Exact Methods

Carlo Mannino
(from Geir Dahl and Carlo Mannino notes)

University of Oslo, INF-MAT5360 - Autumn 2010 (Mathematical optimization)

Exact methods for CO

- Combinatorial optimization problem solved to optimality

$$
\text { (Q) } \max \left\{w^{\top} x: x \in S \subseteq\{0,1\}^{n}\right\}=v(Q) \quad 0-1 \text { linear program }
$$

- Consider $T \supseteq S$ and let (R) $\max \left\{w^{\top} x: x \in T\right\} \geq v(Q)$
- Suppose the optimal solution x_{R} to (R) can be found efficiently e.g. $T=P$ polyhedron and $S=P \cap\{0,1\}^{n}$
- Let $x^{*} \in S$ (incumbent solution) and $L B=w^{\top} x^{*} \leq v(Q)$
- $\mathrm{LB}=-\infty$ if no incumbent solution is known

$$
\text { Solving }(R)=\text { Solving }(Q) \text { ? }
$$

- Only if some conditions are verified.

Solving (R) instead of (Q)

1. Infeasibility. T is empty $\rightarrow S$ is empty
2. Optimality. $x_{R} \in S \rightarrow x_{R}$ optimal for (Q).

$$
v(\mathrm{Q}) \geq w^{\top} x_{R}=v(\mathrm{R}) \geq v(\mathrm{Q})
$$

3. Value Dominance. $w^{\top} x_{R} \leq \mathrm{LB}=w^{\top} x^{*} \rightarrow x^{*}$ optimal for (Q).

$$
w^{\top} x^{*} \geq v(\mathrm{R}) \geq v(\mathrm{Q}) \geq w^{\top} x^{*}
$$

- If none of this conditions is satisfied we do divide-et-impera
- Partition S and decompose (Q) into a number of smaller subproblems $(Q(u)) \quad \max \left\{w^{\top} x: x \in S(u)\right\}, \quad \cup_{u} S(u)=S$

Solving Q(u)

- $(Q(u)) \max \left\{w^{\top} x: x \in S(u)\right\}$ still difficult but "smaller" than Q

$$
\begin{aligned}
& (\mathrm{Q}(u)) \quad \max \left\{w^{\top} x: x \in S(u)\right\} \\
& v(\mathrm{Q})=\max _{u} v(\mathrm{Q}(\mathrm{u}))
\end{aligned}
$$

- Partitions can be built recursively by fixing variables to 0 or 1 .

- Each leaf of the complete tree corresponds to a specific 0,1 vector!

Divite-et-impera

- We can try to solve each $(Q(u))$ by solving a relaxation $(R(u))$

$$
(Q(u)) \quad \max \left\{w^{\top} x: x \in S(u)\right\} \quad(R(u)) \quad \max \left\{w^{\top} x: x \in T(u) \supseteq S(u)\right\}
$$

$x(u)$ optimal solution to $R(u)$
$z(u)=w^{\top} x(u)$ optimal value of $R(u)$
x^{*} overall incumbent, $z_{L}=w^{\top} x^{*}$

1. Infeasibility. $T(u)$ is empty $\rightarrow S(u)$ is empty
2. Value Dominance. $z(u) \leq \mathrm{LB}=w^{\top} x^{*}$ no use to solve $Q(u)$
$w^{\top} x^{*} \geq z(u) \geq v(Q(u))$ no solution in $S(u)$ better than incumbent x^{*}
3. Optimality. $x_{\mathrm{R}(\mathrm{u})} \in \mathrm{S}(u) \rightarrow x_{\mathrm{R}(\mathrm{u})}$ optimal for $(\mathrm{Q}(u))$.

$$
\text { if } w^{\top} x_{R(u)}>L B \text { we can set the incumbent } x^{*}=x_{R(u)}
$$

Branch-and-bound

Branch-and-Bound algorithm for 0,1 programming

- Step 1. (Initialization) Let $V_{n}=\left\{v_{r}\right\}, z_{L}=-\infty$.
- Step 2. (Termination.) If $V_{n}=\emptyset$, terminate (x^{*} is optimal).
- Step 3. (Node selection and solution) Select u in V_{n}. Set $V_{n}:=V_{n} \backslash\{u\}$. Solve the LP relaxation $(R(u))$.
- Step 4. (Pruning.)
(i) If $(\mathrm{R}(\mathrm{u}))$ is infeasible Goto 2.
(ii) If $x(u) \in S(u)$ and $w^{\top} x(u)>z_{L}$, let $x^{*}=x(u), z_{L}=w^{\top} x(u)$. Goto 2 .
(iii) If $z(u)=w^{\top} x(u) \leq z_{L}$, Goto 2 .

Step 5. (Branching.) Choose a variable x_{i}.
Let $S\left(u_{0}\right)=\left\{x \in S \cap\left\{x_{i}=0\right\}\right\} . S\left(u_{1}\right)=\left\{x \in S \cap\left\{x_{i}=1\right\}\right\}$.
Add u_{0} and u_{1} to V_{n}. Goto 2.

Example

$$
\begin{aligned}
& \max -5 x_{1}-9 x_{2}-7 x_{3}-5 x_{4} \\
& \left\{\begin{array}{l}
4 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \geq 7 \\
x \in\{0,1\}^{4}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \hat{x}_{1}=1 \\
& \hat{x}_{2}=3 / 5=0,6 \\
& \hat{x}_{3}=0 \\
& \hat{x}_{4}=0
\end{aligned}
$$

$$
\mathrm{UB}=-10,4
$$

$$
\mathrm{LB}=-14 \quad\left\{\begin{array}{l}
\hat{x}_{1}=\hat{x}_{2}=1 \\
\hat{x}_{3}=\hat{x}_{4}=0
\end{array}\right.
$$

Example

$$
\left.\left.\begin{array}{cl}
\max -5 x_{1}-9 x_{2}-7 x_{3}-5 x_{4} & \hat{x}_{1}=1 \\
\begin{cases}4 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \geq 7 \\
x \in\{0,1\}^{4} & \hat{x}_{2}=3 / 5=0,6\end{cases} \\
x_{2}=0 & \hat{x}_{4}=0 \\
\hat{x}_{3}=0
\end{array}\right\} \begin{array}{l}
x_{2}=1
\end{array}\right\} \begin{aligned}
& -9+\max -5 x_{1}-7 x_{3}-5 x_{4} \\
& \max -5 x_{1}-7 x_{3}-5 x_{4} \\
& 4 x_{1}+3 x_{3}+2 x_{4} \geq 7
\end{aligned}
$$

Example

$$
\begin{aligned}
& x_{2}=0 \\
& \max -5 x_{1}-7 x_{3}-5 x_{4} \\
& 4 x_{1}+3 x_{3}+2 x_{4} \geq 7 \\
& x_{2}=1 \\
& -9+\max -5 x_{1}-7 x_{3}-5 x_{4} \\
& 4 x_{1}+3 x_{3}+2 x_{4} \geq 2 \\
& \left\{\begin{array}{l}
\hat{x}_{2}=1 \\
\hat{x}_{1}=1 / 2=0,5 \\
\hat{x}_{3}=\hat{x}_{4}=0
\end{array}\right. \\
& x_{1}=1 \\
& -9+\max -7 x_{3}-5 x_{4} \\
& 3 x_{3}+2 x_{4} \geq 2 \\
& -14+\max -7 x_{3}-5 x_{4} \\
& 3 x_{3}+2 x_{4} \geq-2 \\
& \text { Similar } \\
& \mathrm{UB} \leq-14=\mathrm{LB}
\end{aligned}
$$

Example

$$
x_{2}=0
$$

$\max -5 x_{1}-7 x_{3}-5 x_{4}$
$4 x_{1}+3 x_{3}+2 x_{4} \geq 7$
$\left\{\begin{array}{l}\hat{x}_{1}=\hat{x}_{3}=1 \\ \hat{x}_{2}=\hat{x}_{4}=0\end{array}\right.$
LB $=-12$
x binary
update LB

$$
\begin{array}{ll}
-9+\max -7 x_{3}-5 x_{4} & -14+\max -7 x_{3}-5 x_{4} \\
3 x_{3}+2 x_{4} \geq 2 & 3 x_{3}+2 x_{4} \geq-2 \\
& \text { UB } \leq-14=\mathrm{LB}
\end{array}
$$

$$
x_{2}=1
$$

$$
-9+\max -5 x_{1}-7 x_{3}-5 x_{4}
$$

$$
4 x_{1}+3 x_{3}+2 x_{4} \geq 2
$$

$$
\left\{\hat{x}_{2}=1\right.
$$

$$
\left\{\begin{array}{l}
\hat{x}_{1}=1 / 2=0,5 \quad \mathrm{UB}=-11,5 \\
\hat{x}_{3}=\hat{x}_{4}=0
\end{array}\right.
$$

$$
x_{1}=1
$$

Open choices in B\&B

- Problem Selection: how to choose next problem?

Depth First Search, Best Bound, ...

- Branching: how to choose next branching variable?

Most "fractional" variable

- Relaxation: how to generate good formulations?

Find new inequalities (cutting planes) to add to the initial formulation to make it stronger.

Valid Inequalities

Valid Inequality

Let $P \subseteq R^{n}, a \in R^{n}$ e $b \in R$. The linear inequality $a^{T} x \leq b$ is valid for P if it is satisfied by every point of P

Valid inequalities for polyhedra

- Let $P=\left\{x \in R^{n}: A x \leq b\right\}$ polyhedron $\left(A \in R^{m \times n}, b \in R^{m}\right)$
- Any conic combination of the constraints defining P is valid for P

Gomory Cuts

Let $P \subseteq\left\{x \in R^{n}: A x \leq b, A \in R^{m \times n}, b \in R^{m}\right\}$ and $u \in R_{+}^{m}$, then
$\left\lfloor u^{\top} A\right\rfloor x \leq\left\lfloor u^{\top} b\right\rfloor$ is a Gomory-cut and is valid for $P \cap\{0,1\}^{n}$

A Gomory cut

Example: matching

- $\quad G=(V, E)$ undirected graph.
- Matching $M \subseteq E$: subset of edges meeting each vertex at most once
- $x \in\{0,1\}^{E}$ incidence vector of matching in $G \rightarrow x(\delta(v)) \leq 1$ for all $v \in V$

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3} \leq 1 & \delta(1) \\
x_{4}+x_{5} \leq 1 & \delta(2) \\
x_{1} \leq 1 & \delta(3) \\
x_{2}+x_{4} \leq 1 & \delta(4) \\
x_{3}+x_{5} \leq 1 & \delta(5)
\end{array}
$$

- Maximum Cardinality Matching $=\max \left\{1^{\top} x: A_{G} x \leq 1, x \in\{0,1\}^{E}\right\}$
G bipartite $\rightarrow A_{G}$ is TU

$$
\max \left\{1^{\top} x: A_{G} x \leq 1, x \geq 0\right\}
$$

Example: non-bipartite matching

- What if $G=(V, E)$ is non bipartite?

$$
\begin{array}{ll}
x_{1}+x_{5} \leq 1 & \delta(1) \\
x_{1}+x_{2} \leq 1 & \delta(2) \\
x_{2}+x_{3} \leq 1 & \delta(3) \\
x_{3}+x_{4} \leq 1 & \delta(4) \\
x_{4}+x_{5} \leq 1 & \delta(5)
\end{array}
$$

$$
A_{G} x \leq 1
$$

OBS: maximum cardinality matching value: 2 but ...

$$
\max \left\{1^{\top} x: A_{G} x \leq 1, x \geq 0\right\}=2.5\left(x_{i}=1 / 2, i=1, \ldots, 5\right)
$$

S incidence vectors of matching of G

- A_{G} non totally unimodular

$$
\mathrm{P}=\left\{x \in R^{E}: A_{G} X \leq 1, x \geq 0\right\} \neq \operatorname{conv}(S)
$$

Odd-cycle inequalities

$$
\mathrm{P}=\left\{x \in R^{E}: A_{G} x \leq 1, x \geq 0\right\} \neq \operatorname{conv}(S)
$$

| | $x_{1}+x_{5} \leq 1$
 $x_{1}+x_{2} \leq 1$ |
| :--- | :--- | :--- |
| $x_{2}+x_{3} \leq 1$ | $\delta(1)$ |
| $x_{3}+x_{4} \leq 1$ | $\delta(3)$ |
| $e_{4}+x_{5} \leq 1$ | |

C odd-cycle (odd number of vertices) M matching

$$
|\mathrm{M} \cap C| \leq(|\mathrm{C}|-1) / 2
$$

$$
\sum_{e \in C} x_{e} \leq \| C \left\lvert\, / 2-\quad \begin{aligned}
& \text { must be satisfied by every incidence } \\
& \text { vector of a matching of } G
\end{aligned}\right.
$$

Odd-cycle inequalities and Gomory cuts

$$
P=\left\{x \in R^{E}: A_{G} x \leq 1, x \geq 0\right\} \neq \operatorname{conv}(S)
$$

Consider the edges of a cycle $C=\left\{e_{1}, \ldots, e_{k}\right\}$
For every pair of consecutive edges e_{r}, e_{r+1}

$$
x_{r}+x_{r+1} \leq 1 \quad \text { combination of inequalities defining } P \text {.) }
$$

Summing up all the $|C|$ inequalities associated to C

$$
\sum_{e c e} 2 x_{e} \leq|C|
$$

Dividing by 2 and rounding down we finally obtain

$$
\sum_{e \in C} x_{e} \leq \| C \mid / 2_{-}
$$

$$
\begin{aligned}
& x_{1}+x_{5} \leq 1 \\
& x_{1}+x_{2} \leq 1 \\
& x_{2}+x_{3} \leq 1 \\
& x_{3}+x_{4} \leq 1 \\
& x_{4}+x_{5} \leq 1
\end{aligned} \quad \rightarrow \quad \sum_{e \in C} 2 x_{e} \leq 5
$$

Branch \& Cut

- Branch-and-Bound + cutting planes $=$ Branch-and-Cut
- A cut is an inequality which is valid for $P \cap\{0,1\}^{n}$ but not for P
- While solving current problem we try to strengthen the current relaxation by adding valid inequalities
- This is done in a dynamic-simplex-method fashion: the current solution is input to an oracle which tries to find a violated cut.
- Two types of cuts
- Template cuts: cuts with a given pattern (e.g. odd-cycles)
- General cuts.

