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Exact methods for CO

Combinatorial optimization problem solved to optimality

(Q)   max {wTx: x S {0,1}n }  = v(Q)   0-1 linear program

Consider T S and let (R)   max {wTx: x T} v(Q)

Suppose the optimal solution xR to (R) can be found efficiently     

e.g. T = P polyhedron and S = P {0,1}n

Let x* S (incumbent solution) and LB = wTx* v(Q)

LB = - if no incumbent solution is known 

Solving (R) = Solving (Q)? 

Only if some conditions are verified.  



Solving (R) instead of (Q)

1. Infeasibility. T is empty S is empty

2. Optimality. xR S xR optimal for (Q).

v(Q) wTxR = v(R) v(Q)

3. Value Dominance. wTxR LB = wTx* x* optimal for (Q). 

wTx* v(R) v(Q) wTx*

If none of this conditions is satisfied we  do divide-et-impera

Partition S and decompose (Q) into a number of smaller 

subproblems          (Q(u))   max {wTx: x S(u)},    u S(u) = S



Solving Q(u)

(Q(u))   max {wTx: x S(u)}  still difficult but “smaller” than Q
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Partitions can be built recursively by fixing variables to 0 or 1. 
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x3 = 0
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x1 = 1

S1

S3 S4

x2 = 0

S5x3 = 1

S2

S3 = {x S: x1 = 0 x2= 1}

Each leaf of the complete tree corresponds to a specific 0,1 vector! 

Enumeration Tree

(Q(u))   max {wTx: x S(u)} 

v(Q) = maxu v(Q(u))



Divite-et-impera
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(Q(u)) max {wTx: x S(u)} 

We can try to solve each (Q(u)) by solving a relaxation (R(u))

x(u) optimal solution to R(u) 

z(u) = wTx(u) optimal value of R(u)

x* overall incumbent, zL = wTx*

(R(u)) max {wTx: x T(u) S(u)} 

1. Infeasibility. T(u) is empty S(u) is empty

3. Value Dominance. z(u) LB = wTx* no use to solve Q(u)

wTx* z(u) v(Q(u)) no solution in S(u) better than incumbent x*

2. Optimality. xR(u) S(u) xR(u) optimal for (Q(u)). 

if wTxR(u) > LB we can set the incumbent x* = xR(u)



Branch-and-bound

Branch-and-Bound algorithm for 0,1 programming

• Step 1. (Initialization) Let Vn = {vr}, zL = −∞.

• Step 2. (Termination.) If Vn = ∅, terminate (x* is optimal).

• Step 3. (Node selection and solution) 

Select u in Vn . Set Vn := Vn \ {u}. Solve the LP relaxation (R(u)).

• Step 4. (Pruning.)

(i) If (R(u)) is infeasible  Goto 2.

(ii) If x(u) S(u) and wTx(u) > zL, let x* = x(u),  zL = wTx(u). Goto 2.

(iii) If z(u) = wT x(u) ≤ zL, Goto 2.

Step 5. (Branching.) Choose a variable xi 
.

Let S(u0) = {x S {xi = 0}}. S(u1) = {x S {xi = 1}}.

Add u0 and u1 to Vn. Goto 2.
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Open choices in B&B

Problem Selection: how to choose next problem? 

Depth First Search, Best Bound, …

Branching: how to choose next branching variable? 

Most “fractional” variable

Relaxation: how to generate good formulations? 

Find new inequalities (cutting planes) to add to the 

initial formulation to make it stronger. 



Valid Inequalities

P P

Let P Rn, a Rn e b R. The linear inequality  aTx b is  

valid for P if it is satisfied by every point of P

Valid Inequality



Valid inequalities for polyhedra
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uTAx ≤ uTb

Let P = {x Rn: Ax < b}  polyhedron (A Rm n, b Rm)

Any conic combination of the constraints defining P is valid for P

Let P {x Rn: Ax ≤ b, A Rm n , b Rm} and u R+
m, then 

uTA x ≤ uTb is a Gomory-cut and is valid for P {0,1}n

Gomory Cuts



A Gomory cut
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Example: matching

G = (V,E) undirected graph. 

Matching M E: subset of edges meeting each vertex at most once

x {0,1}E incidence vector of matching in G x( (v)) 1 for all v V

e5

1

5

2

3e1

4
e2

e3

e4

x1 + x2 + x3 1

x4 + x5 1

(1)

(2)

x1 1

x2 + x4 1

(3)

(4)

x3 + x5 1 (5)

AGx 1

Maximum Cardinality Matching = max{1Tx: AGx 1, x {0,1}E}

max{1Tx: AGx 1, x 0} LP!G bipartite  AG is TU
=

 



Example: non-bipartite matching

What if G = (V,E) is non bipartite? 

e4

1

52

3 4

e1

e2

e3

x1 + x5 1

x1 + x2 1

(1)

(2)

x2 + x3 1

x3 + x4 1

(3)

(4)

x4 + x5 1 (5)

AGx 1

AG non totally unimodular P ={x RE : AGx 1, x 0} conv(S)

e5

S incidence vectors of matching of G

OBS: maximum cardinality matching value: 2   but …

max{1Tx: AGx 1, x 0} = 2.5  (xi = ½, i = 1, …, 5)



Odd-cycle inequalities

e4
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x1 + x5 1

x1 + x2 1

(1)

(2)

x2 + x3 1

x3 + x4 1

(3)

(4)

x4 + x5 1 (5)

AGx 1

P ={x RE : AGx 1, x 0} conv(S)

e5

must be satisfied by every incidence 

vector of a matching of G

C odd-cycle (odd number of vertices) 
|M C| (|C|-1) / 2

2/|| Cx
Ce

e

M matching

valid for conv(S) (but not for P! Why?)



Odd-cycle inequalities and Gomory cuts

P ={x RE : AGx 1, x 0} conv(S)
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e1

e2

e3

x1 + x5 1

x1 + x2 1

x2 + x3 1

x3 + x4 1

x4 + x5 1

e5

Consider the edges of a cycle C = {e1, …, ek}   

For every pair of consecutive edges er , er+1

xr + xr+1 1
is valid for P (why? Hint obtain it as a conic 

combination of inequalities defining P. )

Summing up all the |C| inequalities associated to C

||2 Cx
Ce

e

Dividing by 2 and rounding down we finally obtain  2/|| Cx
Ce
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e
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Branch & Cut

Branch-and-Bound + cutting planes = Branch-and-Cut

A cut is an inequality which is valid for P {0,1}n but not for P

While solving current problem we try to strengthen the current 

relaxation by adding valid inequalities

This is done in a dynamic-simplex-method fashion: the current 

solution is input to an oracle which tries to find a violated cut. 

Two types of cuts

Template cuts: cuts with a given pattern (e.g. odd-cycles)

General cuts. 


