarkable property. It is the
interpolant which, in some sense, has the smallest second derivative. To formulate this,
we need to work with integrals of the splines. An interpretation of these integrals is that
they are generalizations of the dot product or inner product for vectors. Recall that if u
and v are two vectors in Rn, then their inner product is de�ned by

〈u,v〉 = u · v =

n∑
i=1

uivi,

and the length or norm of u can be de�ned in terms of the inner product as

||u|| = 〈u,u〉1/2 =
( n∑
i=1

u2
i

)1/2
.

The corresponding inner product and norm for functions are

〈u, v〉 =

∫ b

a
u(x)v(x)dx =

∫ b

a
uv
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and

||u|| =
(∫ b

a
u(t)2dt

)1/2
=
(∫ b

a
u2
)1/2

.

It therefore makes sense to say that two functions u and v are orthogonal if 〈u, v〉 =∫
uv = 0.
The �rst result that we prove says that the error f − IHf is orthogonal to a family

of linear splines.

Lemma 5.25. Denote the error in cubic spline interpolation with Hermite end conditions
by e = f − IHf , and let τ be the 2-regular knot vector

τ = (τi)
m+2
i=1 = (x1, x1, x2, x3, . . . , xm−1, xm, xm).

Then the second derivative of e is orthogonal to the spline space S1,τ . In other words∫ b

a
e′′(x)h(x) dx = 0, for all h ∈ S1,τ .

Proof. Dividing [a, b] into the subintervals [xi, xi+1] for i = 1, . . . , m − 1, and using
integration by parts, we �nd∫ b

a
e′′h =

m−1∑
i=1

∫ xi+1

xi

e′′h =

m−1∑
i=1

(
e′h
∣∣∣xi+1

xi
−
∫ xi+1

xi

e′h′
)
.

Since e′(a) = e′(b) = 0, the �rst term is zero,

m−1∑
i=1

e′h
∣∣∣xi+1

xi
= e′(b)h(b)− e′(a)h(a) = 0. (5.27)

For the second term, we observe that since h is a linear spline, its derivative is equal
to some constant hi in the subinterval (xi, xi+1), and therefore can be moved outside the
integral. Because of the interpolation conditions we have e(xi+1) = e(xi) = 0, so that

m−1∑
i=1

∫ xi+1

xi

e′h′ =
m−1∑
i=1

hi

∫ xi+1

xi

e′(x) dx = 0.

This completes the proof.

We can now show that the cubic spline interpolant solves a minimization problem.
In any minimization problem, we must specify the space over which we minimize. The
space in this case is EH(f), which is de�ned in terms of the related space E(f)

E(f) =
{
g ∈ C2[a, b] | g(xi) = f(xi) for i = 1, . . . , m

}
,

EH(f) =
{
g ∈ E(f) | g′(a) = f ′(a) and g′(b) = f ′(b)

}
.

(5.28)

The space E(f) is the set of all functions with continuous derivatives up to the second
order that interpolate f at the data points. If we restrict the derivatives at the ends to
coincide with the derivatives of f we obtain EH(f).

The following theorem shows that the second derivative of a cubic interpolating spline
has the smallest second derivative of all functions in EH(f).
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Theorem 5.26. Suppose that g = IHf is the solution of Problem 5.24 H. Then∫ b

a

(
g′′(x)

)2
dx ≤

∫ b

a

(
h′′(x)

)2
dx for all h in EH(f), (5.29)

with equality if and only if h = g.

Proof. Select some h ∈ EH(f) and set e = h− g. Then we have∫ b

a
h′′

2
=

∫ b

a

(
e′′ + g′′

)2
=

∫ b

a
e′′

2
+ 2

∫ b

a
e′′g′′ +

∫ b

a
g′′

2
. (5.30)

Since g ∈ S3,τH we have g′′ ∈ S1,τ , where τ is the knot vector given in Lemma 5.25.
Since g = IHh = IHf , we have e = h − IHh so we can apply Lemma 5.25 and obtain∫ b
a e
′′g′′ = 0. We conclude that

∫ b
a h
′′2 ≥

∫ b
a g
′′2.

To show that we can only have equality in (5.29) when h = g, suppose that
∫ b
a h
′′2 =∫ b

a g
′′2. Using (5.30), we observe that we must have

∫ b
a e
′′2 = 0. But since e′′ is continuous,

this means that we must have e′′ = 0. Since we also have e(a) = e′(a) = 0, we conclude
that e = 0. This can be shown by using Taylor's formula

e(x) = e(a) + (x− a)e′(a) +

∫ x

a
e′′(t)(x− t) dt.

Since e = 0, we end up with g = h.

Lemma 5.25 and Theorem 5.26 allow us to show that the Hermite problem has a
unique solution.

Theorem 5.27. Problem 5.24 H has a unique solution.

Proof. We seek a function

g = IHf =
m+2∑
i=1

ciBi,3

in S3,τH such that

m+2∑
j=1

cjBj,3(xi) = f(xi), for i = 1, . . . , m,

m+2∑
j=1

cjB
′
j,3(xi) = f ′(xi), for i = 1 and m.

(5.31)

This is a linear system of m + 2 equations in the m + 2 unknown B-spline coe�cients.
From linear algebra we know that such a system has a unique solution if and only if
the corresponding system with zero right-hand side only has the zero solution. This
means that existence and uniqueness of the solution will follow if we can show that
Problem 5.24 H with zero data only has the zero solution. Suppose that g ∈ S3,τH solves
Problem 5.24 H with zero data. Clearly g = 0 is a solution. According to Theorem 5.26,
any other solution must also minimize the integral of the second derivative. By the
uniqueness assertion in Theorem 5.26, we conclude that g = 0 is the only solution.
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We have similar results for the �natural� case.

Lemma 5.28. If e = f − INf and τ the knot vector

τ = (τi)
m
i=1 = (x1, x2, x3, . . . , xm−1, xm),

the second derivative of e is orthogonal to S1,τ ,∫ b

a
e′′(x)h(x) dx = 0, for all h in S1,τ .

Proof. The proof is similar to Lemma 5.25. The relation in (5.27) holds since every
h ∈ S1,τ now satis�es h(a) = h(b) = 0.

Lemma 5.28 allows us to prove that the cubic spline interpolation problem with
natural boundary conditions has a unique solution.

Theorem 5.29. Problem 5.24 N has a unique solution g = INf . The solution is the
unique function in C2[a, b] with the smallest possible second derivative in the sense that∫ b

a

(
g′′(x)

)2
dx ≤

∫ b

a

(
h′′(x)

)2
dx, for all h ∈ E(f),

with equality if and only if h = g.

Proof. The proof of Theorem 5.26 carries over to this case. We only need to observe
that the natural boundary conditions imply that g′′ ∈ S1,τ .

From this it should be clear that the cubic spline interpolants with Hermite and
natural end conditions are extraordinary functions. If we consider all continuous functions
with two continuous derivatives that interpolate f at the xi, the cubic spline interpolant
with natural end conditions is the one with the smallest second derivative in the sense
that the integral of the square of the second derivative is minimized. This explains why
the N boundary conditions in (5.25) are called natural. If we restrict the interpolant to
have the same derivative as f at the ends, the solution is still a cubic spline.

For the free end interpolant we will show existence and uniqueness in the next section.
No minimization property is known for this spline.

5.4.1 Interpretations of cubic spline interpolation

Today engineers use computers to �t curves through their data points; this is one of the
main applications of splines. But splines have been used for this purpose long before
computers were available, except that at that time the word spline had a di�erent mean-
ing. In industries like for example ship building, a thin �exible ruler was used to draw
curves. The ruler could be clamped down at �xed data points and would then take on
a nice smooth shape that interpolated the data and minimized the bending energy in
accordance with the physical laws. This allowed the user to interpolate the data in a
visually pleasing way. This �exible ruler was known as a draftmans spline.
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The physical laws governing the classical spline used by ship designers tell us that
the ruler will take on a shape that minimizes the total bending energy. The linearised
bending energy is given by

∫
g′′2, where g(x) is the position of the centreline of the ruler.

Outside the �rst and last �xing points the ruler is unconstrained and will take the shape
of a straight line. From this we see that the natural cubic spline models such a linearised
ruler. The word spline was therefore a natural choice for the cubic interpolants we have
considered here when they were �rst studied systematically in 1940's.

The cubic spline interpolant also has a related, geometric interpretation. From dif-
ferential geometry we know that the curvature of a function g(x) is given by

κ(x) =
g′′(x)(

1 + (g′(x))2
)3/2

.

The curvature κ(x) measures how much the function curves at x and is important in the
study of parametric curves. If we assume that 1+g′2 ≈ 1 on [a, b], then κ(x) ≈ g′′(x). The
cubic spline interpolants IHf and INf can therefore be interpreted as the interpolants
with the smallest linearised curvature.

5.4.2 Numerical solution and examples

If we were just presented with the problem of �nding the C2 function that interpolate
a given function at some points and have the smallest second derivative, without the
knowledge that we obtained in Section 5.4, we would have to work very hard to write a
reliable computer program that could solve the problem. With Theorem 5.29, the most
di�cult part of the work has been done, so that in order to compute the solution to say
Problem 5.24 H, we only have to solve the linear system of equations (5.31). Let us take
a closer look at this system. We order the equations so that the boundary conditions
correspond to the �rst and last equation, respectively. Because of the local support
property of the B-splines, only a few unknowns appear in each equation, in other words
we have a banded linear system. Indeed, since τi+3 = xi, we see that only {Bj,3}i+3

j=i can
be nonzero at xi. But we note also that xi is located at the �rst knot of Bi+3,3, which
means that Bi+3,3(xi) = 0. Since we also have B′j,3(x1) = 0 for j ≥ 3 and B′j,3(xm) = 0
for j ≤ m, we conclude that the system can be written in the tridiagonal form

Ac =


α1 γ1

β2 α2 γ2

. . .
. . .

. . .

βm+1 αm+1 γm+1

βm+2 αm+2




c1

c2
...

cm+1

cm+2

 =


f ′(x1)
f(x1)
...

f(xm)
f ′(xm)

 = f , (5.32)

where the elements of A are given by

α1 = B′1,3(x1), αm+2 = B′m+2,3(xm),

γ1 = B′2,3(x1), βm+2 = B′m+1,3(xm),

βi+1 = Bi,3(xi), αi+1 = Bi+1,3(xi), γi+1 = Bi+2,3(xi).

(5.33)
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Figure 5.9. Cubic spline interpolation to smoothly varying data (a) and data with sharp corners (b).

The elements of A can be computed by one of the triangular algorithms for B-bases.

For H3f we had explicit formulas for the B-spline coe�cients that only involved a
few function values and derivatives, in other words the approximation was local. In
cubic spline interpolation the situation is quite di�erent. All the equations in (5.32) are
coupled and we have to solve a linear system of equations. Each coe�cient will therefore
in general depend on all the given function values which means that the value of the
interpolant at a point also depends on all the given function values. This means that
cubic spline interpolation is not a local process.

Numerically it is quite simple to solve (5.32). It follows from the proof of Theorem 5.27
that the matrix A is nonsingular, since otherwise the solution could not be unique. Since
it has a tridiagonal form it is recommended to use Gaussian elimination. It can be shown
that the elimination can be carried out without changing the order of the equations
(pivoting), and a detailed error analysis shows that this process is numerically stable .

In most cases, the underlying function f is only known through the data yi = f(xi),
for i = 1, . . . , m. We can still use Hermite end conditions if we estimate the end slopes
f ′(x1) and f ′(xm). A simple estimate is f ′(a) = d1 and f ′(b) = d2, where

d1 =
f(x2)− f(x1)

x2 − x1
and d2 =

f(xm)− f(xm−1)

xm − xm−1
. (5.34)

More elaborate estimates like those in Section 5.3.1 are of course also possible.

Another possibility is to turn to natural and free boundary conditions which also
lead to linear systems similar to the one in equation (5.32), except that the �rst and
last equations which correspond to the boundary conditions must be changed appropri-
ately. For natural end conditions we know from Theorem 5.29 that there is a unique
solution. Existence and uniqueness of the solution with free end conditions is established
in Corollary 5.33.

The free end condition is particularly attractive in a B-spline formulation, since by
not giving any knot at x2 and xm−1 these conditions take care of themselves. The free
end conditions work well in many cases, but extra wiggles can sometimes occur near the
ends of the range. The Hermite conditions give us better control in this respect.
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Example 5.30. In Figure 5.9 (a) and 5.9 (b) we show two examples of cubic spline interpolation.
In both cases we used the Hermite boundary conditions with the estimate in (5.34) for the slopes. The
data to be interpolated is shown as bullets. Note that in Figure 5.9 (a) the interpolant behaves very
nicely and predictably between the data points.

In comparison, the interpolant in Figure 5.9 (b) has some unexpected wiggles. This is a characteristic
feature of spline interpolation when the data have sudden changes or sharp corners. For such data, least
squares approximation by splines usually gives better results, see Section 5.6.

5.5 General spline interpolation

So far, we have mainly considered spline approximation methods tailored to speci�c
degrees. In practise, cubic splines are undoubtedly the most common, but there is an
obvious advantage to have methods available for splines of all degrees. In this section we
consider spline interpolation for splines of arbitrary degree. The optimal properties of
the cubic spline interpolant can be generalized to spline interpolants of any odd degree,
but here we only focus on the practical construction of the interpolant.

Given points (xi, yi)
m
i=1, we again consider the problem of �nding a spline g such that

g(xi) = yi, i = 1, . . . ,m.

In the previous section we used cubic splines where the knots of the spline were located
at the data points. This works well if the data points are fairly evenly spaced, but can
otherwise give undesirable e�ects. In such cases the knots should not be chosen at the
data points. However, how to choose good knots in general is di�cult.

In some cases we might also be interested in doing interpolation with splines of degree
higher than three. We could for example be interested in a smooth representation of the
second derivative of f . However, if we want f ′′′ to be continuous, say, then the degree p
must be higher than three. We therefore consider the following interpolation problem.

Problem 5.31. Let there be given data
(
xi, yi

)m
i=1

and a spline space Sp,τ whose knot

vector τ = (τi)
m+p+1
i=1 satis�es τi+p+1 > τi, for i = 1, . . . , m. Find a spline g in Sp,τ such

that

g(xi) =
m∑
j=1

cjBj,p(xi) = yi, for i = 1, . . . , m. (5.35)

The equations in (5.35) form a system of m equations in m unknowns. In matrix
form these equations can be written

Ac =

B1,p(x1) . . . Bm,p(x1)
...

. . .
...

B1,p(xm) . . . Bm,p(xm)


 c1

...
cm

 =

 y1
...
ym

 = y. (5.36)

Theorem 5.32 gives necessary and su�cient conditions for this system to have a unique
solution, in other words for A to be nonsingular.

Theorem 5.32. The matrix A in (5.36) is nonsingular if and only if the diagonal ele-
ments ai,i = Bi,p(xi) are positive for i = 1, . . .m.

Proof. See Theorem 10.6 in Chapter 10.
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The condition that the diagonal elements of A should be nonzero can be written

τi < xi < τi+p+1, i = 1, 2, . . . ,m, (5.37)

provided we allow xi = τi if τi = · · · = τi+p. Conditions (5.37) are known as the
Schoenberg-Whitney nesting conditions.

As an application of Theorem 5.32, let us verify that the coe�cient matrix for cubic
spline interpolation with free end conditions is nonsingular.

Corollary 5.33. Cubic spline interpolation with free end conditions (Problem 5.24 F)
has a unique solution.

Proof. The coe�cients of the interpolant are found by solving a linear system of equa-
tions of the form (5.35). Recall that the knot vector τ = τF is given by

τ = (τi)
m+4
i=1 = (x1, x1, x1, x1, x3, x4, . . . , xm−2, xm, xm, xm, xm).

From this we note that B1(x1) and B2(x2) are both positive. Since τi+2 = xi for i = 3,
. . . , m − 2, we also have τi < xi−1 < τi+4 for 3 ≤ i ≤ m − 2. The last two conditions
follow similarly, so the coe�cient matrix is nonsingular.

For implementation of general spline interpolation, it is important to make use of the
fact that at most p + 1 B-splines are nonzero for a given x, just like we did for cubic
spline interpolation. This means that in any row of the matrix A in (5.35), at most p+1
entries are nonzero, and those entries are consecutive. This givesA a band structure that
can be exploited in Gaussian elimination. It can also be shown that nothing is gained
by rearranging the equations or unknowns in Gaussian elimination, so the equations can
be solved without pivoting.

5.6 Least squares approximation

In this chapter we have described a number of spline approximation techniques based on
interpolation. If it is an absolute requirement that the spline should pass exactly through
the data points, there is no alternative to interpolation. But such perfect interpolation
is only possible if all computations can be performed without any round-o� error. In
practise, all computations are done with �oating point numbers, and round-o� errors
are inevitable. A small error is therefore always present and must be tolerable whenever
computers are used for approximation. The question is what is a tolerable error? Often
the data are results of measurements with a certain known resolution. To interpolate
such data is not recommended since it means that the error is also approximated. If it is
known that the underlying function is smooth, it is usually better to use a method that
will only approximate the data, but approximate in such a way that the error at the data
points is minimized. Least squares approximation is a general and simple approximation
method for accomplishing this. The problem can be formulated as follows.
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Problem 5.34. Given data (xi, yi)
m
i=1 with x1 < · · · < xm, positive real numbers wi for

i = 1, . . . , m, and an n-dimensional spline space Sp,τ , �nd a spline g in Sp,τ which solves
the minimization problem

min
h∈Sp,τ

m∑
i=1

wi (yi − h(xi))
2 . (5.38)

The expression (5.38) that is minimized is a sum of the squares of the errors at each
data point, weighted by the numbers wi which are called weights. This explains the name
least squares approximation, or more precisely weighted least squares approximation. If
wi is large in comparison to the other weights, the error yi−h(xi) will count more in the
minimization. As the the weight grows, the error at this data point will go to zero. On
the other hand, if the weight is small in comparison to the other weights, the error at
that data point gives little contribution to the total least squares deviation. If the weight
is zero, the approximation is completely independent of the data point. Note that the
actual value of the weights is irrelevant, it is the relative size that matters. The weights
therefore provides us with the opportunity to attach a measure of con�dence to each
data point. If we know that yi is a very accurate data value we can give it a large weight,
while if yi is very inaccurate we can give it a small weight. Note that it is the relative
size of the weights that matters, a natural `neutral' value is therefore wi = 1.

From our experience with interpolation, we see that if we choose the spline space
Sp,τ so that the number of B-splines equals the number of data points and such that
Bi(xi) > 0 for all i, then the least squares approximation will agree with the interpolant
and give zero error, at least in the absence of round-o� errors. Since the

whole point of introducing the least squares approximation is to avoid interpolation
of the data, we must make sure that n is smaller than m and that the knot vector is
appropriate. This all means that the spline space Sp,τ must be chosen appropriately,
but this is not easy. Of course we would like the spline space to be such that a �good�
approximation g can be found. Good, will have di�erent interpretations for di�erent
applications. A statistician would like g to have certain statistical properties. A designer
would like an aesthetically pleasing curve, and maybe some other shape and tolerance
requirements to be satis�ed. In practise, one often starts with a small spline space,
and then adds knots in problematic areas until hopefully a satisfactory approximation is
obtained.

Di�erent points of view are possible in order to analyse Problem 5.34 mathematically.
Our approach is based on linear algebra. Our task is to �nd the vector c = (c1, . . . , cn)
of B-spline coe�cients of the spline g solving Problem 5.34. The following matrix-vector
formulation is convenient.

Lemma 5.35. Problem 5.34 is equivalent to the linear least squares problem

min
c∈Rn

‖Ac− b‖2,

where A ∈ Rm,n and b ∈ Rm have components

ai,j =
√
wiBj(xi) and bi =

√
wiyi, (5.39)
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and for any u = (u1, . . . , um),

‖u‖ =
√
u2

1 + · · ·+ u2
m,

is the usual Euclidean length of a vector in Rm.

Proof. Suppose c = (c1, . . . , cn) are the B-spline coe�cients of some h ∈ Sp,τ . Then

‖Ac− b‖22 =

m∑
i=1

( n∑
j=1

ai,jcj − bi
)2

=
m∑
i=1

( n∑
j=1

√
wiBj(xi)cj −

√
wiyi

)2

=
m∑
i=1

wi

(
h(xi)− yi

)2
.

This shows that the two minimization problems are equivalent.

In the next lemma, we collect some facts about the general linear least squares prob-
lem. Recall that a symmetric matrix N is positive semide�nite if cTNc ≥ 0 for all
c ∈ Rn, and positive de�nite if in addition cTNc > 0 for all nonzero c ∈ Rn.
Lemma 5.36. Suppose m and n are positive integers with m ≥ n, and let the matrix
A in Rm,n and the vector b in Rm be given. The linear least squares problem

min
c∈Rn

‖Ac− b‖2 (5.40)

always has a solution c∗ which can be found by solving the linear set of equations

ATAc∗ = ATb. (5.41)

The coe�cient matrix N = ATA is symmetric and positive semide�nite. It is positive
de�nite, and therefore nonsingular, and the solution of (5.40) is unique if and only if A
has linearly independent columns.

Proof. Let span(A) denote the n-dimensional linear subspace of Rm spanned by the
columns of A,

span(A) = {Ac | c ∈ Rn}.

From basic linear algebra we know that a vector b ∈ Rm can be written uniquely as a sum
b = b1 + b2, where b1 is a linear combination of the columns of A so that b1 ∈ span(A),
and b2 is orthogonal to span(A), i.e., we have bT2 d = 0 for all d in span(A). Using this
decomposition of b, and the Pythagorean theorem, we have for any c ∈ Rn,

‖Ac− b‖2 = ‖Ac− b1 − b2‖2 = ‖Ac− b1‖2 + ‖b2‖2.
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It follows that ‖Ac − b‖22 ≥ ‖b2‖22 for any c ∈ Rn, with equality if Ac = b1. A c = c∗

such that Ac∗ = b1 clearly exists since b1 is in span(A), and c∗ is unique if and only if A
has linearly independent columns. To derive the linear system for c∗, we note that any
c that is minimising satis�es Ac− b = −b2. Since we also know that b2 is orthogonal to
span(A), we must have

dT (Ac− b) = cT1A
T (Ac− b) = 0

for all d = Ac1 in span(A), i.e., for all c1 in Rn. But this is only possible ifAT (Ac−b) =
0. This proves (5.41).

The n× n-matrix N = ATA is clearly symmetric and

cTNc = ‖Ac‖22 ≥ 0, (5.42)

for all c ∈ Rn, so that N is positive semi-de�nite. From (5.42) we see that we can �nd
a nonzero c such that cTNc = 0 if and only if Ac = 0, i.e., if and only if A has linearly
dependent columns . We conclude thatN is positive de�nite if and only if A has linearly
independent columns.

Applying these results to Problem 5.34 we obtain.

Theorem 5.37. Problem 5.34 always has a solution. The solution is unique if and only
if we can �nd a sub-sequence (xi`)

n
`=1 of the data abscissas such that

B`(xi`) 6= 0 for ` = 1, . . . , n.

Proof. By Lemma 5.35 and Lemma 5.36 we conclude that Problem 5.34 always has a
solution, and the solution is unique if and only if the matrixA in Lemma 5.35 has linearly
independent columns. Now A has linearly independent columns if and only if we can �nd
a subset of n rows of A such that the square submatrix consisting of these rows and all
columns of A is nonsingular. But such a matrix is of the form treated in Theorem 5.32.
Therefore, the submatrix is nonsingular if and only if the diagonal elements are nonzero.
But the diagonal elements are given by B`(xi`).

Theorem 5.37 provides a nice condition for checking that we have a unique least
squares spline approximation to a given data set; we just have to check that each B-spline
has its `own' xi` in its support. To �nd the B-spline coe�cients of the approximation, we
must solve the linear system of equations (5.41). These equations are called the normal

equations of the least squares system and can be solved by Cholesky factorization of a
banded matrix followed by back substitution. The least squares problem can also be
solved by computing a QR-factorization of the matrix A; for both methods we refer to
a standard text on numerical linear algebra for details.

Example 5.38. Least squares approximation is especially appropriate when the data is known to be
noisy. Consider the data represented as bullets in Figure 5.10 (a). These data were obtained by adding
random perturbations in the interval [−0.1, 0.1] to the function f(x) = 1. In Figure 5.10 (a) we show
the cubic spline interpolant (with free end conditions) to the data, while Figure 5.10 (b) shows the cubic
least squares approximation to the same data, using no interior knots. We see that the least squares
approximation smooths out the data nicely. We also see that the cubic spline interpolant gives a nice
approximation to the given data, but it also reproduces the noise that was added arti�cially.
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Figure 5.10. Figure (a) shows the cubic spline interpolation to the noisy data of Example 5.38, while least
squares approximation to the same data is shown in (b).

Once we have made the choice of approximating the data in Example 5.38 using
cubic splines with no interior knots, we have no chance of representing the noise in the
data. The �exibility of cubic polynomials is nowhere near rich enough to represent all the
oscillations that we see in Figure 5.10 (a), and this gives us the desired smoothing e�ect in
Figure 5.10 (b). The advantage of the method of least squares is that it gives a reasonably
simple method for computing a reasonably good approximation to quite arbitrary data
on quite arbitrary knot vectors. But it is largely the knot vector that decides how much
the approximation is allowed to oscillate, and good methods for choosing the knot vector
is therefore of fundamental importance. Once the knot vector is given there are in fact
many approximation methods that will provide good approximations.

Exercises for Chapter 5

5.1 Consider the Variation Diminishing Spline Approximation (V f)(x) given by (5.6).

a) Show that V f(ti+1) = f(ti+1) for i = 1, . . . , n.

b) Show that (V ek) = ek, k = 0, 1, where ek(x) = xk, all k ≥ 0, and that V f = f
for any linear function f(x) = αx+ β.

c) Show that V e2 6= e2.



Chapter 6
Parametric Spline Curves

When we introduced splines in Chapter 1 we focused on spline curves, or more precisely,
vector valued spline functions. In Chapters 2, 3 and 4 we then established the basic theory
of spline functions and B-splines, and in Chapter 5 we studied a number of methods for
constructing spline functions that approximate given data. In this chapter we return to
spline curves and show how the approximation methods in Chapter 5 can be adapted to
this more general situation.

We start by giving a formal de�nition of parametric curves in Section 6.1, and in-
troduce parametric spline curves in Section 6.2.1. In the rest of Section 6.2 we then
generalise the approximation methods in Chapter 5 to curves. It turns out that the
generalisation is virtually trivial, except for one di�cult point.

6.1 De�nition of Parametric Curves

In Section 1.2 we gave an intuitive introduction to parametric curves and discussed the
signi�cance of di�erent parameterisations. In this section we will give a more formal
de�nition of parametric curves, but the reader is encouraged to �rst go back and reread
Section 1.2 in Chapter 1.

6.1.1 Regular parametric representations

A parametric curve will be de�ned in terms of parametric representations.

De�nition 6.1. A vector function or mapping f : [a, b] 7→ Rs of the interval [a, b] into
Rs for s ≥ 2 is called a parametric representation of class Cm for m ≥ 1 if each of the
s components of f has continuous derivatives up to order m. If, in addition, the �rst
derivative of f does not vanish in [a, b],

Df(u) = f ′(u) 6= 0, for u ∈ [a, b],

then f is called a regular parametric representation of class Cm.

A parametric representation will often be referred to informally as a curve, although
the term parametric curve will be given a more precise meaning later. In this chapter

137
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we will always assume the parametric representations to be su�ciently smooth for all
operations to make sense. Note that a function y = h(x) always can be considered as a
curve through the parametric representation f(u) =

(
u, h(u)

)
.

If we imagine travelling along the curve and let u denote the elapsed time of our
journey, then the length of f ′(u) which we denote by ||f ′(u)||, gives the speed with
which we travel at time u, while the direction of f ′(u) gives the direction in which we
travel, in other words the tangent to the curve at time u. With these interpretations a
regular curve is one where we never stop as we travel along the curve.

The straight line segment

f(u) = (1− u)p0 + up1, for u ∈ [0, 1],

where p0 and p1 are points in the plane, is a simple example of a parametric represen-
tation. Since f ′(u) = p1 − p0 for all u, we have in fact that f is a regular parametric
representation, provided that p0 6= p1. The tangent vector is, as expected, parallell to
the curve, and the speed along the curve is constant.

As another example, let us consider the unit circle. It is easy to check that the
mapping given by

f(u) =
(
x(u), y(u)

)
= (cosu, sinu)

satis�es the equation x(u)2 + y(u)2 = 1, so that if u varies from 0 to 2π, the whole unit
circle will be traced out. We also have ||f ′(u)|| = 1 for all u, so that f is a regular
parametric representation.

One may wonder what the signi�cance of the regularity condition f ′(u) 6= 0 is. Let
us consider the parametric representation given by

f(u) =

{
(0, u2), for u < 0;

(u2, 0), for u ≥ 0;

in other words, for u < 0 the image of f is the positive y-axis and for u > 0, the image is
the positive x-axis. A plot of f for u ∈ [−1, 1] is shown in Figure 6.1 (a). The geometric
�gure traced out by f clearly has a right angle corner at the origin, but f ′ which is given
by

f ′(u) =

{
(0, 2u), for u < 0;

(2u, 0), for u > 0;

is still continuous for all u. The source of the problem is the fact that f ′(0) = 0. For this
means that as we travel along the curve, the speed becomes zero at u = 0 and cancels
out the discontinuity in the tangent direction, so that we can manage to turn the corner.
On the other hand, if we consider the unit tangent vector θ(u) de�ned by

θ(u) = f ′(u)/||f ′(u)||,

we see that

θ(u) =

{
(0,−1), for u < 0;

(1, 0), for u > 0.
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Figure 6.1. A parametric representation with continuous �rst derivative but discontinuous unit tangent (a), and
the parametric representation f(u) = (u2, u3) (b).

As expected, the unit tangent vector is discontinuous at u = 0.
A less obvious example where the same problem occurs is shown in Figure 6.1 (b).

The parametric representation is f(u) = (u2, u3) which clearly has a continuous tangent,
but again we have f ′(0) = (0, 0) which cancels the discontinuity in the unit tangent
vector at u = 0. To avoid the problems that may occur when the tangent becomes
zero, it is common, as in De�nition 6.1, to assume that the parametric representation is
regular.

6.1.2 Changes of parameter and parametric curves

If we visualise a parametric representation through its graph as we have done here, it is
important to know whether the same graph may be obtained from di�erent parametric
representations. It is easy to see that the answer to this question is yes. As an example,
consider again the unit circle f(u) = (cosu, sinu). If we substitute u = 2πv, we obtain
the parametric representation

r̂(v) = (cos 2πv, sin 2πv).

As v varies in the interval [0, 1], the original parameter u will vary in the interval [0, 2π]
so that r̂(v) will trace out the same set of points in R2 and therefore yield the same
graph as f(u). The mapping u = 2πv is called a change of parameter.

De�nition 6.2. A real function u(v) de�ned on an interval I is called an allowable
change of parameter of class Cm if it has m continuous derivatives, and the derivative
u′(v) is nonzero for all v in I. If u′(v) is positive for all v then it is called an orientation
preserving change of parameter.

From the chain rule we observe that if g(v) = f
(
u(v)

)
then

g′(v) = u′(v)f ′
(
u(v)

)
.

This means that even if f is a regular parametric representation, we can still have g′(v) =
0 for some v if u′(v = 0). This is avoided by requiring u′(v) 6= 0 as in De�nition 6.2.

If u′(v) > 0 for all v, the points on the graph of the curve are traced in the same
order both by f and g, the two representations have the same orientation. If u′(v) < 0
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for all v, then f and g have opposite orientation, the points on the graph are traced in
opposite orders. The change of parameter u(v) = 2πv of the circle above was orientation
preserving.

Note that since u′(v) 6= 0, the function u(v) is one-to-one so that the inverse v(u)
exists and is an allowable change of parameter as well.

The redundancy in the representation of geometric objects can be resolved in a stan-
dard way. We simply say that two parametric representations are equivalent if they
are related by a change of parameter. If this is the case we will often say that one
representation is a reparametrisation of the other.

De�nition 6.3. A regular parametric curve is the equivalence class of parameterisations
of a given regular parametric representation. A particular parametric representation of
a curve is called a parametrisation of the curve.

We will use this de�nition very informally. Most of the time we will just have a
parametric representation f which we will refer to as a parametrisation of a curve or
simply a curve.

As an interpretation of the di�erent parameterisations of a curve it is constructive to
extend the analogy to travelling along a road. As mentioned above, we can think of the
parameter u as measuring the elapsed time as we travel along the curve, and the length
of the tangent vector as the speed with which we travel. The road with its hills and bends
is �xed, but there are still many ways to travel along it. We can both travel at di�erent
velocities and in di�erent directions. This corresponds to di�erent parameterisations.

A natural question is whether there is a preferred way of travelling along the road. A
mathematician would probably say that the best way to travel is to maintain a constant
speed, and we shall see later that this does indeed simplify the analysis of a curve. On
the other hand, a physicist (and a good automobile driver) would probably say that it
is best to go slowly around sharp corners and faster along straighter parts of the curve.
For the purpose of constructing spline curves it turns out that this latter point of view
usually gives the best results.

6.1.3 Arc length parametrisation

Let us end this brief introduction to parametric curves by a discussion of parameterisa-
tions with constant speed. Suppose that we have a parametrisation such that the tangent
vector has constant unit length along the curve. Then the di�erence in parameter value
at the beginning and end of the curve equals the length of the curve, which is reason
enough to study such parameterisations. This justi�es the next de�nition.

De�nition 6.4. A regular parametric curve g(σ) in Rs is said to be parametrised by
arc length if ||g′(σ)|| = 1 for all σ.

Let f(u) be a given regular curve with u ∈ [a, b], and let g(σ) = f(u(σ)) be a
reparametrisation such that ||g′(σ)|| = 1 for all σ. Since g′(σ) = u′(σ)f ′(u(σ)), we see
that we must have |u′(σ)| = 1/||f ′(u(σ))|| or |σ′(u)| = ||f ′(u)|| (this follows since u(σ)
is invertible with inverse σ(u) and u′(σ)σ′(u) = 1). The natural way to achieve this is to
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de�ne σ(u) by

σ(u) =

∫ u

a
||f ′(v)|| dv. (6.1)

We sum this up in a proposition.

Proposition 6.5. Let f(u) be a given regular parametric curve. The change of param-
eter given by (6.1) reparametrises the curve by arc length, so that if g(σ) = f

(
u(σ)

)
then ||g′(σ)|| = 1.

Note that σ(u) as given by (6.1) gives the length of the curve from the starting point
f(a) to the point f(u). This can be seen by sampling f at a set of points, computing the
length of the piecewise linear interpolant to these points, and then letting the density of
the points go to in�nity.

Proposition 6.6. The length of a curve f de�ned on an interval [a, b] is given by

L(f) =

∫ b

a

∥∥f ′(u)
∥∥ du

It should be noted that parametrisation by arc length is not unique. The orientation
can be reversed and the parameterisation may be translated by a constant. Note also
that if we have a parametrisation that is constant but not arc length, then arc length
parametrisation can be obtained by a simple scaling.

Parametrisation by arc length is not of much practical importance in approximation
since the integral in (6.1) very seldom can be expressed in terms of elementary functions,
and the computation of the integral is usually too expensive. One important exception
is the circle. As we saw at the beginning of the chapter, the parametrisation r(u) =
(cosu, sinu) is by arc length.

6.2 Approximation by Parametric Spline Curves

Having de�ned parametric curves formally, we are now ready to de�ne parametric spline
curves. This is very simple, we just let the coe�cients that multiply the B-splines be
points in Rs instead of real numbers. We then brie�y consider how the spline approxi-
mation methods that we introduced for spline functions can be generalised to curves.

6.2.1 De�nition of parametric spline curves

A spline curve f must, as all curves, be de�ned on an interval I and take its values in
Rs. There is a simple and obvious way to achieve this.

De�nition 6.7. A parametric spline curve in Rs is a spline function where each B-
spline coe�cient is a point in Rs. More speci�cally, let τ = (τi)

n+p+1
i=1 be a knot vector

for splines of degree p. Then a parametric spline curve of degree p with knot vector τ
and coe�cients c = (ci)

n
i=1 is given by

g(u) =

n∑
i=1

ciBi,p,τ (u),
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where each ci = (c1
i , c

2
i , . . . , c

s
i ) is a vector in Rs. The set of all spline curves in Rs of

degree p with knot vector τ is denoted by Ssp,τ .
In De�nition 6.7, a spline curve is de�ned as a spline function where the coe�cients

are points in Rs. From this it follows that

g(u) =
∑
i

ciBi(u) =
∑
i

(c1
i , . . . , c

s
i )Bi(u)

=
(∑

i

c1
iBi(u), . . . ,

∑
i

csiBi(u)
)

=
(
g1(u), . . . , gs(u)

)
,

(6.2)

so that g is a vector of spline functions. This suggests a more general de�nition of spline
curves where the degree and the knot vector in the s components need not be the same,
but this is not common and seems to be of little practical interest.

Since a spline curve is nothing but a vector of spline functions as in (6.2), it is simple to
compute f(u): Just apply a routine like Algorithm 2.20 to each of the component spline
functions g1, . . . , gs. If the algorithm has been implemented in a language that supports
vector arithmetic, then evaluation is even simpler. Just apply Algorithm 2.20 directly to
g, with vector coe�cients. The result will be the vector g(u) =

(
g1(u), . . . , gs(u)

)
.

Example 6.8. As an example of a spline curve, suppose that we are given n points p = (pi)
n
i=1 in

the plane with pi = (xi, yi), and de�ne the knot vector τ by

τ = (1, 1, 2, 3, 4, . . . , n− 2, n− 1, n, n).

Then the linear spline curve

g(u) =

n∑
i=1

piBi,1,τ (u) =
( n∑
i=1

xiBi,1,τ (u),

n∑
i=1

yiBi,1,τ (u)
)

is a representation of the piecewise linear interpolant to the points p.

An example of a cubic spline curve with its control polygon is shown in Figure 6.2,
and this example gives a good illustration of the fact that a spline curve is contained
in the convex hull of its control points. This, we remember, is clear from the geometric
construction of spline curves in Chapter 1.

Proposition 6.9. A spline curve g =
∑n

i=1 ciBi,p,τ de�ned on a p + 1-extended knot
vector τ is a subset of the convex hull of its coe�cients,

g(u) ∈ CH(c1, . . . , cn), for any u ∈ [τp+1, τn+1].

If u is restricted to the interval [τµ, τµ+1] then

g(u) ∈ CH(cµ−p, . . . , cµ).

To create a spline curve, we only have to be able to create spline functions, since a
spline curve is just a vector with spline functions in each component. All the methods
described in previous chapters for approximation with spline functions can therefore also
be utilised for construction of spline curves. To di�erentiate between curve approximation
and function approximation, we will often refer to the methods of Chapter 5 as functional
approximation methods.
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Figure 6.2. A cubic parametric spline curve with its control polygon.

6.2.2 The parametric variation diminishing spline approximation

In Section 5.2, we introduced the variation diminishing spline approximation to a func-
tion. This generalises nicely to curves.

De�nition 6.10. Let f be a parametric curve de�ned on the interval [a, b], and let τ
be a p + 1-extended knot vector with τp+1 = a and τn+1 = b. The parametric variation
diminishing spline approximation V f is de�ned by

(V f)(u) =

n∑
i=1

f(τ∗i )Bi,p,τ (u),

where τ∗i = (τi+1 + · · · τi+p)/d.
Note that the de�nition of V f means that

V f = (V f1, . . . , V f s).

If we have implemented a routine for determining the variation diminishing approxima-
tion to a scalar function (s = 1), we can therefore determine V f by calling the scalar
routine s times, just as was the case with evaluation of the curve at a point. Alterna-
tively, if the implementation uses vector arithmetic, we can call the function once but
with vector data.

A variation diminishing approximation to a segment of the unit circle is shown in
Figure 6.3.

It is much more di�cult to employ the variation diminishing spline approximation
when only discrete data are given, since somehow we must determine a knot vector.
This is true for functional data, and for parametric data we have the same problem. In
addition, we must also determine a parametrisation of the points. This is common for all
parametric approximation schemes when they are applied to discrete data and is most
easily discussed for cubic spline interpolation where it is easy to determine a knot vector.
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Figure 6.3. A cubic variation diminishing approximation to part of a circle.

6.2.3 Parametric spline interpolation

In Section 5.4, we considered interpolation of a given function or given discrete data by
cubic splines, and we found that the cubic C2 spline interpolant in a sense was the best
of all C2 interpolants. How can this be generalised to curves?

Proposition 6.11. Let
(
ui,f(ui)

)m
i=1

be given data sampled from the curve f in Rs,
and form the knot vector

τ = (u1, u1, u1, u1, u2, . . . , um−1, um, um, um, um).

Then there is a unique spline curve g = INf in Ss3,τ that satis�es

g(ui) = f(ui), for i = 1, . . . , m, (6.3)

with the natural end conditions g′′(u1) = g′′(um) = 0, and this spline curve g uniquely
minimises ∥∥∥∫ um

u1

h′′(u) du
∥∥∥

when h varies over the class of C2 parametric representations that satisfy the interpola-
tion conditions (6.3).

Proof. All the statements follow by considering the s functional interpolation problems
separately.
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Note that Proposition 6.11 can also be expressed in the succinct form

INf = (INf
1, . . . , INf

s).

This means that the interpolant can be computed by solving s functional interpolation
problems. If we go back to Section 5.4.2, we see that the interpolant is determined by
solving a system of linear equations. If we consider the s systems necessary to determine
INf , we see that it is only the right hand side that di�ers; the coe�cient matrix A
remains the same. This can be exploited to speed up the computations since the LU -
factorisation of the coe�cient matrix can be computed once and for all and the s solutions
computed by back substitution; for more information consult a text on numerical linear
algebra. As for evaluation and the variation diminishing approximation, this makes it
very simple to implement cubic spline interpolation in a language that supports vector
arithmetic: Simply call the routine for functional interpolation with vector data.

We have focused here on cubic spline interpolation with natural end conditions, but
Hermite and free end conditions can be treated completely analogously.

Let us turn now to cubic parametric spline interpolation in the case where the data
are just given as discrete data.

Problem 6.12. Let (pi)
m
i=1 be a set of points in Rs. Find a cubic spline g in some spline

space Ss3,τ such that
g(ui) = pi, for i = 1, . . . , m,

for some parameter values (ui)
m
i=1 with u1 < u2 < · · · < um.

Problem 6.12 is a realistic problem. A typical situation is that somehow a set of
points on a curve has been determined, for instance through measurements; the user
then wants the computer to draw a `nice' curve through the points. In such a situation
the knot vector is of course not known in advance, but for functional approximation it
could easily be determined from the abscissae. In the present parametric setting this is a
fundamentally more di�cult problem as long as we have no parameter values associated
with the data points. An example may be illuminating.

Example 6.13. Suppose that m points in the plane p = (pi)
m
i=1 with pi = (xi, yi) are given. We

seek a cubic spline curve that interpolates the points p. We can proceed as follows. Associate with each
data point pi the parameter value i. If we are also given the derivatives (tangents) at the ends as (x′1, y

′
1)

and (x′m, y
′
m), we can apply cubic spline interpolation with Hermite end conditions to the two sets of

data (i, xi)
n
i=1 and (i, yi)

n
i=1. The knot vector will then for both of the two components be

τ = (1, 1, 1, 1, 2, 3, 4, . . . ,m− 2,m− 1,m,m,m,m).

We can then perform the two steps

(i) Find the spline function g1 ∈ S3,τ with coe�cients c1 = (c1i )
m+2
i=1 that interpolates the points

(i, xi)
m
i=1 and satis�es Dg1(1) = x′1 and Dg1(m) = x′m.

(ii) Find the spline function g2 ∈ S3,τ with coe�cients c2 = (c2i )
m+2
i=1 that interpolates the points

(i, yi)
m
i=1 and satis�es Dg2(1) = y′1 and Dg2(m) = y′m.

Together this yields a cubic spline curve

g(u) =

m+2∑
i=1

ciBi,3,τ (u)
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that satis�es g(i) = pi for i = 1, 2, . . . , m.

The only part of the construction of the cubic interpolant in Example 6.13 that is
di�erent from the corresponding construction for spline functions is the assignment of
the parameter value i to the point f i = (xi, yi) for i = 1, 2, . . . , n, and therefore also the
construction of the knot vector. When working with spline functions, the abscissas of the
data points became the knots; for curves we have to choose the knots speci�cally by giving
the parameter values at the data points. Somewhat arbitrarily we gave point number i
parameter value i in Example 6.13, this is often termed uniform parametrisation.

Going back to Problem 6.12 and the analogy with driving, we have certain places that
we want to visit (the points pi) and the order in which they should be visited, but we do
not know when we should visit them (the parameter values ui). Should one for example
try to drive with a constant speed between the points, or should one try to make the
time spent between points constant? With the �rst strategy one might get into problems
around a sharp corner where a good driver would usually slow down, and the same can
happen with the second strategy if two points are far apart (you must drive fast to keep
the time), with a sharp corner just afterwards.

In more mathematical terms, the problem is to guess how the points are meant to be
parametrised�which parametric representation are they taken from? This is a di�cult
problem that so far has not been solved in a satisfactory way. There are methods available
though, and in the next section we suggest three of the simplest.

6.2.4 Assigning parameter values to discrete data

Let us recall the setting. We are given m points (pi)
m
i=1 in Rs and need to associate a

parameter value ui with each point that will later be used to construct a knot vector for
spline approximation. Here we give three simple alternatives.

1. Uniform parametrisation which amounts to ui = i for i = 1, 2, . . . , m. This
has the shortcomings discussed above.

2. Cord length parametrisation which is given by

u1 = 0 and ui = ui−1 + ||pi − pi−1|| for i = 2, 3, . . . , m.

If the �nal approximation should happen to be the piecewise linear interpolant to
the data, this method will correspond to parametrisation by arc length. This often
causes problems near sharp corners in the data where it is usually wise to move
slowly.

3. Centripetal parametrisation is given by

u1 = 0 and ui = ui−1 + ||pi − pi−1||1/2 for i = 2, 3, . . . , m.

For this method, the di�erence ui − ui−1 will be smaller than when cord length
parametrisation is used. But like the other two methods it does not take into
consideration sharp corners in the data, and may therefore fail badly on di�cult
data.
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Figure 6.4. Parametric, cubic spline interpolation with uniform parametrisation (a), cord length parametrisation
(b), and centripetal parametrisation (c).

There are many other methods described in the literature for determining good pa-
rameter values at the data points, but there is no known `best' method. In fact, the
problem of �nding good parameterisations is an active research area.

Figures 6.4 (a)�(c) show examples of how the three methods of parametrisation de-
scribed above perform on a di�cult data set.

6.2.5 General parametric spline approximation

In Chapter 5, we also de�ned other methods for spline approximation like cubic Hermite
interpolation, general spline interpolation and least squares approximation by splines. All
these and many other methods for functional spline approximation can be generalised
very simply to parametric curves. If the data is given in the form of a parametric curve,
the desired functional method can just be applied to each component function of the
given curve. If the data is given as a set of discrete points (pi)

m
i=1, a parametrisation of

the points must be determined using for example one of the methods in Section 6.2.4.
Once this has been done, a functional method can be applied to each of the s data sets
(ui, p

j
i )
m,d
i,j=1,1. If we denote the functional approximation scheme by A and denote the

data by f , so that f i = (ui,pi) for i = 1, . . . , m, the parametric spline approximation
satis�es

Af = (Af1, . . . , Af s), (6.4)
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where f j denotes the data set (ui, p
j
i )
m
i=1 which we think of as

(
ui, f

j(ui)
)m
i=1

. As we
have seen several times now, the advantage of the relation (6.4) is that the parametric
approximation can be determined by applying the corresponding functional approxima-
tion scheme to the s components, or, if we use a language that supports vector arithmetic,
we simply call the routine for functional approximation with vector data. In Chapter 7,
we shall see that the functional methods can be applied repeatedly in a similar way to
compute tensor product spline approximations to surfaces.



Chapter 7
Tensor Product Spline Surfaces

Earlier we introduced parametric spline curves by simply using vectors of spline functions,
de�ned over a common knot vector. In this chapter we introduce spline surfaces, but
again the construction of tensor product surfaces is deeply dependent on univariate spline
functions. We �rst construct spline functions of two variables of the form z = f(x, y),
so called explicit spline surfaces, whose graph can be visualized as a surface in three
dimensional space. We then pass to parametric surfaces in the same way that we passed
from spline functions to spline curves.

The advantage of introducing tensor product surfaces is that all the approximation
methods that we introduced in Chapter 5 generalize very easily as we shall see below.
The methods also generalize nicely to parametric tensor product surfaces, but here we
get the added complication of determining a suitable parametrisation in the case where
we are only given discrete data.

7.1 Explicit tensor product spline surfaces

The reader is undoubtedly familiar with polynomial surfaces of degree one and two. A
linear surface

z = ax+ by + c

represents a plane in 3-space. An example of a quadratic surface is the circular paraboloid

z = x2 + y2

shown in Figure 7.1 (a). The spline surfaces we will consider are made by gluing together
polynomial �patches� like these.

7.1.1 De�nition of the tensor product spline

For x ∈ [0, 1] the line segment
b0(1− x) + b1x

connects the two values b0 and b1. Suppose b0(y) and b1(y) are two functions de�ned for
y in some interval [c, d]. Then for each y ∈ [c, d] the function b0(y)(1 − x) + b1(y)x is a

149
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(a) (b)

Figure 7.1. A piece of the circular paraboloid z = x2 +y2 is shown in (a), while the surface (1−x)y2 +x sin(πy)

is shown in (b).

line segment connecting b0(y) and b1(y). When y varies we get a family of straight lines
representing a surface

z = b0(y)(1− x) + b1(y)x.

Such a �ruled� surface is shown in Figure 7.1 (b). Here we have chosen b0(y) = y2 and
b1(y) = sin(πy) for y ∈ [0, 1].

An interesting case is obtained if we take b0 and b1 to be linear polynomials. Specif-
ically, if

b0(y) = c0,0(1− y) + c0,1y, and b1(y) = c1,0(1− y) + c1,1y,

we obtain

f(x, y) = c0,0(1− x)(1− y) + c0,1(1− x)y + c1,0x(1− y) + c1,1xy,

for suitable coe�cients ci,j . In fact these coe�cients are the values of f at the corners
of the unit square. This surface is ruled in both directions. For each �xed value of one
variable we have a linear function in the other variable. We call f a bilinear polynomial.
Note that f reduces to a quadratic polynomial along the diagonal line x = y.

We can use similar ideas to construct spline surfaces from families of spline functions.
Suppose that for some integer p1 and knot vector σ we have the spline space

S1 = Sp1,σ = span{φ1, . . . , φn1}.

To simplify the notation we have denoted the B-splines by {φi}n1
i=1. Consider a spline in

S1 with coe�cients that are functions of y,

f(x, y) =

n1∑
i=1

ci(y)φi(x). (7.1)

For each value of y we now have a spline in S1, and when y varies we get a family of
spline functions that each depends on x. Any choice of functions ci results in a surface,
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but a particularly useful construction is obtained if we choose the ci to be splines as well.
Suppose we have another spline space of degree p2 and with knots τ ,

S2 = Sp2,τ = span{ψ1, . . . , ψn2}

where {ψj}n2
j=1 denotes the B-spline basis in S2. If each coe�cient function ci(y) is a

spline in S2, then

ci(y) =

n2∑
j=1

ci,jψj(y) (7.2)

for suitable numbers (ci,j)
n1,n2
i,j=1 . Combining (7.1) and (7.2) we obtain

f(x, y) =

n1∑
i=1

n2∑
j=1

ci,jφi(x)ψj(y). (7.3)

De�nition 7.1. The tensor product of the two spaces S1 and S2 is de�ned to be the
family of all functions of the form

f(x, y) =

n1∑
i=1

n2∑
j=1

ci,jφi(x)ψj(y),

where the coe�cients (ci,j)
n1,n2
i,j=1 can be any real numbers. This linear space of functions

is denoted S1 ⊗ S2.

The space S1⊗S2 is spanned by the functions {φi(x)ψj(y)}n1,n2
i,j=1 . Since these functions

are linearly independent the space has dimension n1n2.
Some examples of these basis functions are shown in Figure 7.2. In Figure 7.2 (a) we

have φ = ψ = B[0, 1, 2]. The resulting function is a bilinear polynomial in each of the
four squares [i, i+ 1)× [j, j+ 1) for i, j = 0, 1. It has the shape of a curved pyramid with
value one at the top. In Figure 7.2 (b) we show the result of taking φ = ψ = B[0, 1, 2, 3].
This function is a biquadratic polynomial in each of the 9 squares [i, i+ 1)× [j, j+ 1) for
i, j = 0, 1, 2. In Figure 7.2 (c) we have changed φ to B[0, 0, 0, 1].

Tensor product surfaces are piecewise polynomials on rectangular domains. A typical
example is shown in Figure 7.3. Each vertical line corresponds to a knot for the S1 space,
and similarly, each horizontal line stems from a knot in the S2 space. The surface will
usually have a discontinuity across the knot lines, and the magnitude of the discontinuity
is inherited directly from the univariate spline spaces. For example, across a vertical knot
line, partial derivatives with respect to x have the continuity properties of the univariate
spline functions in S1. This follows since the derivatives, say the �rst derivative, will
involve sums of terms of the form

∂

∂x
(ci,jφi(x)ψj(y)) = ci,jφ

′
i(x)ψj(y).

A tensor product surface can be written conveniently in matrix-vector form. If f(x, y)
is given by (7.3) then

f(x, y) = φ(x)TCψ(y), (7.4)
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(a)

(b) (c)

Figure 7.2. A bilinear B-spline (a), a biquadratic B-spline (b) and biquadratic B-spline with a triple knot in one
direction (c).

Figure 7.3. The knot lines for a tensor product spline surface.
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where

φ = (φ1, . . . , φn1)T , ψ = (ψ1, . . . , ψn2)T ,

and C = (ci,j)
n1,n2
i,j=1 is the matrix of coe�cients. This can be veri�ed quite easily by

expanding the matrix products in (7.4).

7.1.2 Evaluation of tensor product spline surfaces

There are many ways to construct surfaces from two spaces of univariate functions, but
the tensor product has one important advantage: many standard operations that we wish
to perform with the surfaces are very simple generalizations of corresponding univariate
operations. We will see several examples of this, but start by showing how to compute a
point on a tensor product spline surface.

To compute a point on a tensor product spline surface, we can make use of the
algorithms we have for computing points on spline functions. Suppose we want to com-
pute f(x, y) = φ(x)TCψ(y)T , and suppose for simplicity that the polynomial degree
in the two directions are equal, so that p = p1 = p2. If the integers µ and ν are such
that σν ≤ x < σν+1 and τµ ≤ y < τµ+1, then we know that only (φi(x))νi=ν−p and
(ψj(y))µj=µ−p can be nonzero at (x, y). To compute

f(x, y) = φ(x)TCψ(y) (7.5)

we therefore �rst make use of Algorithm 2.21 to compute the p+ 1 nonzero B-splines at
x and the p+ 1 nonzero B-splines at y. We can then pick out that part of the coe�cient
matrix C which corresponds to these B-splines and multiply together the right-hand side
of (7.5).

A pleasant feature of this algorithm is that its operation count is of the same order
of magnitude as evaluation of univariate spline functions. If we assume, for simplicity,
that p2 = p1 = p, we know that roughly 3(p + 1)2/2 multiplications are required to
compute the nonzero B-splines at x, and the same number of multiplications to compute
the nonzero B-splines at y. To �nish the computation of f(x, y), we have to evaluate
a product like that in (7.5), with C a (p + 1) × (p + 1)-matrix and the two vectors
of dimension p + 1. This requires roughly (p + 1)2 multiplications, giving a total of
O((p+ 1)2) multiplications. The number of multiplications required to compute a point
on a spline surface is therefore of the same order as the number of multiplications required
to compute a point on a univariate spline function. The reason we can compute a point
on a surface this quickly is the rather special structure of tensor products.

7.2 Approximation methods for tensor product splines

One of the main advantages of the tensor product de�nition of surfaces is that the ap-
proximation methods that we developed for functions and curves can be utilised directly
for approximation of surfaces. In this section we consider some of the approximation
methods in Chapter 5 and show how they can be generalized to surfaces.
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7.2.1 The variation diminishing spline approximation

Consider �rst the variation diminishing approximation. Suppose f is a function de�ned
on a rectangle

Ω =
{

(x, y) | a1 ≤ x ≤ b1 & a2 ≤ y ≤ b2
}

= [a1, b1]× [a2, b2].

Let σ = (σi)
n1+p1+1
i=1 be a p1 + 1-regular knot vector with boundary knots σp1 = a1 and

σn1 = b1, and let τ = (τj)
n2+p2+1
j=1 be an p2 + 1-regular knot vector with boundary knots

τp2 = a2 and τn2 = b2. As above we let φi = Bi,p1,σ and ψj = Bj,p2,τ be the B-splines on
σ and τ respectively. The spline

V f(x, y) =

n1∑
i=1

n2∑
j=1

f(σ∗i , τ
∗
j )φi(x)ψj(y) (7.6)

where
σ∗i = σ∗i,p1 = (σi+1 + . . .+ σi+p1)/p1

τ∗j = τ∗j,p2 = (τj+1 + . . .+ τj+p2)/p2,
(7.7)

is called the variation diminishing spline approximation on (σ, τ ) of degree (p1, p2). If
no interior knots in σ has multiplicity p1 + 1 then

a1 = σ∗1 < σ∗2 < . . . < σ∗n1
= b1,

and similarly, if no interior knots in τ has multiplicity p2 + 1 then

a2 = τ∗1 < τ∗2 < . . . < τ∗n2
= b2.

This means that the knot averages (σ∗i , τ
∗
j )n1,n2
i,j=1 divides the domain Ω into a rectangular

grid.

Example 7.2. Suppose we want to approximate the function

f(x, y) = g(x)g(y), (7.8)

where

g(x) =

{
1, 0 ≤ x ≤ 1/2,

e−10(x−1/2), 1/2 < x ≤ 1,

on the unit square

Ω =
{

(x, y) | 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1
}

= [0, 1]2.

A graph of this function is shown in Figure 7.4 (a), and we observe that f has a �at spot on the square
[0, 1/2]2 and falls o� exponentially on all sides. In order to approximate this function by a bicubic
variation diminishing spline we observe that the surface is continuous, but that it has discontinuities
partial derivatives across the lines x = 1/2 and y = 1/2. We obtain a tensor product spline space with
similar continuity properties across these lines by making the value 1/2 a knot of multiplicity 3 in σ and
τ . For an integer q with q ≥ 2 we de�ne the knot vectors by

σ = τ = (0, 0, 0, 0, 1/(2q), . . . , 1/2− 1/(2q), 1/2, 1/2, 1/2,

1/2 + 1/(2q), . . . 1− 1/(2q), 1, 1, 1, 1).

The corresponding variation diminishing spline approximation is shown in Figure 7.4 (b) for q = 2.
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Figure 7.4. The function f(x, y) given in Example 7.2 is shown in (a) and its variation diminishing spline
approximation is shown in (b).

The tensor product variation diminishing approximation V f has shape preserving
properties analogous to those discussed in Section 5.2 for curves. In Figures 7.4 (a)
and (b) we observe that the constant part of f in the region [0, 1/2]×[0, 1/2] is reproduced
by V f , and V f appears to have the same shape as f . These and similar properties can
be veri�ed formally, just like for functions.

7.2.2 Tensor Product Spline Interpolation

We consider interpolation at a set of gridded data

(xi, yj , fi,j)
m1,m2
i=1,j=1, (7.9)

where

a1 = x1 < x2 < · · · < xm1 = b1, a2 = y1 < y2 < · · · < ym2 = b2.

For each i, j we can think of fi,j as the value of an unknown function f = f(x, y) at the
point (xi, yj). Note that these data are given on a grid of the same type as that of the
knot lines in Figure 7.3.

We will describe a method to �nd a function g = g(x, y) in a tensor product space
S1 ⊗ S2 such that

g(xi, yj) = fi,j , i = 1, . . . ,m1, j = 1, . . . ,m2. (7.10)

We take S1 and S2 to be two univariate spline spaces

S1 = span{φ1, . . . , φm1}, S2 = span{ψ1, . . . , ψm2}, (7.11)

where the φ's and ψ's are bases of B-splines for the two spaces. Here we have assumed
that the dimension of S1⊗S2 agrees with the number of given data points since we want
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to approximate using interpolation. Our tensor product spline g takes the form (Cf.
(7.4))

g(x, y) =

m1∑
q=1

m2∑
r=1

cq,rψr(y)φq(x) = φ(x)TCψ(y). (7.12)

Proposition 7.3. De�ne matrices Φ ∈ Rm1,m1 and Ψ ∈ Rm2,m2 by

Φ :=

 φ(x1)T

...
φ(xm1)T

 , ΨT :=
[
ψ(y1) . . . ψ(ym2)

]
. (7.13)

If Φ and Ψ are nonsingular then there is a unique g ∈ S1 ⊗ S2 such that

g(xi, yj) = φ(xi)
TCψ(yj) = fi,j , i = 1, . . . ,m1, j = 1, . . . ,m2. (7.14)

This g is given by (7.12) where the coe�cient matrix C = (cq,r) satis�es the matrix
equation

ΦCΨT = F . (7.15)

Proof. The interpolation conditions (7.14) immediately lead to the matrix equation
(7.15). This system has a unique solution if Φ and Ψ are nonsingular.

The matric C in (7.15) can be computed in steps as follows

ΦD = F , ΨG = DT , C = GT . (7.16)

This splits the computation into univariate interpolation problems. It involves two
banded linear systems with several right hand sides, and two transpose operations.

7.2.3 Least Squares for Gridded Data

The least squares technique is a useful and important technique for �tting of curves
and surfaces to data. In principle, it can be used for approximation of functions of any
number of variables. Computationally there are several problems however, the main one
being that usually a large linear system has to be solved. The situation is better when
the data is gridded, say of the form (7.9). We study this important special case in this
section and consider the following problem:

Problem 7.4. Given data
(xi, yj , fi,j)

m1,m2
i=1,j=1,

positive weights (wi)
m1
i=1 and (vj)

m2
j=1, and univariate spline spaces S1 and S2, �nd a spline

surface g in S1 ⊗ S2 which solves the minimisation problem

min
g∈S1⊗S2

m1∑
i=1

m2∑
j=1

wivj [g(xi, yj)− fi,j ]2 .
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We assume that the vectors of data abscissas x = (xi)
m1
i=1 and y = (yj)

m2
j=1 have

distinct components, but that they do not need to be ordered. Note that we only have
m1 + m2 independent weights. Using weights of the special form wivj assures that the
problem splits into a sequence of univariate problems.

We assume that the spline spaces S1 and S2 are given in terms of B-splines

S1 = span{φ1, . . . , φn1}, S2 = span{ψ1, . . . , ψn2},

and seek the function g in the form

g(x, y) =

n1∑
q=1

n2∑
r=1

cq,rψr(y)φq(x).

Our goal in this section is to show that Problem 7.4 is related to the univariate least
squares problem just as the interpolation problem in the last section was related to uni-
variate interpolation. We start by giving a matrix formulation analogous to Lemma 5.35
for the univariate case.

Lemma 7.5. Problem 7.4 is equivalent to the following matrix problem

min
C∈Rn1,n2

‖ACBT −G‖2, (7.17)

where
A = (ai,q) ∈ Rm1,n1 , ai,q =

√
wiφq(xi),

B = (bj,r) ∈ Rm2,n2 , bj,r =
√
vjψr(yj),

G = (
√
wi
√
vjfi,j) ∈ Rm1,m2 , C = (cq,r) ∈ Rn1,n2 .

(7.18)

Here, the norm ‖ · ‖ is the Frobenius norm,

‖E‖ =
( m∑
i=1

n∑
j=1

|ei,j |2
)1/2

(7.19)

for any rectangular m× n matrix E = (ei,j).

Proof. Suppose C = (cq,r) are the B-spline coe�cients of some g ∈ S1 ⊗ S2. Then

‖ACBT −G‖2 =

m1∑
i=1

m2∑
j=1

( n1∑
p=1

n2∑
r=1

ai,pcq,rbj,r − gi,j
)2

=

m1∑
i=1

m2∑
j=1

( n1∑
p=1

n2∑
r=1

√
wiφq(xi)cq,r

√
vjψr(yj)−

√
wi
√
vjfi,j

)2

=

m1∑
i=1

m2∑
j=1

wivj [g(xi, yj)− fi,j ]2 .

This shows that the two minimisation problems are equivalent.
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We next state some basic facts about the matrix problem (7.17).

Proposition 7.6. The problem (7.17) always has a solution C = C∗, and the solution
is unique if and only if both matrices A and B have linearly independent columns. In
that case the solution C∗ can be found by solving the matrix equation

ATAC∗BTB = ATGB. (7.20)

Proof. By arranging the entries of C in a one dimensional vector it can be seen that the
minimisation problem (7.17) is a linear least squares problem. The existence of a solution
then follows from Lemma 5.36. For the rest of the proof we introduce some additional
notation. For matrices H = (hi,j) and K = (ki,j) in Rm,n we de�ne the scalar product

(H,K) =

m∑
i=1

n∑
j=1

hi,jki,j .

This is a scalar product of the matricesH andK regarded as vectors. We have (H,H) =
‖H‖2, the Frobenius norm of H, squared. We also observe that for any m× n matrices
H and K, we have

‖H +K‖2 = ‖H‖2 + 2(H,K) + ‖K‖2.

Moreover,

(E,HK) = (HTE,K) = (EKT ,H), (7.21)

for any matrices E,H,K such that the matrix operations make sense. For any C ∈
Rn1,n2 we let

q(C) = ‖ACBT −G‖2.

This is the function we want to minimize. Suppose C∗ is the solution of (7.20). We want
to show that q(C∗+ εD) ≥ q(C∗) for any real ε and any D ∈ Rn1×n2 . This follows from
the relation

q(C∗ + εD) = q(C∗) + 2ε(ATAC∗BTB −ATGB,D) + ε2‖ADBT ‖2. (7.22)

For if C∗ satis�es (7.20) then the complicated middle term vanishes and

q(C∗ + εD) = q(C∗) + ε2‖ADBT ‖2 ≥ q(C∗).

To establish (7.22) we have to expand q(C∗ + εD),

q(C∗ + εD) = ‖(AC∗BT −G) + εADBT ‖2

= q(C∗) + 2ε(AC∗BT −G,ADBT ) + ε2‖ADBT ‖2.

Using (7.21) on the middle term, we can move A and BT to the left-hand side of the
inner product form, and we obtain (7.22). The uniqueness is left as a problem.
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Conversely, suppose that C does not satisfy (7.20). We need to show that C does
not minimize q. Now, for at least one matrix component i, j we have

z = (ATACBTB −ATGB)i,j 6= 0.

We choose D as the matrix where the i, j element is equal to 1 and all other entries are
0. Then (7.22) takes the form

q(C + εD) = q(C) + 2εz + ε2‖ADBT ‖2,

and this implies that q(C + εD) < q(C) for εz < 0 and |ε| su�ciently small. But then
C cannot minimize q.

In order to �nd the solution of Problem 7.4, we have to solve the matrix equation
(7.20). We can do this in two steps:

1. Find D from the system ATAD = ATG.

2. Find C from the system BTBCT = BTDT .

The matrix C is then the solution of (7.20). The �rst step is equivalent to

ATAdj = ATgj , j = 1, 2, . . . ,m2,

where D = (d1, . . . ,dm2) and G = (g1, . . . , gm2
). This means that we need to solve m2

univariate linear least squares problems

min ‖Adj − gj‖22, j = 1, 2, . . . ,m2.

Similarly, the second step involves m1 univariate linear least squares problems.

7.3 Trivariate Tensor Product Methods

The tensor product construction can be extended to higher dimensions. For trivariate
approximation we can combine three univariate approximation schemes into a method
to approximate trivariate data

(xi1 , yi2 , zi3 , fi1,i2,i3)m1, m2, m3
i1=1,i2=1,i3=1. (7.23)

Here the f 's are function values of an unknown trivariate function

f = f(x, y, z).

The data is given on a cubical region determined from the grid points
(xi1 , yi2 , zi3) in space. We write

F = (fi1,i2,i3) ∈ Rm1,m2,m3

to indicate that the data can be thought of as sitting in a cube of dimensions m1,m2,m3.
Such a cubical grid is shown in Figure 7.5.
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Figure 7.5. A cubical gridded region in space.

The approximation we seek has the form

g(x, y, z) =

n1∑
j1=1

n2∑
j2=1

n3∑
j3=1

cj1,j2,j3ωj3(z)ψj2(y)φj1(x). (7.24)

Here

S1 = span{φ1, . . . , φn1}, S2 = span{ψ1, . . . , ψn2}, S3 = span{ω1, . . . , ωn3},

are three univariate spline spaces spanned by some B-splines.
To show that such an interpolation problem can be split into three univariate problems

it is convenient to consider arrays with more than two subscripts.

7.3.1 Tensors

For a positive integer s we de�ne a rank s tensor to be a s-dimensional table of the form

A = (ai1,i2,...,is)
m1, m2, ... ,ms
i1=1,i2=1,...,is=1.

We write
A ∈ Rm1,m2,...,ms = Rm,



7.3. TRIVARIATE TENSOR PRODUCT METHODS 161

for membership in the class of all rank s tensors with real elements. These tensors are
generalisations of ordinary vectors and matrices. A rank s tensor can be arranged in
a s-dimensional cuboidal array. This is the usual rectangular array for s = 2 and a
rectangular parallelepiped for s = 3.

The operations of addition and scalar multiplication for vectors and matrices extend
easily to tensors. The product of two tensors, say A ∈ Rm1,m2,...,ms and B ∈ Rn1,n2,...,ne

can be de�ned if the last dimension of A equals the �rst dimension of B. Indeed, with
m = ms = n1, we de�ne the product AB as the tensor

C = AB ∈ Rm1,m2,...,ms−1,n2,...,ne

with elements

ci1,...,is−1,j2,...,je =

m∑
k=1

ai1,...,is−1,kbk,j2,...,je .

For s = e = 2 this is the usual product of two matrices, while for s = e = 1 we have the
inner product of vectors. In general this 'inner product' of tensors is a tensor of rank
s + e − 2. We just contract the last index of A and the �rst index of B. In particular,
suppose A ∈ Rm1,m2 is a matrix and B ∈ Rn1,n2,n3 is a tensor of rank three. If m2 = n1

then the product AB ∈ Rm1,n2,n3 is also a rank three tensor.

We also need to consider a transpose of a tensor A ∈ Rm1,m2,...,ms . Corresponding to
any rearrangement n1, . . . , ns of m1, . . . ,ms we de�ne the transpose of A as the tensor
B ∈ Rn1,...,ns obtained from A by rearranging the subscripts of A. For a rank 3 tensor
A we consider the special transpose A′ given by a cyclic rotation of the subscripts.

A ∈ Rm1,m2,m3 ⇒ A′ ∈ Rm2,m3,m1 . (7.25)

7.3.2 Trivariate tensor product interpolation

We can construct g by forming a a sequence of simpler sums as follows

g(x, y, z) =

n1∑
j1=1

dj1(y, z)φj1(x),

dj1(y, z) =

n2∑
j2=1

ej1,j2(z)ψj2(y),

ej1,j2(z) =

n3∑
j3=1

cj1,j2,j3ωj3(z).

(7.26)
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In order to interpolate the data given by (7.23) we obtain the following set of equations
n1∑
j1=1

dj1(yi2 , zi3)φj1(xi1) = fi1i2,i3 , i1 = 1, 2, . . . ,m1,

n2∑
j2=1

ej1,j2(zi3)ψj2(yi2) = dj1(yi2 , zi3), i2 = 1, 2, . . . ,m2,

n3∑
j3=1

cj1,j2,j3ωj3(zi3) = ej1,j2(zi3). i3 = 1, 2, . . . ,m3,

(7.27)

These are square systems if nk = mk, k = 1, 2, 3 and have to be solved in the least
squares sense if mk > nk for one or more k.

Consider now writing these systems in matrix form. The equations involve arrays
with 3 subscripts.

Let us now write the equations in (7.27) in tensor form. The �rst equation can be
written

ΦD = F . (7.28)

Here

Φ = (φi1,j1) = (φj1(xi1)) ∈ Rm1,n1 ,

D = (dj1,i2,i3) = dj1(yi2 , zi3) ∈ Rn1,m2,m3 , F = (fi1,i2,i3) ∈ Rm1,m2,m3 .

The system (7.28) is similar to the systems we had earlier for bivariate approximation.
We have the same kind of coe�cient matrix, but many more right-hand sides.

For the next equation in (7.27) we de�ne

Ψ = (ψi2,j2) = (ψj2(yi2)) ∈ Rm2,n2 ,

E = (ej2,i3,j1) = (ej1,j2(zi3)) ∈ Rn2,m3,n1 , D′ = (di2,i3,j1) ∈ Rm2,m3,n1 .

Taking the transpose of D according to (7.25) the next equation can be written

ΨE = D′. (7.29)

The construction ofD′ fromD involves a cyclic rotation of the dimensions from (n1,m2,
m3) to (m2,m3, n1). The same operation is applied to E for the last equation in (7.27).
We obtain

ΩG = E′, (7.30)

where

Ω = (ωi3,j3) = (ωj3(zi3)) ∈ Rm3,n3 ,

E′ = (ei3,j1,j2) = (ej1,j2(zi3)) ∈ Rm3,n1,n2 , G = (gj3,j1,j2) ∈ Rn3,n1,n2 .

The coe�cients C ′ are obtained by a �nal cyclic rotation of the dimensions

C = G′. (7.31)

The actual implementation of this scheme on a computer will depend on how arrays
are sorted in the actual programming language used. Some languages arrange by columns,
while others arrange by rows.
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7.4 Parametric Surfaces

Parametric curves and explicit surfaces have a natural generalisation to parametric sur-
faces. Let us consider the plane P through three points in space which we call p0, p1

and p2. We de�ne the function f : R2 7→ P by

f(u, v) = p0 + (p1 − p0)u+ (p2 − p0)v. (7.32)

We see that f(0, 0) = p0, while f(1, 0) = p1 and f(0, 1) = p2, so that f interpolates
the three points. Since f is also a linear function, we conclude that it is indeed a
representation for the plane P .

We start by generalising and formalising this.

De�nition 7.7. A parametric representation of class Cm of a set S ⊆ R3 is a mapping
f of an open set Ω ⊆ R2 onto S such that

(i) f has continuous derivatives up to order m.

Suppose that f(u, v) =
(
f1(u, v), f2(u, v), f3(u, v)

)
and let D1f and D2f denote di�er-

entiation with respect to the �rst and second variables of f , respectively. The parametric
representation f is said to be regular if in addition

(ii) the Jacobian matrix of f given by

J(f) =

D1f
1(u, v) D2f

1(u, v)
D1f

2(u, v) D2f
2(u, v)

D1f
3(u, v) D2f

3(u, v)


has full rank for all (u, v) in Ω.

That J(f) has full rank means that its two columns must be linearly independent for
all (u, v) ∈ Ω, or equivalently, that for all (u, v) there must be at least one nonsingular
2× 2 submatrix of J(f).

A function of two variables z = h(x, y) can always be considered as a parametric
surface through the representation f(u, v) =

(
u, v, h(u, v)

)
. In the following we will

always assume that f is su�ciently smooth for all operations on f to make sense.
It turns out that there are many surfaces that cannot be described as the image of

a regular parametric representation. One example is a sphere. It can be shown that
it is impossible to �nd one regular parametric representation that can cover the whole
sphere. Instead one uses several parametric representations to cover di�erent parts of
the sphere and call the collection of such representations a parametric surface. For our
purposes this is unnecessary, since we are only interested in analysing a single parametric
representation given as a spline. We will therefore often adopt the sloppy convention of
referring to a parametric representation as a surface.

Let us check that the surface given by (7.32) is regular. The Jacobian matrix is easily
computed as

J(f) =
(
p1 − p0,p2 − p0

)
,
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(the two vectors p1 − p0 and p2 − p0 give the columns of J(f)). We see that J(f) has
full rank unless p1−p0 = λ(p2−p0) for some real number λ, i.e., unless all three points
lie on a straight line.

A curve on the surface S of the form f(u, v0) for �xed v0 is called a u-curve, while
a curve of the form f(u0, v) is called a v-curve. A collective term for such curves is
iso-parametric curves.

Iso-parametric curves are often useful for plotting. By drawing a set of u- and v-
curves, one gets a simple but good impression of the surface.

The �rst derivativesD1f(u, v) andD2f(u, v) are derivatives of, and therefore tangent
to, a u- and v-curve respectively. For a regular surface the two �rst derivatives are linearly
independent and therefore the cross product D1f(u, v)×D2f(u, v) is nonzero and normal
to the two tangent vectors.

De�nition 7.8. The unit normal of the regular parametric representation f is the vector

N(u, v) =
D1f(u, v)×D2f(u, v)

‖D1f(u, v)×D2f(u, v)‖
.

The normal vector will play an important role when we start analysing the curvature
of surfaces.

Let
(
u(σ), v(σ)

)
be a regular curve in the domain Ω of a parametric representation

f . This curve is mapped to a curve g(σ) on the surface,

g(σ) = f
(
u(σ), v(σ)

)
.

The tangent of g is given by

g′(σ) = u′(σ)D1f
(
u(σ), v(σ)

)
+ v′(σ)D2f

(
u(σ), v(σ)

)
,

in other words, a linear combination of the two tangent vectors D1f
(
u(σ), v(σ)

)
and

D2f
(
u(σ), v(σ)

)
. Note that g is regular since g′(σ) = 0 implies u′(σ) = v′(σ) = 0.

All regular curves on S through the point f(u, v) has a tangent vector on the form
δ1D1f + δ2D2f , where δ = (δ1, δ2) is a vector in R2. The space of all such tangent
vectors is the tangent plane of S at f(u, v).

De�nition 7.9. Let S be a surface with a regular parametric representation f . The
tangent space or tangent plane Tf(u, v) of S at f(u, v) is the plane in R3 spanned by
the two vectors D1f(u, v) and D2f(u, v), i.e., all vectors on the form δ1D1f(u, v) +
δ2D2f(u, v).

Note that the normal of the tangent plane Tf(u, v) is the normal vector N(u, v).

7.4.1 Parametric Tensor Product Spline Surfaces

Recalling how we generalized from spline functions to parametric spline curves, we see
that the de�nition of parametric tensor product spline surfaces is the obvious generaliza-
tion of tensor product spline functions.



7.4. PARAMETRIC SURFACES 165

De�nition 7.10. A parametric tensor product spline surface is given by a parametric
representation on the form

f(u, v) =

m∑
i=1

n∑
j=1

ci,jBi,p1,σ(u)Bj,p2,τ (v),

where the coe�cients (ci,j)
m,n
i,j=1 are points in space,

ci,j = (c1
i,j , c

2
i,j , c

3
i,j),

and σ = (σi)
m+p1+1
i=1 and τ = (τj)

n+p2+1
j=1 are knot vectors for splines of degrees p1 and

p2.

As for curves, algorithms for tensor product spline surfaces can easily be adapted to
give methods for approximation with parametric spline surfaces. Again, as for curves,
the only complication is the question of parametrization, but we will not consider this in
more detail here.
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Chapter 8
Quasi-interpolation methods

In Chapter 5 we considered a number of methods for computing spline approximations.
The starting point for the approximation methods is a data set that is usually discrete
and in the form of function values given at a set of abscissas. The methods in Chapter 5
roughly fall into two categories: global methods and local methods. A global method
is one where any B-spline coe�cient depends on all initial data points, whereas a local
method is one where a B-spline coe�cient only depends on data points taken from the
neighbourhood of the support of the corresponding B-spline. Typical global methods are
cubic spline interpolation and least squares approximation, while cubic Hermite interpo-
lation and the Schoenberg variation diminishing spline approximation are popular local
methods.

In this chapter we are going to describe a general recipe for developing local spline
approximation methods. This will enable us to produce an in�nite number of approxi-
mation schemes that can be tailored to any special needs that we may have or that our
given data set dictates. In principle, the methods are local, but by allowing the area of
in�uence for a given B-spline coe�cient to grow, our general recipe may even encompass
the global methods in Chapter 5.

The recipe we describe produces approximation methods known under the collective
term quasi-interpolation methods. Their advantage is their �exibility and their simplic-
ity. There is considerable freedom in the recipe to produce tailor-made approximation
schemes for initial data sets with special structure. Quasi-interpolants also allow us to
establish important properties of B-splines. In the next chapter we will employ them
to study how well a given function can be approximated by splines, and to show that
B-splines form a stable basis for splines.

8.1 A general recipe

A spline approximation method consists of two main steps: First the degree and knot vec-
tor are determined, and then the B-spline coe�cients of the approximation are computed
from given data according to some formula. For some methods like spline interpolation

167
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and least squares approximation, this formula corresponds to the solution of a linear
system of equations. In other cases, like cubic Hermite interpolation and Schoenberg's
Variation Diminishing spline approximation, the formula for the coe�cients is given di-
rectly in terms of given values of the function to be interpolated.

8.1.1 The basic idea

The basic idea behind the construction of quasi-interpolants is very simple. We focus
on how to compute the B-spline coe�cients of the approximation and assume that the
degree and knot vector are known. The procedure depends on two versions of the local
support property of B-splines that we know well from earlier chapters: (i) The B-spline
Bj is nonzero only within the interval [τj , τj+p+1], and (ii) on the interval [τµ, τµ+1) there
are only p + 1 B-splines in Sp,τ that are nonzero so a spline g in Sp,τ can be written as
g(x) =

∑µ
i=µ−p biBi(x) when x is restricted to this interval.

Suppose we are to compute an approximation g =
∑

i ciBi in Sp,τ to a given function
f . To compute cj we can select one knot interval I = [τµ, τµ+1] which is a subinterval
of [τj , τj+p+1]. We denote the restriction of f to this interval by f I and determine an
approximation gI =

∑µ
i=µ−p biBi to f

I . One of the coe�cients of gI will be bj and we
�x cj by setting cj = bj . The whole procedure is then repeated until all the ci have been
determined.

It is important to note the �exibility of this procedure. In choosing the interval I
we will in general have the p+ 1 choices µ = j, j, . . . , j + p (fewer if there are multiple
knots). As we shall see below we do not necessarily have to restrict I to be one knot
interval; all that is required is that I ∩ [τµ, τµ+p+1] is nonempty. When approximating f I

by gI we have a vast number of possibilities. We may use interpolation or least squares
approximation, or any other approximation method. Suppose we settle for interpolation,
then we have complete freedom in choosing the interpolation points within the interval
I. In fact, there is so much freedom that we can have no hope of exploring all the
possibilities.

It turns out that some of this freedom is only apparent � to produce useful quasi-
interpolants we have to enforce certain conditions. With the general setup described
above, a useful restriction is that if f I should happen to be a polynomial of degree
p then gI should reproduce f I , i.e., in this case we should have gI = f I . This has
the important consequence that if f is a spline in Sp,τ then the approximation g will
reproduce f exactly (apart from rounding errors in the numerical computations). To
see why this is the case, suppose that f =

∑
i b̂iBi is a spline in Sp,τ . Then f I will be

a polynomial that can be written as f I =
∑µ

i=µ−p b̂iBi. Since we have assumed that

polynomials will be reproduced we know that gI = f I so
∑µ

i=µ−p biBi =
∑µ

i=µ−p b̂iBi,

and by the linear independence of the B-splines involved we conclude that bi = b̂i for
i = µ − p, . . . , µ. But then we see that cj = bj = b̂j so g will agree with f . An
approximation scheme with the property that Pf = f for all f in a space S is said to
reproduce the space.
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8.1.2 A more detailed description

Hopefully, the basic idea behind the construction of quasi-interpolants became clear
above. In this section we describe the construction in some more detail with the gener-
alisations mentioned before. We �rst write down the general procedure for determining
quasi-interpolants and then comment on the di�erent steps afterwards.

Algorithm 8.1 (Construction of quasi-interpolants). Let the spline space Sp,τ of dimen-
sion n and the real function f de�ned on the interval [τp+1, τn+1] be given, and suppose
that τ is a p+ 1-regular knot vector. To approximate f from the space Sp,τ perform the
following steps for j = 1, 2, . . . , n:

1. Choose a subinterval I = [τµ, τν ] of [τp+1, τn+1] with the property that I∩(τj , τj+p+1)
is nonempty, and let f I denote the restriction of f to this interval.

2. Choose a local approximation method P I and determine an approximation gI to
f I ,

gI = P If I =
ν−1∑
i=µ−p

biBi, (8.1)

on the interval I.

3. Set coe�cient j of the global approximation Pf to bj , i.e.,

cj = bj .

The spline Pf =
∑n

j=1 cjBj will then be an approximation to f .

The coe�cient cj obviously depends on f and this dependence on f is often indicated
by using the notation λjf for cj . This will be our normal notation in the rest of the
chapter.

An important point to note is that the restriction Sp,τ ,I of the spline space Sp,τ to
the interval I can be written as a linear combination of the B-splines {Bi}ν−1

i=µ−p. These
are exactly the B-splines whose support intersect the interior of the interval I, and by
construction, one of them must clearly be Bj . This ensures that the coe�cient bj that
is needed in step 3 is computed in step 2.

Algorithm 8.1 generalizes the simpli�ed procedure in Section 8.1.1 in that I is no
longer required to be a single knot interval in [τj , τj+p+1]. This gives us considerably
more �exibility in the choice of local approximation methods. Note in particular that the
classical global methods are included as special cases since we may choose I = [τp+1, τn+1].

As we mentioned in Section 8.1.1, we do not get good approximation methods for
free. If Pf is going to be a decent approximation to f we must make sure that the local
methods used in step 2 reproduce polynomials or splines.

Lemma 8.2. Suppose that all the local methods used in step 2 of Algorithm 8.1 repro-
duce all polynomials of some degree p1 ≤ p. Then the global approximation method P
will also reproduce polynomials of degree p1. If all the local methods reproduce all the
splines in Sp,τ ,I then P will reproduce the whole spline space Sp,τ .
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Proof. The proof of both claims follow just as in the special case in Section 8.1.1, but
let us even so go through the proof of the second claim. We want to prove that if all
the local methods P I reproduce the local spline spaces Sp,τ ,I and f is a spline in Sp,τ ,
then Pf = f . If f is in Sp,τ we clearly have f =

∑n
i=1 b̂iBi for appropriate coe�cients

(b̂i)
n
i=1, and the restriction of f to I can be represented as f I =

∑ν−1
i=µ−p b̂iBi. Since P

I

reproduces Sp,τ ,I we will have P If I = f I or

ν−1∑
i=µ−p

biBi =

ν−1∑
i=µ−p

b̂iBi.

The linear independence of the B-splines involved over the interval I then allows us to
conclude that bi = b̂i for all indices i involved in this sum. Since j is one the indices
we therefore have cj = bj = b̂j . When this holds for all values of j we obviously have
Pf = f .

The reader should note that if I is a single knot interval, the local spline space Sp,τ ,I
reduces to the space of polynomials of degree p. Therefore, when I is a single knot
interval, local reproduction of polynomials of degree p leads to global reproduction of the
whole spline space.

Why does reproduction of splines or polynomials ensure that P will be a good ap-
proximation method? We will study this in some detail in Chapter 9, but as is often
the case the basic idea is simple: The functions we want to approximate are usually nice
and smooth, like the exponential functions or the trigonometric functions. An important
property of polynomials is that they approximate such smooth functions well, although if
the interval becomes wide we may need to use polynomials of high degree. A quantitative
manifestation of this phenomenon is that if we perform a Taylor expansion of a smooth
function, then the error term will be small, at least if the degree is high enough. If our
approximation method reproduces polynomials it will pick up the essential behaviour
of the Taylor polynomial, while the approximation error will pick up the essence of the
error in the Taylor expansion. The approximation method will therefore perform well
whenever the error in the Taylor expansion is small. If we reproduce spline functions we
can essentially reproduce Taylor expansions on each knot interval as long as the function
we approximate has at least the same smoothness as the splines in the spline space we are
using. So instead of increasing the polynomial degree because we are approximating over
a wide interval, we can keep the spacing in the knot vector small and thereby keep the
polynomial degree of the spline low. Another way to view this is that by using splines we
can split our function into suitable pieces that each can be approximated well by polyno-
mials of relatively low degree, even though this is not possible for the complete function.
By constructing quasi-interpolants as outlined above we obtain approximation methods
that actually utilise this approximation power of polynomials on each subinterval. In
this way we can produce good approximations even to functions that are only piecewise
smooth.
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8.2 Some quasi-interpolants

It is high time to try out our new tool for constructing approximation methods. Let us
see how some simple methods can be obtained from Algorithm 8.1.

8.2.1 Piecewise linear interpolation

Perhaps the simplest, local approximation method is piecewise linear interpolation. We
assume that our n-dimensional spline space S1,τ is given and that τ is a 2-regular knot
vector. For simplicity we also assume that all the interior knots are simple. The function
f is given on the interval [τ2, τn+1]. To determine cj we choose the local interval to be
I = [τj , τj+1]. In this case, we have no interior knots in I so S1,τ ,I is the two dimensional
space of linear polynomials. A basis for this space is given by the two linear B-splines
Bj−1 and Bj , restricted to the interval I. A natural candidate for our local approximation
method is interpolation at τj andτj+1. On the interval I, the B-spline Bj−1 is a straight
line with value 1 at τj and value 0 at τj+1, while Bj is a straight line with value 0 at τj
and value 1 at τj+1. The local interpolant can therefore be written

P I1 f(x) = f(τj)Bj−1(x) + f(τj+1)Bj(x).

From Algorithm 8.1 we know that the coe�cient multiplying Bj is the one that should
multiply Bj also in our global approximation, in other words cj = λjf = f(τj+1). The
global approximation is therefore

P1f(x) =
n∑
j=1

f(τj+1)Bj(x).

Since a straight line is completely characterized by its value at two points, the local
approximation will always give zero error and therefore reproduce all linear polynomials.
Then we know from Lemma 8.2 that P1 will reproduce all splines S1,τ .

This may seem like unnecessary formalism in this simple case where the conclusions
are almost obvious, but it illustrates how the construction works in a very transparent
situation.

8.2.2 A 3-point quadratic quasi-interpolant

In our repertoire of approximation methods, we only have one local, quadratic method,
Schoenberg's variation diminishing spline. With the quasi-interpolant construction it is
easy to construct alternative, local methods. Our starting point is a quadratic spline
space S2,τ based on a 3-regular knot vector with distinct interior knots, and a function
f to be approximated by a scheme which we denote P2. The support of the B-spline
Bj is [τj , τj+3], and we choose our local interval as I = [τj+1, τj+2]. Since I is one knot
interval, we need a local approximation method that reproduces quadratic polynomials.
One such method is interpolation at three distinct points. We therefore choose three
distinct points xj,0, xj,1 and xj,2 in I. Some degree of symmetry is always a good guide
so we choose

xj,0 = τj+1, xj,1 =
τj+1 + τj+2

2
, xj,2 = τj+2.
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To determine P I2 f we have to solve the linear system of three equations in the three
unknowns bj−1, bj and bj+1 given by

P I2 f(xj,k) =

j+1∑
i=j−1

biBi(xj,k) = f(xj,k), for k = 0, 1, 2.

With the aid of a tool like Mathematica we can solve these equations symbolically. The
result is that

bj =
1

2
(−f(τj+1) + 4f(τj+3/2)− f(τj+2)

)
,

where τj+3/2 = (τj+1 + τj+2)/2. The expressions for bj−1 and bj+1 are much more
complicated and involve the knots τj and τj+3 as well. The simplicity of the expression
for bj stems from the fact that xj,1 was chosen as the midpoint between τj+1 and τj+2.

The expression for bj is valid whenever τj+1 < τj+2 which is not the case for j = 1
and j = n since τ1 = τ2 = τ3 and τn+1 = τn+2 = τn+3. But from Lemma 2.12 we know
that any spline g in S3,τ will interpolate its �rst and last B-spline coe�cient at these
points so we simply set c1 = f(τ1) and cn = f(τn+1).

Having constructed the local interpolants, we have all the ingredients necessary to
construct the quasi-interpolant P2f =

∑n
j=1 λjfBj , namely

λjf =


f(τ1), when j = 1;

1

2
(−f(xj,0) + 4f(xj,1)− f(xj,2), when 1 < j < n;

f(τn+1), when j = n.

Since the local approximation reproduced the local spline space (the space of quadratic
polynomials in this case), the complete quasi-interpolant will reproduce the whole spline
space S2,τ .

8.2.3 A 5-point cubic quasi-interpolant

The most commonly used splines are cubic, so let us construct a cubic quasi-interpolant.
We assume that the knot vector is 4-regular and that the interior knots are all distinct. As
usual we focus on the coe�cient cj = λjf . It turns out that the choice I = [τj+1, τj+3]
is convenient. The local spline space S3,τ ,I has dimension 5 and is spanned by the

(restriction of the) B-splines {Bi}j+2
i=j−2. We want the quasi-interpolant to reproduce

the whole spline space and therefore need P I to reproduce S3,τ ,I . We want to use
interpolation as our local approximation method, and we know from Chapter 5 that
spline interpolation reproduces the spline space as long as it has a unique solution. The
solution is unique if the coe�cient matrix of the resulting linear system is nonsingular,
and from Theorem 5.32 we know that a B-spline coe�cient matrix is nonsingular if and
only if its diagonal is positive. Since the dimension of S3,τ ,I is 5 we need 5 interpolation
points. We use the three knots τj+1, τj+2 and τj+3 and one point from each of the knot
intervals in I,

xj,0 = τj+1, xj,1 ∈ (τj+1, τj+2), xj,2 = τj+2, xj,3 ∈ (τj+2, τj+3), xj,4 = τj+3.
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Our local interpolation problem is

j+2∑
i=j−2

biBi(xj,k) = f(xj,k), for k = 0, 1, . . . , 4.

In matrix-vector form this becomes
Bj−2(xj,0) Bj−1(xj,0) Bj(xj,0) 0 0
Bj−2(xj,1) Bj−1(xj,1) Bj(xj,1) Bj+1(xj,1) 0
Bj−2(xj,2) Bj−1(xj,2) Bj(xj,2) Bj+1(xj,2) Bj+2(xj,2)

0 Bj−1(xj,3) Bj(xj,3) Bj+1(xj,3) Bj+2(xj,3)
0 0 Bj(xj,4) Bj+1(xj,4) Bj+2(xj,4)



bj−2

bj−1

bj
bj+1

bj+2

 =


f(xj,0)
f(xj,1)
f(xj,2)
f(xj,3)
f(xj,4)


when we insert the matrix entries that are zero. Because of the way we have chosen
the interpolation points we see that all the entries on the diagonal of the coe�cient
matrix will be positive so the matrix is nonsingular. The local problem therefore has a
unique solution and will reproduce S3,τ ,I . The expression for λjf is in general rather
complicated, but in the special case where the widths of the two knot intervals are equal
and xj,2 and xj,4 are chosen as the midpoints of the two intervals we end up with

λjf =
1

6

(
f(τj+1)− 8f(τj+3/2) + 20f(τj+2)− 8f(τj+5/2) + f(τj+3)

)
where τj+3/2 = (τj+1 +τj+2)/2 and τj+5/2 = (τj+2 +τj+3)/2. Unfortunately, this formula
is not valid when j = 1, 2, n − 1 or n since then one or both of the knot intervals in I
collapse to one point. However, our procedure is su�ciently general to derive alternative
formulas for computing the �rst two coe�cients. The �rst value of j for which the general
procedure works is j = 3. In this case I = [τ4, τ6] and our interpolation problem involves
the B-splines {Bi}5i=1. This means that when we solve the local interpolation problem
we obtain B-spline coe�cients multiplying all of these B-splines, including B1 and B2.
There is nothing stopping us from using the same interval I for computation of several
coe�cients, so in addition to obtaining λ3f from this local interpolant, we also use it as
our source for the �rst two coe�cients. In the special case when the interior knots are
uniformly distributed and x3,1 = τ9/2 and x3,3 = τ11/2, we �nd

λ1f = f(τ4),

λ2f =
1

18

(
−5f(τ4) + 40f(τ9/2)− 24f(τ5) + 8f(τ11/2)− f(τ6)

)
.

In general, the second coe�cient will be much more complicated, but the �rst one will
not change.

This same procedure can obviously be used to determine values for the last two coef-
�cients, and under the same conditions of uniformly distributed knots and interpolation
points we �nd

λn−1f =
1

18

(
−f(τn−1) + 8f(τn−1/2)− 24f(τn) + 40f(τn+1/2)− 5f(τn+1)

)
,

λnf = f(τn+1).
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8.2.4 Some remarks on the constructions

In all our constructions, we have derived speci�c formulas for the B-spline coe�cients
of the quasi-interpolants in terms of the function f to be approximated, which makes it
natural to use the notation cj = λjf . To do this, we had to solve the local linear system
of equations symbolically. When the systems are small this can be done quite easily with
a computer algebra system like Maple or Mathematica, but the solutions quickly become
complicated and useless unless the knots and interpolation points are nicely structured,
preferably with uniform spacing. The advantage of solving the equations symbolically is
of course that we obtain explicit formulas for the coe�cients once and for all and can
avoid solving equations when we approximate a particular function.

For general knots, the local systems of equations usually have to be solved numeri-
cally, but quasi-interpolants can nevertheless prove very useful. One situation is real-time
processing of data. Suppose we are in a situation where data are measured and need to
be �tted with a spline in real time. With a global approximation method we would have
to recompute the whole spline each time we receive new data. This would be acceptable
at the beginning, but as the data set grows, we would not be able to compute the new
approximation quickly enough. We could split the approximation into smaller pieces at
regular intervals, but quasi-interpolants seem to be a perfect tool for this kind of appli-
cation. In a real-time application the data will often be measured at �xed time intervals,
and as we have seen it is then easy to construct quasi-interpolants with explicit formulas
for the coe�cients. Even if this is not practicable because the explicit expressions are
not available or become too complicated, we just have to solve a simple, linear set of
equations to determine each new coe�cient. The important fact is that the size of the
system is constant so that we can handle almost arbitrarily large data sets, the only
limitation being available storage space.

Another important feature of quasi-interpolants is their �exibility. In our construc-
tions we have assumed that the function we approximate can be evaluated at any point
that we need. This may sometimes be the case, but often the function is only partially
known by a few discrete, measured values at speci�c abscissas. The procedure for con-
structing quasi-interpolants has so much inherent freedom that it can be adapted in a
number of ways to virtually any speci�c situation, whether the whole data set is available
a priori or the approximation has to be produced in real-time as the data is generated.

8.3 Quasi-interpolants are linear operators

Now that we have seen some examples of quasi-interpolants, let us examine them from a
more general point of view. The basic ingredient of quasi-interpolants is the computation
of each B-spline coe�cient, and we have have used the notation cj = λjf = λj(f) to
indicate that each coe�cient depends on f . It is useful to think of λj as a 'function' that
takes an ordinary function as input and gives a real number as output; such 'functions'
are usually called functionals. If we go back and look at our examples, we notice that in
each case the dependency of our coe�cient functionals on f is quite simple: The function
values occur explicitly in the coe�cient expressions and are not multiplied or operated
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on in any way other than being added together and multiplied by real numbers. This is
familiar from linear algebra.

De�nition 8.3. In the construction of quasi-interpolants, each B-spline coe�cient is
computed by evaluating a linear functional. A linear functional λ is a mapping from a
suitable space of functions S into the real numbers R with the property that if f and g
are two arbitrary functions in S and α and β are two real numbers then

λ(αf + βg) = αλf + βλg.

Linearity is a necessary property of a functional that is being used to compute B-spline
coe�cients in the construction of quasi-interpolants. If one of the coe�cient functionals is
nonlinear, then the resulting approximation method is not a quasi-interpolant. Linearity
of the coe�cient functionals leads to linearity of the approximation scheme.

Lemma 8.4. Any quasi-interpolant P is a linear operator, i.e., for any two admissible
functions f and g and any real numbers α and β,

P (αf + βg) = αPf + βPg.

Proof. Suppose that the linear coe�cient functionals are (λj)
n
j=1. Then we have

P (αf + βg) =
n∑
i=1

λj(αf + βg)Bi = α
n∑
i=1

λjfBi + β
n∑
i=1

λjgBi = αPf + βPg

which demonstrates the linearity of P .

This lemma is simple, but very important since there are so many powerful mathe-
matical tools available to analyse linear operators. In Chapter 9 we are going to see how
well a given function can be approximated by splines. We will do this by applying basic
tools in the analysis of linear operators to some speci�c quasi-interpolants.

8.4 Alternative ways to construct coe�cient functionals

In Section 8.2 we constructed three quasi-interpolants by following the general procedure
in Section 8.1. In this section we will deduce two alternative ways to construct quasi-
interpolants.

8.4.1 Computation via evaluation of linear functionals

Let us use the 3-point, quadratic quasi-interpolant in subsection 8.2.2 as an example. In
this case we used I = [τj+1, τj+2] as the local interval for determining cj = λjf . This
meant that the local spline space S2,τ ,I become the space of quadratic polynomials on I

which has dimension three. This space is spanned by the three B-splines {Bi}j+1
i=j−1 and

interpolation at the three points

τj+1, τj+3/2 =
τj+1 + τj+2

2
, τj+2
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allowed us to determine a local interpolant gI =
∑j+1

i=j−1 biBi whose middle coe�cient bj
we used as λjf .

An alternative way to do this is as follows. Since gI is constructed by interpolation
at the three points τj+1, τj+3/2 and τj+2, we know that λjf can be written in the form

λjf = w1f(τj+1) + w2f(τj+3/2) + w3f(τj+2). (8.2)

We want to reproduce the local spline space which in this case is just the space of
quadratic polynomials. This means that (8.2) should be valid for all quadratic polyno-
mials. Reproduction of quadratic polynomials can be accomplished by demanding that
(8.2) should be exact when f is replaced by the three elements of a basis for S2,τ ,I . The

natural basis to use in our situation is the B-spline basis {Bi}j+1
i=j−1. Inserting this, we

obtain the system

λjBj−1 = w1Bj−1(τj+1) + w2Bj−1(τj+3/2) + w3Bj−1(τj+2),

λjBj = w1Bj(τj+1) + w2Bj(τj+3/2) + w3Bj(τj+2),

λjBj+1 = w1Bj+1(τj+1) + w2Bj+1(τj+3/2) + w3Bj+1(τj+2).

in the three unknowns w1, w2 and w3. The left-hand sides of these equations are easy
to determine. Since λjf denotes the jth B-spline coe�cient, it is clear that λjBi = δi,j ,
i.e., it is 1 when i = j and 0 otherwise.

To determine the right-hand sides we have to compute the values of the B-splines.
For this it is useful to note that the wj 's in equation (8.2) cannot involve any of the knots
other than tj+1 and tj+2 since a general polynomial knows nothing about these knots.
This means that we can choose the other knots so as to make life simple for ourselves.
The easiest option is to choose the �rst three knots equal to tj+1 and the last three equal
to tj+2. But then we are in the Bézier setting, and we know that the B-splines in this
case will have the same values if we choose τj+1 = 0 and τj+2 = 1. The knots are then
(0, 0, 0, 1, 1, 1) which means that τj+3/2 = 1/2. If we denote the B-splines on these knots

by {B̃i}3i=1, we can replace Bi in (8.4.1) by B̃i−j+2 for i = 1, 2, 3. We can now simplify
(8.4.1) to

0 = w1B̃1(0) + w2B̃1(1/2) + w3B̃1(1),

1 = w1B̃2(0) + w2B̃2(1/2) + w3B̃2(1),

0 = w1B̃3(0) + w2B̃3(1/2) + w3B̃3(1).

If we insert the values of the B-splines we end up with the system

w1 + w2/4 = 0,

w2/2 = 1,

w2/4 + w3 = 0,

which has the solution w1 = −1/2, w2 = 2 and w3 = −1/2. In conclusion we have

λjf =
−f(tj+1) + 4f(tj+3/2)− f(tj+2)

2
,
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as we found in Section 8.2.2.
This approach to determining the linear functional works quite generally and is often

the easiest way to compute the weights (wi).

8.4.2 Computation via explicit representation of the local approximation

There is a third way to determine the expression for λjf . For this we write down
an explicit expression for the approximation gI . Using the 3-point quadratic quasi-
interpolant as our example again, we introduce the abbreviations a = τj+1, b = τj+3/2

and c = τj+2. We can write the local interpolant gI as

gI(x) =
(x− b)(x− c)
(a− b)(a− c)

f(a) +
(x− a)(x− c)
(b− a)(b− c)

f(b) +
(x− a)(x− b)
(c− a)(c− b)

f(c),

as it is easily veri�ed that gI then satis�es the three interpolation conditions gI(a) = f(a),
gI(b) = f(b) and gI(c) = f(c). What remains is to write this in terms of the B-spline
basis {Bi}j+1

i=j−1 and pick out coe�cient number j. Recall that we have the notation γj(f)
for the jth B-spline coe�cient of a spline f . Coe�cient number j on the left-hand side is
λjf . On the right, we �nd the B-spline coe�cients of each of the three polynomials and
add up. The numerator of the �rst polynomial is (x− b)(x− c) = x2 − (b+ c)x+ bc. To
�nd the jth B-spline of this polynomial, we make use of Corollary 3.5 which tells that,
when d = 2, we have γj(x

2) = τj+1τj+2 = ac and γj(x) = (τj+1 +τj+2)/2 = (a+c)/2 = b,
respectively. The jth B-spline coe�cient of the �rst polynomial is therefore

γj

(ac− (b+ c)b+ bc

(a− b)(a− c)

)
=

ac− b2

(a− b)(a− c)
(8.3)

which simpli�es to −1/2 since b = (a+c)/2. Similarly, we �nd that the jth B-spline coe�-
cient of the second and third polynomials are 2 and −1/2, respectively. The complete jth
B-spline coe�cient of the right-hand side of (8.3) is therefore −f(a)/2 + 2f(b)− f(c)/2.
In total, we have therefore obtained

λjf = γj(g
I) = −f(τj+1)

2
+ 2f(τj+3/2)− f(τj+2)

2
,

as required.
This general procedure also works generally, and we will see another example of it in

Section 8.5.1.

8.5 Two quasi-interpolants based on point functionals

There are many functionals that can be used to de�ne quasi-interpolants. As an example,
integral functionals based on moments are given by∫ b

a
f(x)xi dx.

These functionals can be used for any polynomial degree, since the only polynomial of
degree p whose p+ 1 �rst moments vanish is the zero polynomial.
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However, we will not consider these functionals any further. Instead we restrict our
attention to two particular quasi-interpolants based on point functionals: In the �rst case
all the points are identical which leads to derivative functionals, in the second case all
the points are distinct. They may be useful for practical approximation problems, but
we are going to use them to prove special properties of spline functions in Chapters 9
and 10.

8.5.1 A quasi-interpolant based on the Taylor polynomial

A very simple local, polynomial approximation is the Taylor polynomial. This leads to a
quasi-interpolant based on derivative functionals. Even though we use splines of degree
p, our local approximation can be of lower degree; in Theorem 8.5 this degree is given
by r.

Theorem 8.5 (de Boor-Fix). Let r be an integer with 0 ≤ r ≤ p and let xj be a number
in [τj , τj+p+1] for j = 1, . . . , n. Consider the quasi-interpolant

Qp,rf =
n∑
j=1

λj(f)Bj,p, where λj(f) =
1

p!

r∑
k=0

(−1)kDp−kρj,p(xj)D
kf(xj), (8.4)

and ρj,p(y) = (y − τj+1) · · · (y − τj+p). Then Qp,r reproduces all polynomials of degree r
and Qp,p reproduces all splines in Sp,τ .

Proof. To construct Qp,r we let I be the knot interval that contains xj and let the local
approximation gI = P Ir f be the Taylor polynomial of degree r at the point xj ,

gI(x) = P Ir f(x) =
r∑

k=0

(x− xj)k

k!
Dkf(xj).

To construct the linear functional λjf , we have to �nd the B-spline coe�cients of this
polynomial. We use the same approach as in Section 8.4.2. For this Marsden's identity,

(y − x)p =
n∑
j=1

ρj,p(y)Bj,p(x),

will be useful. Setting y = xj , we see that the jth B-spline coe�cient of (xj − x)p is
ρj,p(xj). Di�erentiating Marsden's identity p− k times with respect to y, setting y = xi
and rearranging, we obtain the jth B-spline coe�cient of (x− xj)k/k! as

γj
(
(x− xj)k/k!

)
= (−1)kDp−kρj,p(xj)/p! for k = 0, . . . , r.

Summing up, we �nd that

λj(f) =
1

p!

r∑
k=0

(−1)kDp−kρj,p(xj)D
kf(xj).
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Since the Taylor polynomial of degree r reproduces polynomials of degree r, we know
that the quasi-interpolant will do the same. If r = p, we reproduce polynomials of degree
p which agrees with the local spline space Sp,τ ,I since I is a single knot interval. The
quasi-interpolant therefore reproduces the whole spline space Sp,τ in this case.

Example 8.6. We �nd

Dpρj,p(y)/p! = 1, Dp−1ρj,p(y)/p! = y − τ∗j , where τ∗j =
τj+1 + · · ·+ τj+p

p
. (8.5)

For r = 1 and xj = τ∗j we therefore obtain

Qp,rf =

n∑
j=1

f(τ∗j )Bj,p

which is the Variation Diminishing spline approximation. For d = r = 2 we obtain

Q2,2f =

n∑
j=1

[
f(xj)− (xj − τj+3/2)Df(xj) +

1

2
(xj − τj+1)(xj − τj+2)D2f(xj)

]
Bj,2. (8.6)

while for d = r = 3 and xj = τj+2 we obtain

Q3,3f =

n∑
j=1

[
f(τj+2) +

1

3
(τj+3 − 2τj+2 + τj+1)Df(τj+2)− 1

6
(τj+3 − τj+2)(τj+2 − τj+1)D2f(τj+2)

]
Bj,3.

(8.7)
We leave the detailed derivation as a problem for the reader.

Since Qp,pf = f for all f ∈ Sp,τ it follows that the coe�cients of a spline f =∑n
j=1 cjBj,p can be written in the form

cj =
1

p!

p∑
k=0

(−1)kDp−kρj,p(xj)D
kf(xj), for j = 1, . . . , n, (8.8)

where xj is any number in [τj , τj+p+1].

8.5.2 Quasi-interpolants based on evaluation

Another natural class of linear functionals is the one where each λj used to de�ne Q is
constructed by evaluating the data at r + 1 distinct points

τj ≤ xj,0 < xj,1 < · · · < xj,r ≤ τj+p+1 (8.9)

located in the support [τj , τj+p+1] of the B-spline Bj,p for j = 1, . . . , n. We consider the
quasi-interpolant

Pp,rf =
n∑
j=1

λj,r(f)Bj,p, (8.10)

where

λj,r(f) =

r∑
k=0

wj,kf(xj,k). (8.11)

From the preceding theory we know how to choose the constants wj,k so that Pp,rf = f
for all f ∈ πr.
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Theorem 8.7. Let Sp,τ be a spline space with a p+1-regular knot vector τ = (τi)
n+p+1
i=1 .

Let (xj,k)
r
k=0 be r + 1 distinct points in [τj , τj+p+1] for j = 1, . . . , n, and let wj,k be the

jth B-spline coe�cient of the polynomial

pj,k(x) =
r∏
s=0
s 6=k

x− xj,s
xj,k − xj,s

.

Then Pp,rf = f for all f ∈ πr, and if r = p and all the numbers (xj,k)
r
k=0 lie in one

subinterval

τj ≤ τ`j ≤ xj,0 < xj,1 < · · · < xj,r ≤ τ`j+1 ≤ τj+p+1 (8.12)

then Pp,pf = f for all f ∈ Sp,τ .

Proof. It is not hard to see that

pj,k(xj,i) = δk,i, k, i = 0, . . . , r

so that the polynomial

P Ip,rf(x) =
r∑

k=0

pj,k(x)f(xj,k)

satis�es the interpolation conditions P Ip,rf(xj,r) = f(xj,r) for all j and r. The result
therefore follows from the general recipe.

In order to give examples of quasi-interpolants based on evaluation we need to know
the B-spline coe�cients of the polynomials pj,k. We will return to this in more detail in
Chapter 9, see (9.15) in the case r = p. A similar formula can be given for r < p.

Example 8.8. For r = 1 we have

pj,0(x) =
xj,1 − x
xj,1 − xj,0

, pj,1(x) =
x− xj,0
xj,1 − xj,0

and (8.10) takes the form

Pp,1f =

n∑
j=1

[
xj,1 − τ∗j
xj,1 − xj,0

f(xj,0) +
τ∗j − xj,0
xj,1 − xj,0

f(xj,1)

]
Bj,p. (8.13)

This quasi-interpolant reproduces straight lines for any choice of τj ≤ xj,0 < xj,1 ≤ τj+p+1. If we choose
xj,0 = τ∗j the method simpli�es to

P̃p,1f =
n∑
j=1

f(τ∗j )Bj,p. (8.14)

This is again the Variation diminishing method of Schoenberg.
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Exercises for Chapter 8

8.1 In this exercise we assume that the points (xi,k) and the spline space Sp,τ are as in
Theorem 8.7.

a) Show that for r = d = 2

P2,2f =
n∑
j=1

[
(τj+1 − xj,1)(τj+2 − xj,2) + (τj+2 − xj,1)(τj+1 − xj,2)

2(xj,0 − xj,1)(xj,0 − xj,2)
f(xj,0)

+
(τj+1 − xj,0)(τj+2 − xj,2) + (τj+2 − xj,0)(τj+1 − xj,2)

2(xj,1 − xj,0)(xj,1 − xj,2)
f(xj,1)

+
(τj+1 − xj,0)(τj+2 − xj,1) + (τj+2 − xj,0)(τj+1 − xj,1)

2(xj,2 − xj,0)(xj,2 − xj,1)
f(xj,2)

]
Bj,2

(8.15)

b) Show that (8.15) reduces to the operator (9.6) for a suitable choice of (xj,k)
2
k=0.

8.2 Derive the following operators Qp,l and show that they are exact for πr for the indi-
cated r. Again we the points (xj,k) and the spline space Sp,τ are is in Theorem 8.7.
Which of the operators reproduce the whole spline space?

a) Qp,0f =
∑n

j=1 f(xj)Bj,p, (r = 0).

b) Qp,1f =
∑n

j=1

[
f(xj) + (τj − xj)Df(xj)

]
Bj,p, (r = 1).

c) Q̃p,1f =
∑n

j=1 f(τ∗j )Bj,p, (r = 1).

d)

Q2,2f =
n∑
j=1

[
f(xj)− (xj − τj+3/2)Df(xj)

+
1

2
(xj − τj+1)(xj − τj+2)D2f(xj)

]
Bj,2, (r=2).

e) Q̃2,2f =
∑n

j=1

[
f(τj+3/2)− 1

2(τj+2 − τj+1)2D2f(τj+3/2)
]
Bj,2, (r = 2).

f)

Q3,3f =

n∑
j=1

[
f(τj+2) +

1

3
(τj+3 − 2τj+2 + τj+1)Df(τj+2)

− 1

6
(τj+3 − τj+2)(τj+2 − τj+1)D2f(τj+2)

]
Bj,3, (r = 3).
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Chapter 9
Approximation theory and stability

Polynomials of degree p have p + 1 degrees of freedom, namely the p + 1 coe�cients
relative to some polynomial basis. It turns out that each of these degrees of freedom
can be utilised to gain approximation power so that the possible rate of approximation
by polynomials of degree p is hp+1, see Section 9.1. The meaning of this is that when
a smooth function is approximated by a polynomial of degree p on an interval of length
h, the error is bounded by Chp+1, where C is a constant that is independent of h. The
exponent p+ 1 therefore controls how fast the error tends to zero with h.

When several polynomials are linked smoothly together to form a spline, each polyno-
mial piece has p+1 coe�cients, but some of these are tied up in satisfying the smoothness
conditions. It therefore comes as a nice surprise that the approximation power of splines
of degree p is the same as for polynomials, namely hp+1, where h is now the largest
distance between two adjacent knots. In passing from polynomials to splines we have
therefore gained �exibility without sacri�cing approximation power. We prove this in
Section 9.2, by making use of some of the simple quasi-interpolants that we constructed
in Chapter 8; it turns out that these produce spline approximations with the required
accuracy.

The quasi-interpolants also allow us to establish two important properties of B-splines.
The �rst is that B-splines form a stable basis for splines, see Section 9.3. This means that
small perturbations of the B-spline coe�cients can only lead to small perturbations in the
spline, which is of fundamental importance for numerical computations. An important
consequence of the stability of the B-spline basis is that the control polygon of a spline
converges to the spline as the knot spacing tends to zero; this is proved in Section 9.4.

9.1 The distance to polynomials

We start by determining how well a given real valued function f de�ned on an interval
[a, b] can be approximated by a polynomial of degree p. We measure the error in the
approximation with the uniform norm which for a bounded function f de�ned on an

183
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interval [a, b] is de�ned by
‖f‖∞,[a,b] = sup

a≤x≤b

∣∣f(x)
∣∣.

Whenever we have an approximation g to f we can use the norm and measure the
error by ‖f − g‖∞,[a,b]. There are many possible approximations to f by polynomials of
degree p, and the approximation that makes the error as small as possible is of course
of special interest. This approximation is referred to as the best approximation and the
corresponding error is referred to as the distance from f to the space Πp of polynomials
of degree ≤ p. This is de�ned formally as

dist∞,[a,b](f,Πp) = inf
g∈Πp

‖f − g‖∞,[a,b].

In order to bound this approximation error, we have to place some restrictions on the
functions that we approximate, and we will only consider functions with piecewise con-
tinuous derivatives. Such functions lie in a space that we denote Ck∆[a, b] for some integer
k ≥ 0. A function f lies in this space if it has k−1 continuous derivatives on the interval
[a, b], and the kth derivative Dkf is continuous everywhere except for a �nite number
of points in the interior (a, b), given by ∆ = (zj). At the points of discontinuity ∆ the
limits from the left and right, given by Dkf(zj+) and Dkf(zj−), should exist so all the
jumps are �nite. If there are no continuous derivatives we write C∆[a, b] = C0

∆[a, b]. Note
that we will often refer to these spaces without stating explicitly what the singularities
∆ are.

It is quite simple to give an upper bound for the distance of f to polynomials of
degree p by choosing a particular approximation, namely Taylor expansion.

Theorem 9.1. Given a polynomial degree p and a function f in Cp+1
∆ [a, b], then

dist∞,[a,b](f,Πp) ≤ Cphp+1‖Dp+1f‖∞,[a,b],

where h = b− a and the constant Cp only depends on p,

Cp =
1

2p+1(p+ 1)!
.

Proof. Consider the truncated Taylor series of f at the midpoint m = (a+ b)/2 of [a, b],

Tpf(x) =

p∑
k=0

(x−m)k

k!
Dkf(m), for x ∈ [a, b].

Since Tpf is a polynomial of degree p we clearly have

dist∞,[a,b](f,Πp) ≤ ‖f − Tpf‖∞,[a,b]. (9.1)

The error is given by the integral form of the remainder in the Taylor expansion,

f(x)− Tpf(x) =
1

p!

∫ x

m
(x− y)pDp+1f(y)dy,
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which is valid for any x ∈ [a, b]. If we restrict x to the interval [m, b] we obtain

|f(x)− Tpf(x)| ≤ ‖Dp+1f‖∞,[a,b]
1

p!

∫ x

m
(x− y)pdy.

The integral is given by

1

p!

∫ x

m
(x− y)pdy =

1

(p+ 1)!
(x−m)p+1 ≤ 1

(p+ 1)!

(
h

2

)p+1

,

so for x ≥ m we have∣∣f(x)− Tpf(x)
∣∣ ≤ 1

2p+1(p+ 1)!
hp+1‖Dp+1f‖∞,[a,b].

By symmetry this estimate must also hold for x ≤ m. Combining the estimate with (9.1)
completes the proof.

It is in fact possible to compute the best possible constant Cp. It turns out that for
each f ∈ Cp+1[a, b] there is a point ξ ∈ [a, b] such that

dist∞,[a,b](f,Πp) =
2

4p+1(p+ 1)!
hp+1|Dp+1f(ξ)|

Applying this formula to the function f(x) = xp+1 we see that the exponent p + 1 in
hp+1 is best possible.

9.2 The distance to splines

Just as we de�ned the distance from a function f to the space of polynomials of degree
p we can de�ne the distance from f to a spline space. Our aim is to show that on one
knot interval, the distance from f to a spline space of degree p is essentially the same as
the distance from f to the space of polynomials of degree p on a slightly larger interval,
see Theorem 9.2 and Corollary 9.12. Our strategy is to consider the cases p = 0, 1
and 2 separately and then generalise to degree p. The main ingredient in the proof is to
construct a simple but good approximation method that we can use in the same way that
Taylor expansion was used in the polynomial case above. Some of the quasi-interpolants
that we constructed in Chapter 8 will do this job very nicely.

We consider a spline space Sp,τ where p is a nonnegative integer and τ = (τi)
n+p+1
i=1

is a p+ 1 regular knot vector and set

a = τ1, b = τn+p+1, hj = τj+1 − τj , h = max
1≤j≤n

hj .

Given a function f we consider the distance from f to Sp,τ de�ned by

dist∞,[a,b](f,Sp,τ ) = inf
g∈Sp,τ

‖f − g‖∞,[a,b].

We want to show the following.
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Theorem 9.2. Let the polynomial degree p and the function f in Cp+1
∆ [a, b] be given.

The distance between f and the spline space Sp,τ is bounded by

dist∞,[a,b](f, Sp,τ ) ≤ Dph
p+1‖Dp+1f‖∞,[a,b], (9.2)

where the constant Dp depends on p, but not on f or τ .

We will prove this theorem by constructing a spline Qpf such that

|f(x)−Qpf(x)| ≤ Dph
p+1‖Dp+1f‖∞,[a,b], x ∈ [a, b] (9.3)

for a constant Dp that depends only on p. The approximation Qpf will be a quasi-
interpolant on the form

Qpf =
n∑
i=1

λi(f)Bi,p

where λi is a rule for computing the ith B-spline coe�cient. We will restrict ourselves
to rules λi like

λi(f) =

p∑
k=0

wi,kf(xi,k)

where the points (xi,k)
p
k=0 all lie in one knot interval and (wi,k)

p
k=0 are suitable coe�-

cients.

9.2.1 The constant and linear cases

We �rst prove Theorem 9.2 in the simplest cases p = 0 and p = 1. For p = 0 the
knots form a partition a = τ1 < · · · < τn+1 = b of [a, b] and the B-spline Bi,0 is the
characteristic function of the interval [τi, τi+1) for i = 1, . . . , n − 1, while Bn,0 is the
characteristic function of the closed interval [τn, τn+1]. We consider the step function

g(x) = Q0f(x) =

n∑
i=1

f(τi+1/2)Bi,0(x), (9.4)

where τi+1/2 = (τi + τi+1)/2. Fix x ∈ [a, b] and let µ be an integer such that τµ ≤ x <
τµ+1. We then have

f(x)−Q0f(x) = f(x)− f(τµ+1/2) =

∫ x

τµ+1/2

Df(y)dy

so ∣∣f(x)−Q0f(x)
∣∣ ≤ |x− τµ+1/2| ‖Df‖∞,[τµ,τµ+1] ≤

h

2
‖Df‖∞,[a,b].

In this way we obtain (9.2) with D0 = 1/2.
In the linear case p = 1 we de�ne Q1f to be the piecewise linear interpolant to f on

τ de�ned by

g = Q1f =

n∑
i=1

f(τi+1)Bi,1. (9.5)
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Proposition 5.2 gives an estimate of the error in linear interpolation and by applying this
result on each interval we obtain

‖f −Q1f‖∞,[a,b] ≤
h2

8
‖D2f‖∞,[a,b]

which is (9.2) with D1 = 1/8.

9.2.2 The quadratic case

The quadratic case p = 2 is more involved. We shall approximate f by the quasi-
interpolant Q2f that we constructed in Section 8.2.2 and then estimate the error. The
relevant properties of Q2 are summarised in the following lemma.

Lemma 9.3. Suppose τ = (τi)
n+3
i=1 is a knot vector with τi+3 > τi for i = 1, . . . , n and

set τi+3/2 = (τi+1 + τi+2)/2. The operator

Q2f =

n∑
i=1

λi(f)Bi,2,τ with λi(f) = −1

2
f(τi+1) + 2f(τi+3/2)− 1

2
f(τi+2) (9.6)

is linear and satis�es Q2f = f for all f ∈ S2,τ .

Note that since the knot vector is 3-regular we have λ1(f) = f(τ2) and λn(f) =
f(τn+1). We also note that since Q2 reproduces all splines in S2,τ it certainly reproduces
all quadratic polynomial. This fact that will be useful in the proof of Lemma 9.6.

Our aim is to show that (9.3) holds for p = 2 and we are going to do this by
establishing a sequence of lemmas. The �rst lemma shows that λi(f) can become at
most 3 times as large as f , irrespective of what the knot vector is.

Lemma 9.4. Let Q2(f) be as in (9.6). Then∣∣λi(f)
∣∣ ≤ 3‖f‖∞,[τi+1,τi+2], for i = 1, . . . , n. (9.7)

Proof. Fix an integer i. Then∣∣λi(f)
∣∣ =

∣∣∣−1

2
f(τi+1) + 2f(τi+3/2)− 1

2
f(τi+2)

∣∣∣ ≤ (1

2
+ 2 +

1

2

)
‖f‖∞,[τi+1,τi+2]

from which the result follows.

Since the B-spline coe�cients of Q2f are bounded it is easy to see that the spline
Q2f is also bounded by the same constant.

Lemma 9.5. Select some interval [τµ, τµ+1) of [τ3, τn+1). On this interval the spline Q2f
is bounded by

‖Q2f‖∞,[τµ,τµ+1] ≤ 3‖f‖∞,[τµ−1,τµ+2]. (9.8)

Proof. Fix x ∈ [τµ, τµ+1]. Since the B-splines are nonnegative and form a partition of
unity we have

|Q2f(x)| =
∣∣∣ µ∑
i=µ−2

λi(f)Bi,2,τ (x)
∣∣∣ ≤ max

µ−2≤i≤µ
|λi(f)|

≤ 3 max
µ−2≤i≤µ

‖f‖∞,[τi+1,τi+2] = 3‖f‖∞,[τµ−1,τµ+2],
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where we used Lemma 9.4. This completes the proof.

The following lemma shows that on one knot interval the spline Q2f approximates f
almost as well as the best quadratic polynomial over a slightly larger interval. The proof
depends on a standard trick that we will also use in the general case.

Lemma 9.6. Let [τµ, τµ+1) be a subinterval of [τ3, τn+1). On this interval the error
f −Q2f is bounded by

‖f −Q2f‖∞,[τµ,τµ+1] ≤ 4 dist∞,[τµ−1,τµ+2](f,Π2). (9.9)

Proof. Let g ∈ Π2 be any quadratic polynomial. Since Q2g = g and Q2 is a linear
operator, application of (9.8) to f − g yields∣∣f(x)− (Q2f)(x)

∣∣ =
∣∣f(x)− g(x)−

(
(Q2f)(x)− g(x)

)∣∣
≤
∣∣f(x)− g(x)

∣∣+
∣∣Q2(f − g)(x)

∣∣
≤ (1 + 3)‖f − g‖∞,[τµ−1,τµ+2].

(9.10)

Since g is arbitrary we obtain (9.9).

Proof of Theorem 9.2 for p = 2. Theorem 9.1 with p = 2 states that

dist∞,[a,b](f,Π2) ≤ C2h
3‖D3f‖∞,[a,b],

where h = b − a and C2 = 1/(23 3!). Specialising this estimate to the interval [a, b] =
[τµ−1, τµ+2] and combining with (9.9) we obtain (9.3) and hence (9.2) withD2 = 1/12.

9.2.3 The general case

The general case is analogous to the quadratic case, but the details are more involved.
The crucial part is to �nd a su�ciently good local approximation operator. The operator
Q2 is a quasi interpolant that is based on local interpolation with quadratic polynomials
at the three points xi,k = τi+1 +k(τi+2−τi+1)/2 for k = 0, 1, 2. Those points are located
symmetrically in the middle subinterval of the support of the B-spline Bi,2.

We will follow the same strategy for general degree. The resulting quasi-interpolant
will be a special case of the one given in Theorem 8.7. The challenge is to choose the local
interpolation points in such a way that the B-spline coe�cients of the approximation can
be bounded independently of the knots, as in Lemma 9.4. The key is to let all the p+ 1
points be uniformly distributed in the largest subinterval [ai, bi] = [τµ, τµ+1] of [τi+1, τi+p],

xi,k = ai +
k

p
(bi − ai), for k = 0, 1, . . . , p. (9.11)

Given f ∈ C∆[a, b] we de�ne Qpf ∈ Sp,τ by

Qpf(x) =
n∑
i=1

λi(f)Bi,p(x), where λi(f) =

p∑
k=0

wi,kf(xi,k). (9.12)

In this situation Theorem 8.7 specialises to the following.
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Lemma 9.7. Suppose that the functionals λi in (9.12) are given by λi(f) = f(τi+1) if
τi+p = τi+1, while if τi+p > τi+1 the coe�cients of λi(f) are given by

wi,k = γi(pi,k), for k = 0, 1, . . . , p, (9.13)

where γi(pi,k) is the ith B-spline coe�cient of the polynomial

pi,k(x) =

p∏
j=0
j 6=k

x− xi,j
xi,k − xi,j

. (9.14)

Then the operator Qp in (9.12) satis�es Qpf = f for all f ∈ Sp,τ .
We really only need reproduction of polynomials of degree p, but since all the in-

terpolation points lie in one knot interval we automatically get reproduction of all of
Sp,τ .

The �rst challenge is to �nd a formula for the B-spline coe�cients of pi,k. Blossoming
makes this easy.

Lemma 9.8. Suppose the spline space Sp,τ is given together with the numbers v1, . . . , vp.
The ith B-spline coe�cient of the polynomial g(x) = (x− v1) . . . (x− vp) can be written

γi(g) =
1

p!

∑
(j1,...,jp)∈Pp

(ti+j1 − v1) · · · (ti+jp − vp), (9.15)

where Pp is the set of all permutations of the integers {1, 2, . . . , p}.

Proof. By Theorem 4.15 we have

γi(g) = B[g](τi+1, . . . , τi+p),

where B[g] is the blossom of g. It therefore su�ces to verify that the expression (9.15)
satis�es the three properties of the blossom. This is simple and is left to the reader.

Let us consider the special case p = 2 as an example. The set of all permutations of
{1, 2} are P2 = {(1, 2), (2, 1)} and therefore

γi
(
(x− v1)(x− v2)

)
=

1

2

(
(τi+1 − v1)(τi+2 − v2) + (τi+2 − v1)(τi+1 − v2)

)
.

The next and most di�cult step is to obtain a bound for λi(f).

Theorem 9.9. Let Qp(f) =
∑n

i=1 λi(f)Bi,p be the operator in Lemma 9.7. Then

|λi(f)| ≤ Kp‖f‖∞,[τi+1,τi+p], i = 1, . . . , n, (9.16)

where

Kp =
2p

p!

(
p(p− 1)

)p
(9.17)

depends only on p.
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Proof. Fix an integer i. We may as well assume that τi+1 < τi+p since otherwise the
result is obvious. From Lemma 9.8 we have

wi,k =
∑

(j1,...,jp)∈Pp

p∏
r=1

(
τi+jr − vr
xi,k − vr

)
/p!, (9.18)

where (vr)
p
r=1 = (xi,0, . . . , xi,k−1, xi,k+1, . . . , xi,p). and Pp denotes the set of all permuta-

tions of the integers {1, 2, . . . , p}. Since the numbers τi+jr and vr belongs to the interval
[τi+1, τi+p] for all r we have the inequality

p∏
r=1

(τi+jr − vr) ≤ (τi+p − τi+1)p. (9.19)

We also note that xi,k − vr = (k − q)(bi − ai)/d for some q in the range 1 ≤ q ≤ p but
with q 6= k. Taking the product over all r we therefore obtain

p∏
r=1

|xi,k − vr| =
p∏
q=0
q 6=k

|k − q|
p

(bi − ai)

= k!(p− k)!

(
bi − ai
p

)p
≥ k!(p− k)!

(
τi+p − τi+1

p(p− 1)

)p (9.20)

for all values of k and r since [ai, bi] is the largest subinterval of [τi+1, τi+p]. The sum in
(9.18) contains p! terms which means that

p∑
k=0

|wi,k| ≤
[p(p− 1)]p

p!

p∑
k=0

(
p

k

)
=

2p

p!
[p(p− 1)]p = Kp

and therefore

∣∣λi(f)
∣∣ ≤ ‖f‖∞,[τi+1,τi+p]

p∑
k=0

|wi,k| ≤ Kp‖f‖∞,[τi+1,τi+p] (9.21)

which is the required inequality.

Theorem 9.9 is the central ingredient in the proof of Theorem 9.2, but it has many
other consequences as well, some of which we will consider later in this chapter. In fact
Theorem 9.9 gives one of the key properties of B-splines. If f =

∑n
i=1 ciBi,p,τ is a spline

in Sp,τ we know that λi(f) = ci. The inequality (9.16) therefore states that a B-spline
coe�cient is at most Kp times larger than the spline it represents, where the constant
Kp is independent of the knots. A similar conclusion holds for p ≤ 2, see Lemma 9.4
and the de�nition of Q0 and Q1 in (9.4) and (9.5). For later reference we record this in
a corollary.
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Corollary 9.10. For any spline f =
∑n

i=1 ciBi,p in Sp,τ the size of the B-spline coe�-
cients is bounded by

|ci| ≤ Kp‖f‖∞,[τi+1,τi+p],

where the the constant Kp depends only on p.

From the bound on λi(f) we easily obtain a similar bound for the norm of Qpf .

Theorem 9.11. Let f be a function in the space C∆[a, b]. On any subinterval [τµ, τµ+1)
of [τp+1, τn+1) the approximation Qpf is bounded by

‖Qpf‖∞,[τµ,τµ+1] ≤ Kp‖f‖∞,[τµ−p+1,τµ+p], (9.22)

where Kp is the constant in Theorem 9.9.

Proof. Fix an x in some interval [τµ, τµ+1). Since the B-splines are nonnegative and
form a partition of unity we have by Theorem 9.9

∣∣Qpf(x)
∣∣ =

∣∣∣ µ∑
i=µ−p

λi(f)Bi,p,τ (x)
∣∣∣ ≤ max

µ−p≤i≤µ

∣∣λi(f)
∣∣

≤ Kp max
µ−p≤i≤µ

‖f‖∞,[τi+1,τi+p] = Kp‖f‖∞,[τµ−p+1,τµ+p]

This completes the proof.

The following corollary shows that Qpf locally approximates f essentially as well as
the best polynomial approximation of f of degree p.

Corollary 9.12. On any subinterval [τµ, τµ+1) the error f −Qpf is bounded by

‖f −Qpf‖∞,[τµ,τµ+1] ≤ (1 +Kp) dist∞,[τµ−p+1,τµ+p](f,Πp), (9.23)

where Kp is the constant in Theorem 9.9

Proof. We argue exactly as in the quadratic case. Let g be any polynomial in Πp. Since
Qp g = g and Qp is a linear operator we have∣∣f(x)− (Qpf)(x)

∣∣ =
∣∣f(x)− g(x)−

(
(Qpf)(x)− g(x)

)∣∣
≤
∣∣f(x)− g(x)

∣∣+
∣∣Qp(f − g)(x)

∣∣
≤ (1 +Kp)‖f − g‖∞,[τµ−p+1,τµ+p].

Since g is arbitrary we obtain (9.23).

Proof of Theorem 9.2 for general p. By Theorem 9.1 we have for any interval [a, b]

dist∞,[a,b](f,Πp) ≤ Cphp+1‖Dp+1f‖∞,[a,b],

where h = b − a and Cp only depends on p. Combining this estimate on [a, b] =
[τµ−p+1, τµ+p] with (9.23) we obtain (9.3) and hence (9.2) with Dp = (Kp + 1)Cp.
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We have accomplished our task of estimating the distance from a function in Cp+1
∆ [a, b]

to an arbitrary spline space Sp,τ . However, there are several unanswered questions.
Perhaps the most obvious is whether the constant Kp is the best possible. A moment's
thought will make you realise that it certainly is not. One reason is that we made use
of some rather coarse estimates in the proof of Theorem 9.9. Another reason is that we
may obtain better estimates by using a di�erent approximation operator.

In fact, it is quite easy to �nd a better operator which is also a quasi-interpolant based
on local interpolation. Instead of choosing the local interpolation points uniformly in the
largest subinterval of [τi+1, τi+p], we simply choose the points uniformly in [τi+1, τi+p],

xi,k = τi+1 +
k

p
(τi+p − τi+1), for k = 0, 1, . . . , p.

It is easy to check that the bound (9.19) on the numerator still holds while the last
estimate in the bound on the denominator (9.20) is now unnecessary so we have

p∏
r=1

|xi,k − vr| =
p∏
q=0
q 6=k

|k − q|
p

(τi+p − τi+1) =
k!(p− k)!

pp
(τi+p − τi+1)p.

This gives a new constant

K̃p =
2ppp

p!
.

Note that the new approximation operator will not reproduce the whole spline space for
p > 2. This improved constant can therefore not be used in Corollary 9.10.

The constant can be improved further by choosing the interpolation points to be the
extrema of the Chebyshev polynomial, adjusted to the interval [τi+1, τi+p].

9.3 Stability of the B-spline basis

In order to compute with polynomials or splines we need to choose a basis to represent the
functions. If a basis is to be suitable for computer manipulations it should be reasonably
insensitive to round-o� errors. In particular, functions with `small' function values should
have `small' coe�cients and vice versa. A basis with this property is said to be well

conditioned or stable and the stability is measured by the condition number of the basis.
In this section we will study the condition number of the B-spline basis.

9.3.1 A general de�nition of stability

The stability of a basis can be de�ned quite generally. Instead of considering polynomials
we can consider a general linear vector space where we can measure the size of the
elements through a norm; this is called a normed linear space.

De�nition 9.13. Let V be a normed linear space. A basis (φj) for V is said to be stable
with respect to a vector norm ‖ · ‖ if there are small positive constants C1 and C2 such
that

C−1
1

∥∥(cj)
∥∥ ≤ ∥∥∥∑

j

cjφj

∥∥∥ ≤ C2

∥∥(cj)
∥∥, (9.24)
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for all sets of coe�cients c = (cj). Let C∗1 and C∗2 denote the smallest possible values of
C1 and C2 such that (9.24) holds. The condition number of the basis is then de�ned to
be κ = κ((φi)i) = C∗1C

∗
2 .

At the risk of confusion we have used the same symbol both for the norm in V and
the vector norm of the coe�cients. In our case V will be some spline space Sp,t and the
basis (φj) will be the B-spline basis. The norms we will consider are the q-norms which
are de�ned by

‖f‖q = ‖f‖q,[a,b] =

(∫ b

a
|f(x)|qdx

)1/q

and ‖c‖q =

(∑
j

|cj |q
)1/q

,

where q is a real number in the range 1 ≤ q < ∞. Here f is a function on the interval
[a, b] and c = (cj) is a real vector. For q =∞ the norms are de�ned by

‖f‖∞ = ‖f‖∞,[a,b] = max
a≤x≤b

|f(x)| and ‖c‖∞ =
∥∥(cj)

∥∥
∞ = max

j
|cj |.

In practice, the most important norms are the 1-, 2- and ∞-norms.

In De�nition 9.13 we require the constants C1 and C2 to be `small', but how small
is `small'? There is no unique answer to this question, but it is typically required that
C1 and C2 should be independent of the dimension n of V, or at least grow very slowly
with n. Note that we always have κ ≥ 1, and κ = 1 if and only if we have equality in
both inequalities in (9.24).

A stable basis is desirable for many reasons, and the constant κ = C1C2 crops up in
many di�erent contexts. The condition number κ does in fact act as a sort of derivative
of the basis and gives a measure of how much an error in the coe�cients is magni�ed in
a function value.

Proposition 9.14. Suppose (φj) is a stable basis for V. If f =
∑

j cjφj and g =
∑

j bjφj
are two elements in V with f 6= 0, then

‖f − g‖
‖f‖

≤ κ‖c− b‖
‖c‖

, (9.25)

where κ is the condition number of the basis as in De�nition 9.13.

Proof. From (9.24), we have the two inequalities ‖f − g‖ ≤ C2‖(cj − bj)‖ and 1/‖f‖ ≤
C1/‖(cj)‖. Multiplying these together gives the result.

If we think of g as an approximation to f then (9.25) says that the relative error in
f − g is bounded by at most κ times the relative error in the coe�cients. If κ is small a
small relative error in the coe�cients gives a small relative error in the function values.
This is important in �oating point calculations on a computer. A function is usually
represented by its coe�cients relative to some basis. Normally, the coe�cients are real
numbers that must be represented inexactly as �oating point numbers in the computer.
This round-o� error means that the computed spline, here g, will di�er from the exact
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f . Proposition 9.14 shows that this is not so serious if the perturbed coe�cients of g are
close to those of f and the basis is stable.

Proposition 9.14 also provides some information as to what are acceptable values of
C∗1 and C∗2 . If for example κ = C∗1C

∗
2 = 100 we risk losing 2 decimal places in evaluation

of a function; exactly how much accuracy one can a�ord to lose will of course vary.

One may wonder whether there are any unstable polynomial bases. It turns out that
the power basis 1, x, x2, . . . , on the interval [0, 1] is unstable even for quite low degrees.
Already for degree 10, one risks losing as much as 4 or 5 decimal digits in the process
of computing the value of a polynomial on the interval [0, 1] relative to this basis, and
other operations such as numerical root �nding is even more sensitive.

9.3.2 Stability of the B-spline basis, q =∞
Since splines and B-splines are de�ned via the knot vector, it is quite conceivable that
the condition number of the B-spline basis could become arbitrarily large for certain knot
con�gurations, for example in the limit when two knots merge into one. One of the key
features of splines is that this cannot happen.

Theorem 9.15. There is a constant Kp which depends only on the polynomial degree
p, such that for all spline spaces Sp,t and all splines f =

∑n
i=1 ciBi,p ∈ Sp,t with B-spline

coe�cients c = (ci)
n
i=1, the two inequalities

K−1
p ‖c‖∞ ≤ ‖f‖∞,[t1,tn+p] ≤ ‖c‖∞ (9.26)

hold.

Proof. We have already proved variants of the second inequality several times; it follows
since B-splines are nonnegative and sum to (at most) 1.

The �rst inequality is a consequence of Corollary 9.10. The value of the constant Kp

is K0 = K1 = 1, K2 = 3 while it is given by (9.17) for p > 2.

The condition number of the B-spline basis on the knot vector τ with respect to the
∞-norm is usually denoted κp,∞,τ . By taking the supremum over all knot vectors we
obtain the knot independent condition number κp,∞,

κp,∞ = sup
τ
κp,∞,τ .

Theorem 9.15 shows that κp,∞ is bounded above by Kp.

Although Kp is independent of the knots, it grows quite quickly with p and seems
to indicate that the B-spline basis may well be unstable for all but small values of p.
However, by using di�erent techniques it is possible to �nd better estimates for the
condition number, and it is indeed known that the B-spline basis is very stable, at least
for moderate values of p. It is simple to determine the condition number for p ≤ 2;
we have κ0,∞ = κ1,∞ = 1 and κ2,∞ = 3. For p ≥ 3 it has recently been shown that
κp,∞ = O(2p). The �rst few values are known to be approximately κ3,∞ ≈ 5.5680 and
κ4,∞ ≈ 12.088.
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9.3.3 Stability of the B-spline basis, q <∞
In this section we are going to generalise Theorem 9.15 to any p-norm. This is useful
in some contexts, especially the case p = 2 which is closely related to least squares
approximation. The proof uses standard tools from analysis, but may seem technical for
the reader who is not familiar with the techniques.

Throughout this section q is a �xed real number in the interval [1,∞) and q′ is a
related number de�ned by the identity 1/q+1/q′ = 1. A classical inequality for functions
that will be useful is the Hölder inequality∫ b

a

∣∣f(x)g(x)
∣∣dx ≤ ‖f‖q‖g‖q′ .

We will also need the Hölder inequality for vectors which is given by

n∑
i=1

|bici| ≤ ‖(bi)ni=1‖q‖(ci)ni=1‖q′ .

In addition to the Hölder inequalities we need a fundamental inequality for polyno-
mials. This states that for any polynomial g ∈ Πp and any interval [a, b] we have∣∣g(x)

∣∣ ≤ C

b− a

∫ b

a

∣∣g(z)
∣∣ dz, for any x ∈ [a, b], (9.27)

where the constant C only depends on the degree p. This is a consequence of the fact
that all norms on a �nite dimensional vector space are equivalent.

In order to generalise the stability result (9.26) to arbitrary q-norms we need to
introduce a di�erent scaling of the B-splines. We de�ne the q-norm B-splines to be
identically zero if τi+p+1 = τi and

Bq
i,p,t =

(
p+ 1

τi+p+1 − τi

)1/q

Bi,p,t, (9.28)

otherwise. We can then state the p-norm stability result for B-splines.

Theorem 9.16. There is a constant K that depends only on the polynomial degree p,
such that for all 1 ≤ q ≤ ∞, all spline spaces Sp,t and all splines f =

∑n
i=1 ciB

q
i,p ∈ Sp,t

with q-norm B-spline coe�cients c = (ci)
n
i=1 the inequalities

K−1‖c‖q ≤ ‖f‖q,[τ1,τm+p] ≤ ‖c‖q (9.29)

hold.

Proof. We �rst prove the upper inequality. Let γi = (p + 1)/(τi+p+1 − τi) denote the
qth power of the scaling factor in (9.28) for i = 1, . . . , n and set [a, b] = [τ1, τn+p+1].
Remembering the de�nition of Bq

i,p,τ and the identity 1/q + 1/q′ = 1 and applying the
Hölder inequality for sums we obtain∑

i

∣∣ciBq
i,p

∣∣ =
∑
i

∣∣ciγ1/q
i B

1/q
i,p

∣∣B1/q′

i,p ≤
(∑

i

|ci|qγiBi,p
)1/q(∑

i

Bi,p

)1/q′

.
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Raising both sides of this inequality to the qth power and recalling that B-splines sum
to (at most) 1 we obtain the inequality∣∣∑

i

ciB
q
i,p(x)

∣∣q ≤∑
i

|ci|qγiBi,p(x) for any x ∈ R. (9.30)

By (3.44) the integral of a B-spline is given by∫ τi+p+1

τi

Bi,p(x)dx =
τi+p+1 − τi
p+ 1

=
1

γi
.

Making use of this and (9.30) we �nd

‖f‖qq,[a,b] =

∫ b

a

∣∣∣∑
i

ciB
q
i,p(x)

∣∣∣q dx ≤∑
i

|ci|qγi
∫ b

a
Bi,p(x) dx =

∑
i

|ci|q.

Taking qth roots on both sides proves the upper inequality.
Consider now the lower inequality. The spline f is given as a linear combination of

q-norm B-splines, but can very simply be written as a linear combination of the usual
B-splines,

f =
∑
i

ciB
q
i,p =

∑
i

ciγ
1/q
i Bi,p.

From the �rst inequality in (9.26) we then obtain for each i(
p+ 1

τi+p+1 − τi

)1/q

|ci| ≤ Kp max
τi+1≤x≤τi+p

|f(x)|,

where the constantKp only depends on p. Extending the maximum to a larger subinterval
and applying the inequality (9.27) we �nd

|ci| ≤ Kp(p+ 1)−1/q
(
τi+p+1 − τi

)1/q| max
τi≤x≤τi+p+1

|f(x)|

≤ CKp(p+ 1)−1/q
(
τi+p+1 − τi

)−1+1/q
∫ τi+p+1

τi

|f(y)| dy.

Next, we apply the Hölder inequality for integrals to the product
∫ τi+p+1

τi

∣∣f(y)
∣∣ 1 dy and

obtain

|ci| ≤ CKp(p+ 1)−1/q

(∫ τi+p+1

τi

|f(y)|q dy
)1/q

.

Raising both sides to the qth power and summing over i we obtain∑
i

|ci|q ≤ CqKq
p(p+ 1)−1

∑
i

∫ τi+p+1

τi

|f(y)|q py ≤ CqKq
p‖f‖

q
q,[a,b].

Taking qth roots we obtain the lower inequality in (9.29) with K = CKp.
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9.4 Convergence of the control polygon for spline functions

Recall that for a spline function f(x) =
∑

i ciBi,p,τ the control polygon is the piecewise
linear interpolant to the points (τ∗i , ci), where τ

∗
i = (τi+1 + · · ·+ τi+p)/p is the ith knot

average. In this section we are going to prove that the control polygon converges to the
spline it represents when the knot spacing approaches zero. The main work is done in
Lemma 9.17 which shows that a corner of the control polygon is close to the spline since
ci is close to f(τ∗i ), at least when the spacing in the knot vector is small. The proof of the
lemma makes use of the fact that the size of a B-spline coe�cient ci can be bounded in
terms of the size of the spline on the interval [τi+1, τi+p], which we proved in Theorem 9.9
and Lemma 9.4 (and Section 9.2.1),

|ci| ≤ Kp‖f‖[τi+1,τi+p]. (9.31)

The norm used here and throughout this section is the ∞-norm.

Lemma 9.17. Let f be a spline in Sp,τ with coe�cients (ci). Then

|ci − f(τ∗i )| ≤ K(τi+p − τi+1)2‖D2f‖[τi+1,τi+p], (9.32)

where τ∗i = (τi+1 + · · · + τi+p)/p, the operator D2 denotes (one-sided) di�erentiation
(from the right), and the constant K only depends on p.

Proof. Let i be �xed. If τi+1 = τi+p then we know from property 5 in Lemma 2.6 that
Bi,p(τ

∗
i ) = 1 so ci = f(τ∗i ) and there is nothing to prove. Assume for the rest of the proof

that the interval J = (τi+1, τi+p) is nonempty. Since J contains at most p − 2 knots,
it follows from the continuity property of B-splines that f has at least two continuous
derivatives in J . Let x0 be a number in the interval J and consider the spline

g(x) = f(x)− f(x0)− (x− x0)Df(x0)

which is the error in a �rst order Taylor expansion of f at x0. This spline lies in Sp,τ and
can therefore be written as g =

∑
i biBi,p,τ for suitable coe�cients (bi). More speci�cally

we have
bi = ci − f(x0)− (τ∗i − x0)Df(x0).

Choosing x0 = τ∗i we have bi = ci− f(τ∗i ) and according to the inequality (9.31) and the
error term in �rst order Taylor expansion we �nd

∣∣ci − f(τ∗i )
∣∣ = |bi| ≤ Kp‖g‖J ≤

Kp(τi+p − τi+1)2

2
‖D2f‖J .

The inequality (9.32) therefore holds with K = Kp/2 and the proof is complete.

Lemma 9.17 shows that the corners of the control polygon converge to the spline as
the knot spacing goes to zero. This partly explains why the control polygon approaches
the spline when we insert knots. What remains is to show that the control polygon as a
whole also converges to the spline.
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Theorem 9.18. Let f =
∑n

i=1 ciBi,p be a spline in Sp,τ , and let Γp,τ (f) be its control
polygon. Then ∥∥Γp,τ (f)− f

∥∥
[τ∗1 ,τ

∗
n]
≤ Kh2‖D2f‖[τ1,τn+p+1], (9.33)

where h = maxi{τi+1 − τi} and the constant K only depends on p.

Proof. As usual, we assume that τ is p+ 1-regular (if not we extend it with p+ 1-tuple
knots at either ends and add zero coe�cients). Suppose that x is in [τ∗1 , τ

∗
n] and let j be

such that τ∗j ≤ x < τ∗j+1. Observe that since the interval J
∗ = (τ∗j , τ

∗
j+1) is nonempty we

have τj+1 < τj+p+1 and J∗ contains at most p− 1 knots. From the continuity property
of B-splines we conclude that f has a continuous derivative and the second derivative of
f is at least piecewise continuous in J∗. Let

g(x) =
(τ∗j+1 − x)f(τ∗j ) + (x− τ∗j )f(τ∗j+1)

τ∗j+1 − τ∗j

be the linear interpolant to f on this interval. We will show that both Γ = Γp,τ (f) and f
are close to g on J∗ and then deduce that Γ is close to f because of the triangle inequality∣∣Γ(x)− f(x)

∣∣ ≤ ∣∣Γ(x)− g(x)
∣∣+
∣∣g(x)− f(x)

∣∣. (9.34)

Let us �rst consider the di�erence Γ− g. Note that

Γ(x)− g(x) =
(τ∗j+1 − x)(bj − f(τ∗j )) + (x− τ∗j )(bj+1 − f(τ∗j+1))

τ∗j+1 − τ∗j

for any x in J∗. We therefore have∣∣Γ(x)− g(x)
∣∣ ≤ max

{∣∣bj − f(τ∗j )
∣∣, ∣∣bj+1 − f(τ∗j+1)

∣∣},
for x ∈ J∗. From Lemma 9.17 we then conclude that

|Γ(x)− g(x)| ≤ K1h
2‖D2f‖J , x ∈ J∗, (9.35)

where J = [τ1, τm+p+1] and K1 is a constant that only depends on p.
The second di�erence f(x)− g(x) in (9.34) is the error in linear interpolation to f at

the endpoints of J∗. For this process we have the standard error estimate∣∣f(x)− g(x)
∣∣ ≤ 1

8
(τ∗j+1 − τ∗j )2‖D2f‖J∗ ≤

1

8
h2‖D2f‖J , x ∈ J∗. (9.36)

If we now combine (9.35) and (9.36) as indicated in (9.34), we obtain the Theorem with
constant K = K1 + 1/8.

Because of the factor h2 in Theorem 9.18 we say (somewhat loosely) that the control
polygon converges quadratically to the spline.
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Exercises for Chapter 9

9.1 In this exercise we will study the order of approximation by the Schoenberg Vari-
ation Diminishing Spline Approximation of degree p ≥ 2. This approximation is
given by

Vpf =
n∑
i=1

f(τ∗i )Bi,p, with τ∗i =
τi+1 + · · · τi+p

p
.

Here Bi,p is the ith B-spline of degree p on a p+1-regular knot vector τ = (τi)
n+p+1
i=1 .

We assume that τi+p > τi for i = 2, . . . , n. Moreover we de�ne the quantities

a = τ1, b = τn+p+1, h = max
1≤i≤n

τi+1 − τi.

We want to show that Vpf is an O(h2) approximation to a su�ciently smooth f .

We �rst consider the more general spline approximation

Ṽpf =

n∑
i=1

λi(f)Bi,p, with λi(f) = wi,0f(xi,0) + wi,1f(xi,1).

Here xi,0 and xi,1 are two distinct points in [τi, τi+p] and wi,0, wi,1 are constants,
i = 1, . . . , n.

Before attempting to solve this exercise the reader might �nd it helpful to review
Section 9.2.2

a) Suppose for i = 1, . . . , n that wi,0 and wi,1 are such that

wi,0 + wi,1 = 1

xi,0wi,0 + xi,1wi,1 = τ∗i

Show that then Ṽpg = g for all g ∈ Π1. (Hint: Consider the polynomials
g(x) = 1 and g(x) = x.)

b) Show that if we set xi,0 = τ∗i for all i then Ṽpf = Vpf for all f , regardless of
how we choose the value of xi,1.

In the rest of this exercise we set λi(f) = f(τ∗i ) for i = 1, . . . , n, i.e. we
consider Vpf . We de�ne the usual uniform norm on an interval [c, d] by

‖f‖[c,d] = sup
c≤x≤d

|f(x)|, f ∈ C∆[c, d].

c) Show that for p+ 1 ≤ l ≤ n

‖Vpf‖[τl,τl+1] ≤ ‖f‖[τ∗l−p,τ∗l ], f ∈ C∆[a, b].

d) Show that for f ∈ C∆[τ∗l−p, τ
∗
l ] and p+ 1 ≤ l ≤ n

‖f − Vpf‖[τl,τl+1] ≤ 2 dist[τ∗l−p,τ
∗
l ](f,Π1).
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e) Explain why the following holds for p+ 1 ≤ l ≤ n

dist[τ∗l−p,τ
∗
l ](f,Π1) ≤

(τ∗l − τ∗l−p)2

8
‖D2f‖[τ∗l−p,τ∗l ].

f) Show that the following O(h2) estimate holds

‖f − Vpf‖[a,b] ≤
p2

4
h2‖D2f‖[a,b].

(Hint: Verify that τ∗l − τ∗l−p ≤ hp. )

9.2 In this exercise we want to perform a numerical simulation experiment to determine
the order of approximation by the quadratic spline approximations

V2f =

n∑
i=1

f(τ∗i )Bi,2, with τ∗i =
τi+1 + τi+2

2
,

Q2f =

n∑
i=1

(
− 1

2
f(τi+1) + 2f(τ∗i )− 1

2
f(τi+2)

)
Bi,2.

We want to test the hypotheses f − V2f = O(h2) and f − Q2f = O(h3) where
h = maxi τi+1 − τi. We test these on the function f(x) = sinx on [0, π] for various
values of h. Consider for m ≥ 0 and nm = 2 + 2m the 3-regular knot vector
τm = (τmi )nm+3

i=1 on the interval [0, π] with uniform spacing hm = π2−m. We de�ne

V m
2 f =

n∑
i=1

f(τmi+3/2)Bm
i,2, with τmi+3/2 =

τmi+1 + τmi+2

2
,

Qm2 f =
n∑
i=1

(
− 1

2
f(τmi+1) + 2f(τmi+3/2)− 1

2
f(τmi+2)

)
Bm
i,2,

and Bm
i,2 is the ith quadratic B-spline on τm. As approximations to the norms

‖f − V m
2 f‖[0,π] and ‖f −Qm2 f‖[0,π] we use

EmV = max
0≤j≤100

|f(jπ/100)− V m
2 f(jπ/100)|,

EmQ = max
0≤j≤100

|f(jπ/100)−Qm2 f(jπ/100)|.

Write a computer program to compute numerically the values of EmV and EmQ for

m = 0, 1, 2, 3, 4, 5, and the ratios EmV /E
m−1
V and EmQ /E

m−1
Q for 1 ≤ m ≤ 5. What

can you deduce about the approximation order of the two methods?

Make plots of V m
2 f , Qm2 f , f − V m

2 f , and f −Qm2 f for some values of m.
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9.3 Suppose we have m ≥ 3 data points
(
xi, f(xi)

)m
i=1

sampled from a function f ,
where the abscissas x = (xi)

m
i=1 satisfy x1 < · · · < xm. In this exercise we want to

derive a local quasi-interpolation scheme which only uses the data values at the xi's
and which has O(h3) order of accuracy if the y-values are sampled from a smooth
function f . The method requires m to be odd.

From x we form a 3-regular knot vector by using every second data point as a knot

τ = (τj)
n+3
j=1 = (x1, x1, x1, x3, x5, . . . , xm−2, xm, xm, xm), (9.37)

where n = (m+ 3)/2. In the quadratic spline space S2,τ we can then construct the
spline

Q2f =
n∑
j=1

λj(f)Bj,2, (9.38)

where the B-spline coe�cients λj(f)nj=1 are de�ned by the rule

λj(f) =
1

2

(
− θ−1

j f(x2j−3) + θ−1
j (1 + θj)

2f(x2j−2)− θjf(x2j−1)

)
, (9.39)

for j = 1, . . . , n. Here θ1 = θn = 1 and

θj =
x2j−2 − x2j−3

x2j−1 − x2j−2

for j = 2, . . . , n− 1.

a) Show that Q2 simpli�es to Q2 given by (9.6) when the data abscissas are
uniformly spaced.

b) Show that Q2g = g for all g ∈ Π2 and that because of the multiple abscissas
at the ends we have λ1(f) = f(x1), λn(f) = f(xm), so only the original data
are used to de�ne Q2f . (Hint: Use the formula in Exercise 1.

c) Show that for j = 1, . . . , n and f ∈ C∆[x1, xm]

|λj(f)| ≤ (2θ + 1)‖f‖∞,[τj+1,τj+2],

where

θ = max
1≤j≤n

{θ−1
j , θj}.

d) Show that for l = 3, . . . , n, f ∈ C∆[x1, xm], and x ∈ [τl, τl+1]

|Q2(f)(x)| ≤ (2θ + 1)‖f‖∞,[τl−1,τl+2].

e) Show that for l = 3, . . . , n and f ∈ C∆[x1, xm]

‖f −Q2f‖∞,[τl,τl+1] ≤ (2θ + 2) dist[τl−1,τl+2](f,Π2).
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f) Show that for f ∈ C3
∆[x1, xm] we have the O(h3) estimate

‖f −Q2f‖∞,[x1,xm] ≤ K(θ)|∆x|3‖D3f‖‖‖∞,[x1,xm],

where
|∆x| = max

j
|xj+1 − xj |

and the constant K(θ) only depends on θ.



Chapter 10
Shape Preserving Properties of B-splines

In earlier chapters we have seen a number of examples of the close relationship between a
spline function and its B-spline coe�cients. This is especially evident in the properties of
the Schoenberg operator, but the same phenomenon is apparent in the diagonal property
of the blossom, the stability of the B-spline basis, the convergence of the control polygon
to the spline it represents and so on. In the present chapter we are going to add to
this list by relating the number of zeros of a spline to the number of sign changes in
the sequence of its B-spline coe�cients. From this property we shall obtain an accurate
characterisation of when interpolation by splines is uniquely solvable. In the �nal section
we show that the knot insertion matrix and the B-spline collocation matrix are totally
positive, i.e., all their square submatrices have nonnegative determinants.

10.1 Bounding the number of zeros of a spline

In Section 4.5 of Chapter 4 we showed that the number of sign changes in a spline is
bounded by the number of sign changes in its B-spline coe�cients, a generalisation of
Descartes' rule of signs for polynomials, Theorem 4.22. Theorem 4.24 is not a completely
satisfactory generalisation of Theorem 4.22 since it does not allow multiple zeros. In this
section we will prove a similar result that does allow multiple zeros, but we cannot allow
the most general spline functions. we have to restrict ourselves to connected splines.

De�nition 10.1. A spline f =
∑n

j=1 cjBj,p in Sp,t is said to be connected if for each x
in (t1, tn+p+1) there is some j such that tj < x < tj+p+1 and cj 6= 0. A point x where
this condition fails is called a splitting point for f .

To develop some intuition about connected splines, let us see when a spline is not
connected. A splitting point of f can be of two kinds:

(i) The splitting point x is not a knot. If tµ < x < tµ+1, then tj < x < tj+p+1

for j = µ − p, . . . , µ (assuming the knot vector is long enough) so we must have
cµ−p = · · · = cµ = 0. In other words f must be identically zero on (tµ, tµ+1). In
this case f splits into two spline functions f1 and f2 with knot vectors t1 = (tj)

µ
j=1

203
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and t2 = (tj)
n+p+1
j=µ+1 . We clearly have

f1 =

µ−p−1∑
j=1

cjBj,p, f2 =

n∑
j=µ+1

cjBj,p.

(ii) The splitting point x is a knot of multiplicity m, say

tµ < x = tµ+1 = · · · = tµ+m < tµ+m+1.

In this case we have tj < x < tj+1+p for j = µ+m− p, . . . , µ. We must therefore
have cµ+m−p = · · · = cµ = 0. (Note that if m = p + 1, then no coe�cients need
to be zero). This means that all the B-splines that �cross� x do not contribute to
f(x). It therefore splits into two parts f1 and f2, but now the two pieces are not
separated by an interval, but only by the single point x. The knot vector of f1 is
t1 = (tj)

µ+m
j=1 while the knot vector of f2 is t

2 = (tj)
n+p+1
j=µ+1 . The two spline functions

are given by

f1 =

µ+m−p−1∑
j=1

cjBj,p, f2 =

n∑
j=µ+1

cjBj,p.

Before getting on with our zero counts we need the following lemma.

Lemma 10.2. Suppose that z is a knot that occurs m times in t,

ti < z = ti+1 = · · · = ti+m < ti+m+1

for some i. Let f =
∑

j cjBj,p be a spline in Sp,t. Then

cj =
1

p!

p−m∑
k=0

(−1)kDp−kρj,p(z)D
kf(z) (10.1)

for all j such that tj < z < tj+p+1, where ρj,p(y) = (y − tj+1) · · · (y − tj+p).

Proof. Recall from Theorem 8.5 that the B-spline coe�cients of f can be written as

cj = λjf =
1

p!

p∑
k=0

(−1)kDp−kρj,p(y)Dkf(y),

where y is a number such that Bj,p(y) > 0. In particular, we may choose y = z for
j = i+m− p, . . . , i so

cj = λjf =
1

p!

p∑
k=0

(−1)kDp−kρj,p(z)D
kf(z), (10.2)

for these values of j. But in this case ρj,p(y) contains the factor (y− ti+1) · · · (y− ti+m) =
(y − z)m so Dp−kρj,p(z) = 0 for k > p −m and j = i + m − p, . . . , i, i.e., for all values
of j such that tj < z < tj+p+1. The formula (10.1) therefore follows from (10.2).
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In the situation of Lemma 10.2, we know from Lemma 2.6 that Dkf is continuous
at z for k = 0, . . . , p − m, but Dp+1−mf may be discontinuous. Equation (10.1)
therefore shows that the B-spline coe�cients of f can be computed solely from continuous
derivatives of f at a point.

Lemma 10.3. Let f be a spline that is connected. For each x in (t1, tn+p+1) there is
then a nonnegative integer r such that Drf is continuous at x and Drf(x) 6= 0.

Proof. The claim is clearly true if x is not a knot, for otherwise f would be identically
zero on an interval and therefore not connected. Suppose next that x is a knot of
multiplicity m. Then the �rst discontinuous derivative at x is Dp−m+1f , so if the claim
is not true, we must have Dkf(x) = 0 for k = 0, . . . , p − m. But then we see from
Lemma 10.2 that cl = λlf = 0 for all l such that tl < x < tl+p+1. But this is impossible
since f is connected.

The lemma shows that we can count zeros of connected splines precisely as for smooth
functions. If f is a connected spline then a zero must be of the form f(z) = Df(z) = · · · =
Dr−1f(z) = 0 with Drf(z) 6= 0 for some integer r. Moreover Drf is continuous at z. The
total number of zeros of f on (a, b), counting multiplicities, is denoted Z(f) = Z(a,b)(f).
Recall from De�nition 4.20 that S−(c) denotes the number of sign changes in the vector
c (zeros are completely ignored).

Example 10.4. Below are some examples of zero counts of functions. For comparison we have also
included counts of sign changes. All zero counts are over the whole real line.

Z(x) = 1,

Z(x2) = 2,

Z(x7) = 7,

S−(x) = 1,

S−(x2) = 0,

S−(x7) = 1,

Z
(
x(1− x)2

)
= 3,

Z
(
x3(1− x)2

)
= 5,

Z(−1− x2 + cosx) = 2,

S−
(
x(1− x)2

)
= 1,

S−
(
x3(1− x)2

)
= 1,

S−(−1− x2 + cosx) = 0.

We are now ready to prove a generalization of Theorem 4.22 that allows zeros to be
counted with multiplicities.

Theorem 10.5. Let f =
∑n

j=1 cjBj,p be a spline in Sp,t that is connected. Then

Z(t1,tn+p+1)(f) ≤ S−(c) ≤ n− 1.

Proof. Let z1 < z2 < · · · < z` be the zeros of f in the interval (t1, tn+p+1), each of
multiplicity ri; Lemma 10.2 shows that zi occurs at most p − ri times in t. For if zi
occured m > p−ri times in t then p−m < ri, and hence all the derivatives of f involved
in (10.1) would be zero for all j such that tj < z < tj+p+1. But this means that z is a
splitting point for f which is impossible since f is connected.

Now we form a new knot vector t̂ where zi occurs exactly p−ri times and the numbers
zi − h and zi + h occur p+ 1 times. Here h is a number that is small enough to ensure
that there are no other zeros of f or knots from t other than zi in [zi − h, zi + h] for
1 ≤ i ≤ `. Let ĉ be the B-spline coe�cients of f relative to t̂. By Lemma 4.23 we then
have S−(ĉ) ≤ S−(c) so it su�ces to prove that Z(t1,tn+p+1)(f) ≤ S−(ĉ). But since

Z(t1,tn+p+1)(f) =
∑̀
i=1

Z(zi−h,zi+h)(f),
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it su�ces to establish the theorem in the following situation: The knot vector is given
by

t = (

p+1︷ ︸︸ ︷
z − h, . . . , z − h,

p−r︷ ︸︸ ︷
z, . . . , z,

p+1︷ ︸︸ ︷
z + h, . . . , z + h)

and z is a zero of f of multiplicity r. The key to proving the theorem in this more
specialised situation is to show that

cj =
(p− r)!
p!

(−1)p+1−jhrDrf(z), j = p+ 1− r, . . . , p+ 1, (10.3)

as this means that the r + 1 coe�cients (cj)
p+1
j=p+1−r alternate in sign and S−(c) ≥ r =

Z(z−h,z+h)(f). Fix j in the range p+ 1− r ≤ j ≤ p+ 1. By equation (10.1) we have

cj =
1

p!

r∑
k=0

(−1)kDp−kρj,p(z)D
kf(z) =

(−1)r

p!
Dp−rρj,p(z)D

rf(z),

since Djf(z) = 0 for j = 0 . . . , r − 1. With our special choice of knot vector we have

ρj,p(y) = (y − z + h)p+1−j(y − z)p−r(y − z − h)r−p−1+j .

Taking p− r derivatives we therefore obtain

Dp−rρj,p(z) = (p− r)!hp+1−j(−h)r−p−1+j = (p− r)!(−1)r−p−1+jhr

and (10.3) follows.

Figures 10.1 (a)�(d) show some examples of splines with multiple zeros of the sort
discussed in the proof of Theorem 10.5. All the knot vectors are p + 1-regular on the
interval [0, 2], with additional knots at x = 1. In Figure 10.1 (a) there is one knot at
x = 1 and the spline is the polynomial (x − 1)2 which has a double zero at x = 1.
The control polygon models the spline in the normal way and has two sign changes. In
Figure 10.1 (b) the knot vector is the same, but the spline is now the polynomial (x−1)3.
In this case the multiplicity of the zero is so high that the spline has a splitting point at
x = 1. The construction in the proof of Theorem 10.5 prescribes a knot vector with no
knots at x = 1 in this case. Figure 10.1 (c) shows the polynomial (x − 1)3 as a degree
5 spline on a 6-regular knot vector with a double knot at x = 1. As promised by the
theorem and its proof the coe�cients change sign exactly three times. The spline in
Figure 10.1 (d) is more extreme. It is the polynomial (x− 1)8 represented as a spline of
degree 9 with one knot at x = 1. The control polygon has the required 8 changes of sign.

10.2 Uniqueness of spline interpolation

Having established Theorem 10.5, we return to the problem of showing that the B-spline
collocation matrix that occurs in spline interpolation, is nonsingular. We �rst consider
Lagrange interpolation, and then turn to Hermite interpolation where we also allow
interpolation derivatives.
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(a) Cubic, 2 zeros, simple knot.
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(b) Cubic, multiplicity 3, simple knot.
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(c) Degree 5, multiplicity 3, double knot.
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(d) Degree 9, multiplicity 8, simple knot.

Figure 10.1. Splines of varying degree with a varying number of zeros and knots at x = 1.

10.2.1 Lagrange Interpolation

In Chapter 8 we studied spline interpolation. With a spline space Sp,t of dimension n
and data (yi)

n
i=1 given at n distinct points x1 < x2 < · · · < xn, the aim is to determine

a spline g =
∑n

i=1 ciBi,p in Sp,t such that

g(xi) = yi, for i = 1, . . . , n. (10.4)

This leads to the linear system of equations

Ac = y,

where

A =


B1,p(x1) B2,p(x1) . . . Bn,p(x1)
B1,p(x2) B2,p(x2) . . . Bn,p(x2)

...
...

. . .
...

B1,p(xn) B2,p(xn) . . . Bn,p(xn)

 , c =


c1

c2
...
cn

 , y =


y1

y2
...
yn

 .

The matrix A is often referred to as the B-spline collocation matrix. Since Bi,p(x) is
nonzero only if ti < x < ti+p+1 (we may allow ti = x if ti = ti+p < ti+p+1), the matrix A
will in general be sparse. The following theorem tells us exactly when A is nonsingular.
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Theorem 10.6. Let Sp,t be a given spline space, and let x1 < x2 < · · · < xn be n
distinct numbers. The collocation matrix A with entries

(
Bj,p(xi)

)n
i,j=1

is nonsingular if
and only if its diagonal is positive, i.e.,

Bi,p(xi) > 0 for i = 1, . . . , n. (10.5)

Proof. We start by showing that A is singular if a diagonal entry is zero. Suppose that
xq ≤ tq (strict inequality if tq = tq+p < tq+p+1) for some q so that Bq,p(xq) = 0. By the
support properties of B-splines we must have ai,j = 0 for i = 1, . . . , q and j = q, . . . , n.
But this means that only the n − q last entries of each of the last n − q + 1 columns of
A can be nonzero; these columns must therefore be linearly dependent and A must be
singular. A similar argument shows that A is also singular if xq ≥ tq+p+1.

To show the converse, suppose that (10.5) holds but A is singular. Then there is a
nonzero vector c such that Ac = 0. Let f =

∑n
i=1 ciBi,p denote the spline with B-spline

coe�cients c. We clearly have f(xq) = 0 for q = 1, . . . , n. Let G denote the set

G = ∪i
{

(ti, ti+p+1) | ci 6= 0
}
.

Since each x in Gmust be in (ti, ti+p+1) for some i with ci 6= 0, we note that G contains no
splitting points of f . Note that if xi = ti = ti+p < ti+p+1 occurs at a knot of multiplicity
p + 1, then 0 = f(xi) = ci. To complete the proof, suppose �rst that G is an open
interval. Since xi is in G if ci 6= 0, the number of zeros of f in G is greater than or equal
to the number ` of nonzero coe�cients in c. Since we also have S−(c) < ` ≤ ZG(f), we
have a contradiction to Theorem 10.5. In general G consists of several subintervals which
means that f is not connected, but can be written as a sum of connected components,
each de�ned on one of the subintervals. The above argument then leads to a contradiction
on each subinterval, and hence we conclude that A is nonsingular.

Theorem 10.6 makes it simple to ensure that the collocation matrix is nonsingular.
We just place the knots and interpolation points in such a way that ti < xi < ti+p+1 for
i = 1, . . . , n (note again that if ti = ti+p < ti+p+1, then xi = ti is allowed).

10.2.2 Hermite Interpolation

In earlier chapters, particularly in Chapter 8, we made use of polynomial interpolation
with Hermite data�pata based on derivatives as well as function values. This is also of
interest for splines, and as for polynomials this is conveniently indicated by allowing the
interpolation point to coalesce. If for example x1 = x2 = x3 = x, we take x1 to signify
interpolation of function value at x, the second occurrence of x signi�es interpolation
of �rst derivative, and the third tells us to interpolate second derivative at x. If we
introduce the notation

λx(i) = max
j
{j | xi−j = xi}

and assume that the interpolation points are given in nondecreasing order as x1 ≤ x2 ≤
· · · ≤ xn, then the interpolation conditions are

Dλx(i)g(xi) = Dλx(i)f(xi) (10.6)
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where f is a given function and g is the spline to be determined. Since we are dealing
with splines of degree p we cannot interpolate derivatives of higher order than p; we
therefore assume that xi < xi+p+1 for i = 1, . . . , n − p − 1. At a point of discontinuity
(10.6) is to be interpreted according to our usual convention of taking limits from the
right. The (i, j)-entry of the collocation matrix A is now given by

ai,j = Dλx(i)Bj,p(xi),

and as before the interpolation problem is generally solvable if and only if the collocation
matrix is nonsingular. Also as before, it turns out that the collocation matrix is nonsin-
gular if and only if ti ≤ xi < ti+p+1, where equality is allowed in the �rst inequality only
if Dλx(i)Bi,p(xi) 6= 0. This result will follow as a special case of our next theorem where
we consider an even more general situation.

At times it is of interest to know exactly when a submatrix of the collocation matrix
is nonsingular. The submatrices we consider are obtained by removing the same number
of rows and columns from A. Any columns may be removed, or equivalently, we consider
a subset {Bj1,p, . . . , Bj`,p} of the B-splines. When removing rows we have to be a bit
more careful. The convention is that if a row with derivatives of order r at z is included,
then we also include all the lower order derivatives at z. This is most easily formulated
by letting the sequence of interpolation points only contain ` points as in the following
theorem.

Theorem 10.7. Let Sp,t be a spline space and let {Bj1,p, . . . , Bj`,p} be a subsequence of
its B-splines. Let x1 ≤ · · · ≤ x` be a sequence of interpolation points with xi ≤ xi+p+1

for i = 1, . . . , `− p− 1. Then the `× ` matrix A(j) with entries given by

ai,q = Dλx(i)Bjq ,p(xi)

for i = 1, . . . , ` and q = 1, . . . , ` is nonsingular if and only if

tji ≤ xi < tji+p+1, for i = 1, . . . , `, (10.7)

where equality is allowed in the �rst inequality if Dλx(i)Bji,p(xi) 6= 0.

Proof. The proof follows along the same lines as the proof of Theorem 10.6. The most
challenging part is the proof that condition (10.7) is necessary so we focus on this.
Suppose that (10.7) holds, but A(j) is singular. Then we can �nd a nonzero vector c
such that A(j)c = 0. Let f =

∑`
i=1 ciBji,p denote the spline with c as its B-spline

coe�cients, and let G denote the set

G = ∪`i=1{(tji , tji+p+1) | ci 6= 0}.

To carry through the argument of Theorem 10.6 we need to verify that in the exceptional
case where xi = tji then ci = 0.

Set r = λx(i) and suppose that the knot tji occurs m times in t and that tji = xi so
DrBji,p(xi) 6= 0. In other words

tµ < xi = tµ+1 = · · · = tµ+m < tµ+m+1
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for some integer µ, and in addition ji = µ+ k for some integer k with 1 ≤ k ≤ m. Note
that f satis�es

f(xi) = Df(xi) = · · · = Drf(xi) = 0.

(Remember that if a derivative is discontinuous at xi we take limits from the right.)
Recall from Lemma 2.6 that all B-splines have continuous derivatives up to order p−m
at xi. Since DrBji clearly is discontinuous at xi, it must be true that r > p −m. We
therefore have f(xi) = Df(xi) = · · · = Dp−mf(xi) = 0 and hence cµ+m−p = · · · = cµ =
0 by Lemma 10.2. The remaining interpolation conditions at xi are D

p−m+1f(xi) =
Dp−m+2f(xi) = · · · = Drf(xi) = 0. Let us consider each of these in turn. By the
continuity properties of B-splines we have Dp−m+1Bµ+1(xi) 6= 0 and Dp−m+1Bµ+ν = 0
for ν > 1. This means that

0 = Dp−m+1f(xi) = cµ+1D
p−m+1Bµ+1(xi)

and cµ+1 = 0. Similarly, we also have

0 = Dp−m+2f(xi) = cµ+2D
p−m+2Bµ+2(xi),

and hence cµ+2 = 0 since Dp−m+2Bµ+2(xi) 6= 0. Continuing this process we �nd

0 = Drf(xi) = cµ+r+m−pD
rBµ+r+m−p(xi),

so cµ+r+m−p = 0 since DrBµ+r+m−p(xi) 6= 0. This argument also shows that ji cannot
be chosen independently of r; we must have ji = µ+ r +m− p.

For the rest of the proof it is su�cient to consider the case where G is an open interval,
just as in the proof of Theorem 10.6. Having established that ci = 0 if xi = tji , we know
that if ci 6= 0 then xi ∈ G. The number of zeros of f in G (counting multiplicities)
is therefore greater than or equal to the number of nonzero coe�cients. But this is
impossible according to Theorem 10.5.

10.3 Total positivity

In this section we are going to deduce another interesting property of the knot insertion
matrix and the B-spline collocation matrix, namely that they are totally positive. We
follow the same strategy as before and establish this �rst for the knot insertion matrix and
then obtain the total positivity of the collocation matrix by recognising it as a submatrix
of a knot insertion matrix.

De�nition 10.8. A matrix A in Rm,n is said to be totally positive if all its square
submatrices have nonnegative determinant. More formally, let i = (i1, i2, . . . , i`) and
j = (j1, j2, . . . , j`) be two integer sequences such that

1 ≤ i1 < i2 < · · · < i` ≤ m, (10.8)

1 ≤ i1 < i2 < · · · < i` ≤ n, (10.9)

and let A(i, j) denote the submatrix of A with entries (aip,jq)
`
p,q=1. Then A is totally

positive if detA(i, j) ≥ 0 for all sequences i and j on the form (10.8) and (10.9), for all
` with 1 ≤ ` ≤ min{m,n}.
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We �rst show that knot insertion matrices are totally positive.

Theorem 10.9. Let τ and t be two knot vectors with τ ⊆ t. Then the knot insertion
matrix from Sp,τ to Sp,t is totally positive.

Proof. Suppose that there are k more knots in t than in τ ; our proof is by induction
on k. We �rst note that if k = 0, then A = I, the identity matrix, while if k = 1, then
A is a bi-piagonal matrix with one more rows than columns. Let us denote the entries
of A by

(
αj(i)

)n+1,n

i,j=1
(if k = 0 the range of i is 1, . . . , n). In either case all the entries

are nonnegative and αj(i) = 0 for j < i− 1 and j > i. Consider now the determinant of
A(i, j). If j` ≥ i` then j` > iq for q = 1, . . . , `− 1 so αj`(iq) = 0 for q < `. This means
that only the last entry of the last column of A(i, j) is nonzero. The other possibility
is that j` ≤ i` − 1 so that jq < i` − 1 for q < `. Then αjq(i`) = 0 for q < ` so only
the last entry of the last row of A(i, j) is nonzero. Expanding the determinant either
by the last column or last row we therefore have detA(i, j) = αj`(i`) detA(i′, j′) where
i′ = (i1, . . . , i`−1) and j′ = (j1, . . . , j`−1). Continuing this process we �nd that

detA(i, j) = αj1(i1)αj2(i2) · · ·αj`(i`)

which clearly is nonnegative.

For k ≥ 2, we make use of the factorization

A = Ak · · ·A1 = AkB, (10.10)

where each Ar corresponds to insertion of one knot and B = Ak−1 · · ·A1 is the knot
insertion matrix for inserting k − 1 of the knots. By the induction hypothesis we know
that both Ak and B are totally positive; we must show that A is totally positive. Let
(ai) and (bi) denote the rows of A and B, and let

(
αj(i)

)m,m−1

i,j=1
denote the entries of

Ak. From (10.10) we have

ai = αi−1(i)bi−1 + αi(i)bi for i = 1, . . . , m,

where α0(1) = αm(m) = 0. Let ai(j) and bi(j) denote the vectors obtained by keeping
only entries (jq)

`
q=1 of ai and bi respectively. Row q of A(i, j) of A is then given by

aiq(j) = αiq−1(iq)biq−1(j) + αiq(iq)biq(j).
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Using the linearity of the determinant in row q we therefore have

det


ai1(j)

...
aiq(j)

...
ai`(j)

 = det


ai1(j)

...
αiq−1(iq)biq−1(j) + αiq(iq)biq(j)

...
ai`(j)



= αiq−1(iq) det


ai1(j)

...
biq−1(j)

...
ai`(j)

+ αiq(iq) det


ai1(j)

...
biq(j)

...
ai`(j)

 .

By expanding the other rows similarly we �nd that detA(i, j) can be written as a sum
of determinants of submatrices of B, multiplied by products of αj(i)'s. By the induction
hypothesis all these quantities are nonnegative, so the determinant of A(i, j) must also
be nonnegative. Hence A is totally positive.

Knowing that the knot insertion matrix is totally positive, we can prove a similar
property of the B-spline collocation matrix, even in the case where multiple collocation
points are allowed.

Theorem 10.10. Let Sp,τ be a spline space and let {Bj1,p, . . . , Bj`,p} be a subsequence
of its B-splines. Let x1 ≤ · · · ≤ x` be a sequence of interpolation points with xi ≤ xi+p+1

for i = 1, . . . , `− p− 1, and denote by A(j) the `× ` matrix with entries given by

ai,q = Dλx(i)Bjq ,p(xi)

for i = 1, . . . , ` and q = 1, . . . , `. Then

detA(j) ≥ 0.

Proof. We �rst prove the claim in the case x1 < x2 < · · · < x`. By inserting knots
of multiplicity p + 1 at each of (xi)

`
i=1 we obtain a knot vector t that contains τ as a

subsequence. If ti−1 < ti = ti+p < ti+p+1 we know from Lemma 2.6 that Bj,p,τ (ti) =
αj,p(i). This means that the matrix A(j) appears as a submatrix of the knot insertion
matrix from τ to t. It therefore follows from Theorem 10.9 that detA(j) ≥ 0 in this
case.

To prove the theorem in the general case we consider a set of distinct collocation
points y1 < · · · < y` and let A(j,y) denote the corresponding collocation matrix. Set
λi = λx(i) and let ρi denote the linear functional given by

ρif = λi! [yi−λi , . . . , yi]f (10.11)
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for i = 1, . . . , `. Here [·, . . . , ·]f is the divided di�erence of f . By standard properties of
divided di�erences we have

ρiBj,p =

i∑
s=i−λi

γi,sBj,p(ys)

and γi,i > 0. Denoting by D the matrix with (i, j)-entry ρiBj,p, we �nd by properties of
determinants and (10.11) that

detD = γ1,1 · · · γ`,` detA(j,y).

If we now let y tend to x we know from properties of the divided di�erence functional
that ρiBj tends to D

λiBj in the limit. Hence D tends to A(j) so detA(j) ≥ 0.
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Appendix A
Some Linear Algebra

A.1 Matrices

The collection of m,n matrices

A =

a1,1, . . . , a1,n

· · · · · ·
am,1, . . . , am,n


with real elements ai,j is denoted by Rm,n. If n = 1 then A is called a column vector.
Similarly, if m = 1 then A is a row vector. We let Rm denote the collection of all column
or row vectors with m real components.

A.1.1 Nonsingular matrices, and inverses.

De�nition A.1. A collection of vectors a1, . . . ,an ∈ Rm is linearly independent if
x1a1 + · · ·+xnan = 0 for some real numbers x1, . . . , xn, implies that x1 = · · · = xn = 0.

Suppose a1, . . . ,an are the columns of a matrix A ∈ Rm,n. For a vector x = (x1, . . . ,
xn)T ∈ Rn we have Ax =

∑n
j=1 xjaj . It follows that the collection a1, . . . ,an is linearly

independent if and only if Ax = 0 implies x = 0.

De�nition A.2. A square matrix A such that Ax = 0 implies x = 0 is said to be
nonsingular.

De�nition A.3. A square matrix A ∈ Rn,n is said to be invertible if for some B ∈ Rn,n

BA = AB = I,

where I ∈ Rn,n is the identity matrix.

An invertible matrix A has a unique inverse B = A−1. If A,B, and C are square
matrices, and A = BC, then A is invertible if and only if both B and C are also
invertible. Moreover, the inverse of A is the product of the inverses of B and C in
reverse order, A−1 = C−1B−1.
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A.1.2 Determinants.

The determinant of a square matrix A will be denoted det(A) or∣∣∣∣∣∣∣
a1,1, . . . , a1,n
...

...
an,1, . . . , an,n

∣∣∣∣∣∣∣ .
Recall that the determinant of a 2× 2 matrix is∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1.

A.1.3 Criteria for nonsingularity and singularity.

We state without proof the following criteria for nonsingularity.

Theorem A.4. The following is equivalent for a square matrix A ∈ Rn,n.

1. A is nonsingular.

2. A is invertible.

3. Ax = b has a unique solution x = A−1b for any b ∈ Rn.

4. A has linearly independent columns.

5. AT is nonsingular.

6. A has linearly independent rows.

7. det(A) 6= 0.

We also have a number of criteria for a matrix to be singular.

Theorem A.5. The following is equivalent for a square matrix A ∈ Rn,n.

1. There is a nonzero x ∈ Rn so that Ax = 0.

2. A has no inverse.

3. Ax = b has either no solution or an in�nite number of solutions.

4. A has linearly dependent columns.

5. There is a nonzero x so that xTA = 0.

6. A has linearly dependent rows.

7. det(A) = 0.

Corollary A.6. A matrix with more columns than rows has linearly dependent columns.

Proof. Suppose A ∈ Rm,n with n > m. By adding n−m rows of zeros to A we obtain a
square matrix B ∈ Rn,n. This matrix has linearly dependent rows. By Theorem A.4 the
matrix B has linearly dependent columns. But then the columns of A are also linearly
dependent.
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A.2 Vector Norms

Formally, a vector norm || || = ||x||, is a function ‖ ‖ : Rn → [0,∞) that satis�es for
x,y,∈ Rn, and α ∈ R the following properties

1. ||x|| = 0 implies x = 0.
2. ||αx|| = |α|||x||.
3. ||x+ y|| ≤ ||x||+ ||y||.

(A.1)

Property 3 is known as the Triangle Inequality. For us the most useful class of norms are
the q or `q norms. They are de�ned for q ≥ 1 and x = (x1, x2, . . . , xn)T ∈ Rn by

||x||q = (|x1|q + |x2|q + · · ·+ |xn|q)1/q.
||x||∞ = maxi |xi|.

(A.2)

Since
||x||∞ ≤ ||x||q ≤ n1/q||x||∞, q ≥ 1 (A.3)

and limq→∞ n
1/q = 1 for any n ∈ N we see that limq→∞ ||x||q = ||x||∞.

The 1,2, and ∞ norms are the most important. We have

||x||22 = x2
1 + · · ·+ x2

n = xTx. (A.4)

Lemma A.7 (The Hölder inequality). We have for 1 ≤ q ≤ ∞ and x,y ∈ R
n∑
i=1

|xiyi| ≤ ||x||q||y||q′ , where
1

q
+

1

q′
= 1. (A.5)

Proof. We base the proof on properties of the exponential function. Recall that the
exponential function is convex, i.e. with f(x) = ex we have the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (A.6)

for every λ ∈ [0, 1] and x, y ∈ R.
If x = 0 or y = 0, there is nothing to prove. Suppose x,y 6= 0. De�ne u = x/||x||q

and v = y/||y||q. Then ||u||q = ||v||q′ = 1. If we can prove that
∑

i |uivi| ≤ 1, we are
done because then

∑
i |xiyi| = ||x||q||y||q′

∑
i |uivi| ≤ ||x||q||y||q′ . Since |uivi| = |ui||vi|,

we can assume that ui ≥ 0 and vi ≥ 0. Moreover, we can assume that ui > 0 and vi > 0
because a zero term contributes no more to the left hand side than to the right hand
side of (A.5). Let si, ti be such that ui = esi/q, vi = eti/q

′
. Taking f(x) = ex, λ = 1/q,

1− λ = 1/q′, x = si and y = ti in (A.6) we �nd

esi/q+ti/q
′ ≤ 1

q
esi +

1

q′
eti .

But then∑
i

|uivi| =
∑
i

esi/q+ti/q
′ ≤ 1

q

∑
i

esi +
1

q′

∑
i

eti =
1

q

∑
i

uqi +
1

q′

∑
i

vq
′

i =
1

q
+

1

q′
= 1.

This completes the proof of (A.5).
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When q = 2 then q′ = 2 and the Hölder inequality is associated with the names
Buniakowski-Cauchy-Schwarz.

Lemma A.8 (The Minkowski inequality). We have for 1 ≤ q ≤ ∞ and x,y ∈ R

||x+ y||q ≤ ||x||q + ||y||q. (A.7)

Proof. Let u = (u1, . . . , un) with ui = |xi + yi|q−1. Since q′(q−1) = q and q/q′ = q−1,
we �nd

||u||q′ = (
∑
i

|xi + yi|q
′(q−1))1/q′ = (

∑
i

|xi + yi|q)1/q′ = ||x+ y||q/q′q = ||x+ y||q−1
q .

Using this and the Hölder inequality we obtain

||x+ y||qq =
∑
i

|xi + yi|q ≤
∑
i

|ui||xi|+
∑
i

|ui||yi| ≤ (||x||q + ||y||q)||u||q′

≤ (||x||q + ||y||q)||x+ y||q−1
q .

Dividing by ||x+ y||q−1
q proves Minkowski.

Using the Minkowski inequality it follows that the p norms satis�es the axioms for a
vector norm.

In (A.3) we established the inequality

||x||∞ ≤ ||x||q ≤ n1/q||x||∞, q ≥ 1.

More generally, we say that two vector norms || || and || ||′ are equivalent if there exists
positive constants µ and M such that

µ||x|| ≤ ||x||′ ≤M ||x|| (A.8)

for all x ∈ Rn.
Theorem A.9. All vector norms on Rn are equivalent.

Proof. It is enough to show that a vector norm || || is equivalent to the l∞ norm, || ||∞.
Let x ∈ Rn and let ei, i = 1, . . . , n be the unit vectors in Rn. Writing x = x1e1+· · ·+xnen
we have

||x|| ≤
∑
i

|xi|||ei|| ≤ ||x||∞M, M =
∑
i

||ei||.

To �nd µ > 0 such that ||x|| ≥ µ||x||∞ for all x ∈ Rn is less elementary. Consider
the function f given by f(x) = ||x|| de�ned on the l∞ �unit ball�

S = {x ∈ Rn : ||x||∞ = 1}.
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S is a closed and bounded set. From the inverse triangle inequality

| ||x|| − ||y|| | ≤ ||x− y||, x,y ∈ Rn.

it follows that f is continuous on S. But then f attains its maximum and minimum on
S, i.e. there is a point x∗ ∈ S such that

||x∗|| = min
x∈S
||x||.

Moreover, since x∗ is nonzero we have µ := ||x∗|| > 0. If x ∈ Rn is nonzero then
x = x/||x||∞ ∈ S. Thus

µ ≤ ||x|| = || x

||x||∞
|| = 1

||x||∞
||x||,

and this establishes the lower inequality.

It can be shown that for the q norms we have for any r with 1 ≤ r ≤ q ≤ ∞

||x||q ≤ ||x||r ≤ n1/r−1/q||x||q, x ∈ Rn. (A.9)

<

A.3 Vector spaces of functions

In Rm we have the operations x + y and ax of vector addition and multiplication by
a scalar a ∈ R. Such operations can also be de�ned for functions. As an example, if
f(x) = x, g(x) = 1 , and a, b are real numbers then af(x) + bg(x) = ax+ b. In general,
if f and g are two functions de�ned on the same set I and a ∈ R, then the sum f + g
and the product af are functions de�ned on I by

(f + g)(x) = f(x) + g(x),

(af(x) = af(x).

Two functions f and g de�ned on I are equal if f(x) = g(x) for all x ∈ I. We say that
f is the zero function, i.e. f = 0, if f(x) = 0 for all x ∈ I.
De�nition A.10. Suppose S is a collection of real valued or vector valued functions, all
de�ned on the same set I. The collection S is called a vector space if af + bg ∈ S for all
f, g ∈ S and all a, b ∈ R. A subset T of S is called a subspace of S if T itself is a vector
space.
Example A.11. Vector spaces

• All polynomials Πp of degree at most p.

• All polynomials of all degrees.

• All trigonometric polynomials a0 +
∑p
k=1(ak cos kx+ bk sin kx of degree at most p.

• The set C(I) of all continuous real valued functions de�ned on I.
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• The set Cr(I) of all real valued functions de�ned on I with continuous j′th derivative for j =
0, 1, . . . , r.

De�nition A.12. A vector space S is said to be �nite dimensional if

S = span(φ1, . . . , φn) = {
n∑
j=1

cjφj : cj ∈ R},

for a �nite number of functions φ1, . . . , φn in S. The functions φ1, . . . , φn are said to
span or generate S.

Of the examples above the space Πp = span(1, x, x2, . . . xp) generated by the mono-
mials 1, x, x2, . . . xp is �nite dimensional. Also the trigonometric polynomials are �nite
dimensional. The space of all polynomials of all degrees is not �nite dimensional. To
see this we observe that any �nite set cannot generate the monomial xp+1 where p is the
maximal degree of the elements in the spanning set. Finally we observe that C(I) and
Cr(I) contain the space of polynomials of all degrees as a subspace. Hence they are not
�nite dimensional,

If f ∈ S = span(φ1, . . . , φn) then f =
∑n

j=1 cjφj for some c = (c1, . . . , cn). With

φ = (φ1, . . . , φn)T we will often use the vector notation

f(x) = φ(x)Tc (A.10)

for f .

A.3.1 Linear independence and bases

All vector spaces in this section will be �nite dimensional.

De�nition A.13. A set of functions φ = (φ1, . . . , φn)T in a vector space S is said to be
linearly independent on a subset J of I if φ(x)Tc = c1φ1(x) + · · · + cnφn(x) = 0 for all
x ∈ J implies that c = 0. If J = I then we simply say that φ is linearly independent.

If φ is linearly independent then the representation in (A.10) is unique. For if f =
φTc = φTb for some c, b ∈ Rn then f = φT (c− b) = 0. Since φ is linearly independent
we have c− b = 0, or c = b.

De�nition A.14. A set of functions φT = (φ1, . . . , φn) in a vector space S is a basis for
S if the following two conditions hold

1. φ is linearly independent.

2. S = span(φ).

Theorem A.15. The monomials 1, x, x2, . . . xp are linearly independent on any set J ⊂
R containing at least p+ 1 distinct points. In particular these functions form as basis for
Πp.

Proof. Let x0, . . . , xp be p+1 distinct points in J , and let g(x) = c0+c1x+· · ·+cpxp = 0
for all x ∈ J . Then g(xi) = 0, for i = 0, 1, . . . , p. Since a nonzero polynomial of degree
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p can have at most p zeros we conclude that g must be the zero polynomial. But then
ck = g(k)(0)/k! = 0 for k = 0, 1, . . . , p. It follows that the monomial is a basis for Πp

since they span Πp by de�nition.

To prove some basic results about bases in a vector space of functions it is convenient
to introduce a matrix transforming one basis into another.

Lemma A.16. Suppose S and T are �nite dimensional vector spaces with S ⊂ T , and
let φ = (φ1, . . . , φn)T be a basis for S and ψ = (ψ1, . . . , ψm)T a basis for T . Then

φ = ATψ, (A.11)

for some matrix A ∈ Rm,n. If f = φTc ∈ S is given then f = ψTb with

b = Ac. (A.12)

Moreover A has linearly independent columns.

Proof. Since φj ∈ T there are real numbers ai,j such that

φj =
m∑
i=1

ai,jψi, for j = 1, . . . , n,

This equation is simply the component version of (A.11). If f ∈ S then f ∈ T and
f = ψTb for some b. By (A.11) we have φT = ψTA and f = φTc = ψTAc or
ψTb = ψTAc. Since ψ is linearly independent we get (A.12). Finally, to show that A
has linearly independent columns suppose Ac = 0. De�ne f ∈ S by f = φTc. By (A.11)
we have f = ψTAc = 0. But then f = φTc = 0. Since φ is linearly independent we
conclude that c = 0.

The matrix A in Lemma A.16 is called a change of basis matrix.

A basis for a vector space generated by n functions can have at most n elements.

Lemma A.17. If ψ = (ψ1 . . . , ψk)
T is a linearly independent set in a vector space

S = span(φ1, . . . , φn), then k ≤ n.

Proof. With φ = (φ1, . . . , φn)T we have

ψ = ATφ, for some A ∈ Rn,k.

If k > n thenA is a rectangular matrix with more columns than rows. From Corollary A.6
we know that the columns of such a matrix must be linearly dependent; I.e. there is some
nonzero c ∈ Rk such that Ac = 0. But then ψTc = φTAc = 0, for some nonzero c.
This implies that ψ is linearly dependent, a contradiction. We conclude that k ≤ n.

Lemma A.18. Every basis for a vector space must have the same number of elements.
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Proof. Suppose φ = (φ1, . . . , φn)T and ψ = (ψ1, . . . , ψm)T are two bases for the vector
space. We need to show that m = n. Now

φ = ATψ, for some A ∈ Rm,n,

ψ = BTφ, for some B ∈ Rn,m.

By Lemma A.16 we know that both A and B have linearly independent columns. But
then by Corollary A.6 we see that m = n.

De�nition A.19. The number of elements in a basis in a vector space S is called the
dimension of S, and is denoted by dim(S).

The following lemma shows that every set of linearly independent functions in a vector
space S can be extended to a basis for S. In particular every �nite dimensional vector
space has a basis.

Lemma A.20. A set φT = (φ1, . . . , φk) of linearly independent elements in a �nite
dimensional vector space S, can be extended to a basis ψT = (ψ1, . . . , ψm) for S.

Proof. Let Sk = span(ψ1, . . . , ψk) where ψj = φj for j = 1, . . . , k. If Sk = S then
we set m = k and stop. Otherwise there must be an element ψk+1 ∈ S such that
ψ1, . . . , ψk+1 are linearly independent. We de�ne a new vector space Sk+1 by Sk+1 =
span(ψ1, . . . , ψk+1). If Sk+1 = S then we set m = k+ 1 and stop the process. Otherwise
we continue to generate vector spaces Sk+2, Sk+3, · · · . Since S is �nitely generated we
must by Lemma A.17 eventually �nd some m such that Sm = S.

The following simple, but useful lemma, shows that a spanning set must be a basis if
it contains the correct number of elements.

Lemma A.21. Suppose S = span(φ). If φ contains dim(S) elements then φ is a basis
for S.

Proof. Let n = dim(S) and suppose φ = (φ1, . . . , φn) is a linearly dependent set. Then
there is one element, say φn which can be written as a linear combination of φ1, . . . , φn−1.
But then S = span(φ1, . . . , φn−1) and dim(S) < n by Lemma A.17, a contradiction to
the assumption that φ is linearly dependent.

A.4 Normed Vector Spaces

Suppose S is a vector space of functions. A norm || || = ||f ||, is a function ‖ ‖ : S →
[0,∞) that satis�es for f, g,∈ S, and α ∈ R the following properties

1. ||f || = 0 implies f = 0.
2. ||αf || = |α|||f ||.
3. ||f + g|| ≤ ||f ||+ ||g||.

(A.13)

Property 3 is known as the Triangle Inequality. The pair (S, || ||) is called a normed
vector space (of functions).
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In the rest of this section we assume that the functions in S are continuous, or at
least piecewise continuous on some interval [a, b].

Analogous to the q or `q norms for vectors in Rn we have the q or Lq norms for
functions. They are de�ned for 1 ≤ q ≤ ∞ and f ∈ S by

||f ||q = ||f ||Lq [a,b] =
(∫ b

a |f(x)|qdx
)1/q

, q ≥ 1,

||f ||∞ = ||f ||L∞[a,b] = maxa≤x≤b |f(x)|.
(A.14)

The 1,2, and ∞ norms are the most important.
We have for 1 ≤ q ≤ ∞ and f, g ∈ S the Hölder inequality∫ b

a
|f(x)g(x)|dx ≤ ||f ||q||g||q′ , where

1

q
+

1

q′
= 1, (A.15)

and the Minkowski inequality

||f + g||q ≤ ||f ||q + ||g||q. (A.16)

For q = 2 (A.15) is known as the Schwarz inequality, the Cauchy-Schwarz inequality, or
the Buniakowski-Cauchy- Schwarz inequality.
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plotting, 84
re�ned knot vector, 84
repeated application of B-spline matri-

ces, 63
representation of power basis, 64
smoothness at multiple knot, 49
triangular algorithm
complexity, 78

triangular algorithms, 56
vector algorithms, 56, 60
vector version of L-algorithm, 60

spline space, 46
spline vector function, 49

tangent vector, 6, 7
triangular algorithm, 10, 17, 25
triangular algorithms, 56
truncated power basis, 77, 78

variation diminishing spline approximation,
34, 47

velocity, 6

weighted averages, 2
wiggles, 11


