Lecture 1 - INF-MAT 5360

- Practical information
- ► Optimization overview
- Modeling linear programming

Practical information

- Lecturer: Truls Flatberg, Truls.Flatberg@sintef.no
- Course web page: http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5360/h08/
- Literature:
 - ▶ A. Schrijver: A course in Combinatorial Optimization
 - G. Dahl: An introduction to convexity, polyhedral theory and combinatorial optimization
 - ► C. Gueret et al: Applications of optimization with Xpress-MP
- 3 obligatory projects
- Oral exam (December)

Optimization

An optimization problem has the following basic ingredients:

- Objective function to be minimized or maximized
- Variables that influence the objective function
- ► Constraints that restricts the legal values of the variables

Problem: Find values for the variables that minimizes (alt. maximizes) the objective function and obeys the constraints.

Mathematical formulation of an optimization problem

$$\min f(x)$$

subject to $x \in X$

- $f: X \longrightarrow \mathbb{R}$: objective function
- x: variables
- X: set of feasible solutions (constraints)

Example:

$$\min (x_1 - 2)^2 + (x_2 - 1)^2$$
s.t. $x_1^2 - x_2 \le 0$
 $x_1 + x_2 \le 2$

- $f(x) = (x_1-2)^2 + (x_2-1)^2$
- $x = (x_1, x_2)^T$
- $X = \{ x \in \mathbb{R}^2 : x_1^2 x_2 \le 0, x_1 + x_2 \le 2 \}$

Classification

Objective function

- none feasibility problem
- multiple multi-criteria optimization

Variables

- continuous continuous optimization
- discrete values discrete optimization

Constraints

- none unconstrained optimization
- ▶ finite set of feasible solutions combinatorial optimization

Special cases:

- Linear programming objective and constraints are linear functions
- Integer programming as for LP, but with integer valued variables
- Nonlinear optimization objective and constraints are nonlinear functions
- Convex optimization convex objective and the set of feasible solutions is convex

Uncertainty in parameters and constraints:

- ► Stochastic optimization
- Robust optimization

Main topics of this course:

- Modeling, OPL studio
- ► Combinatorial optimization
 - Spanning tree
 - Shortest path
 - Matching
- Network flow
- Polyhedral theory
- Integer optimization

Linear programming is assumed known (INF-MAT 3370).

Modeling

Developing linear and integer programming models

- 1. Choosing variables
- 2. Modeling constraints
- 3. Objective function

Linear program

- Optimize a linear function
- Constraints are linear equations or inequalities

maximize
$$c_1x_1+c_2x_2+\cdots+c_nx_n$$
 subject to $a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\leq b_1$ \vdots $a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n\leq b_m$ $x_1,x_2,\ldots,x_n\geq 0$

Matrix form

$$\begin{array}{ll}
\text{max} & c^T x \\
\text{s.t.} & Ax \le b \\
& x \ge 0
\end{array}$$

Example: Chess set problem

- ▶ A small company produces chess sets of two different sizes
- ▶ The small set requires 3 hours of work and 1 kg wood
- The large set requires 2 hours of work and 3 kg wood
- ▶ 4 persons working 40 hours a week
- Only 200 kg wood per week can be obtained
- ▶ Large set yield profit of \$20 while the small has a profit of \$5

How many of each set should be produced each week to maximize profit?

Chess set problem: model

1. Choosing variables

 x_s : the number of small sets to make

 x_l : the number of large sets to make

2. Modeling constraints

$$3x_s + 2x_l \le 160$$
$$x_s + 3x_l \le 200$$
$$x_s, x_l \ge 0$$

3. Objective function

$$\max 5x_s + 20x_l$$

Limitations of the model

A model will always be a simplification of the real world.

Explicit assumptions

- All chess sets could be sold
- ▶ No changeover time between sizes of set

Implicit assumptions

- No machine will break down
- All workers will turn up
- Are fractional chess sets meaningful?

Typical LP model constructs

Simple upper and lower bounds

$$x \ge 4, y \le 1600$$

 Flow constraints
 Divisible elements (e.g. water, electricity) that come together or are divided

$$x_1 + x_2 + x_3 = 1000$$

Resource constraints
 Limitations of available resources

$$x + y \le 500$$

Typical LP model constructs

Material balance constraints
 What comes in must come out

$$x_1 + x_2 + x_3 = y_1 + y_2$$

Quality requirements
 Ensuring quality when blending product

$$x_1 + 2x_2 + 1.5x_3 >= 5$$

Accounting constraints
 Help variables create quasi-independent pieces

$$x_{\text{total}} = x_1 + x_2 + x_3 + x_4$$

Soft constraints

- Hard constraints: physical, accounting, definitional constraints
- Soft constraints : constraints that can be violated at a cost

$$\min c_1x_1 + c_2x_2 + Cy$$

subject to $x_1 + x_2 \ge 500 - y$

- ▶ y is called a slack variable (or panic variable)
- Can use slack variables to ensure the existence of feasible solutions

Objective functions

Minimax objective functions

$$\min \max(x_1, x_2, \dots, x_n)$$

Equivalent with

$$\begin{array}{c} \text{min } s \\ \text{subject to } s \geq x_1 \\ s \geq x_2 \\ \vdots \\ s \geq x_n \end{array}$$

► Ratio objective function

$$\min f = \frac{\sum_{j} a_{j} x_{j}}{\sum_{j} b_{j} x_{j}}$$

Introduce new variables $d=\frac{1}{\sum_{i}b_{j}x_{j}}$ and $y_{j}=dx_{j}$.

$$f = \sum_{j} da_{j} x_{j} = \sum_{j} a_{j} y_{j}$$

Replace x_j with y_j/d in constraints.

A scheduling example

A construction company is hired to renovate the university campus. The work can be broken down into a series of n tasks. Each task i has a duration d_i and can only begin after other tasks have been completed, i.e. for each task we have a set of predecessor tasks P_i .

What is the shortest time to complete the renovation?

1. Choosing variables

$$x_i$$
 = the starting time of task i

Modeling constraints
 Assume the clock starts at the beginning of the project

$$x_i \geq 0$$

A task must start after its predecessors

$$x_i \ge x_j + d_j$$
 for all $j \in P_i$

3. Objective function

$$\min \max(x_1 + d_1, x_2 + d_2, \dots, x_n + d_n)$$