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• Packets cross the network entering and exiting through
edge routers

• Internal nodes are called label switch router (LSR)

Example: IP network

• Each connection (e.g. Voice over IP) needs to be assigned a 
given amount of bandwidth (capacity)  

• IP networks are constituted by routers 
connected by optical fibers 

IP network



Example: two  connections 

Example

K band origin dest.
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Commodity 1: flows 

Commodity 2: flows 
5,(5,2),2,(2,3),3

3Mb

1,(1,2),2,(2,4),4

1Mb

1,(1,3),3,(3,4),4

1Mb

1,(1,2),2,(2,3),3,(3,4),4

2Mb

Capacitated Network with 5 vertices 
and 4 edge routers (1,3,4,5)
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Can we satisfy traffic demand with
the given capacities?
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Network Flow

Given a directed graph D = (V,E) 

Typically flows are required to be non-negative i.e. 

A FLOW is a function x : E R, i.e. x RE

ERx

The divergence of a flow x is the function divx : V R, given by
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x(e) = xe  :  flow sent on edge e  (e E)
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div(3) = -4
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Circulations

A circulation is a flow x with divx(v)= 0 (v V)
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We are interested in flows with given divergence b RV

divx(v) = b(v)     (v V)
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flow balance equations

Remark: The set of flows with given divergence is a polyhedron

Often an upper bound (capacity
function) c : E R is defined  

0 x(e) c(e) (e E)

Sometimes a lower bound 
function l : E R is defined and   

l(e) x(e) c(e) (e E)



Cuts

CUT (of S) set of edges leaving S

+(S) = {(v,w) E: v S, w S}
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Let  S V.  S = {1,3,4}

+(S) = {(1,2),(3,2),(4,2)}

-(S) set of edges entering S

-(S) = {(v,w) E: v S, w S}
-(S) = {(5,1),(6,4)}

Remark: -(S) = : +(V/S) (the cut of V/S)



Cuts and Divergence

Hajhsas

da

Let x be a circulation of D = (V,E). Then

Corollary (circulation through a cut)  
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Let +(S) be a cut of of D = (V,E). Then

Theorem (flow through a cut)
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Proof: excercise. flow through cut +(S)



u-v Cuts

u S and v S, then 

+(S) is  u-v cut
Let  S V and let u, v V 
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+(S1) = {(1,2),(3,2),(4,2)}

-(S2) = {(2,5)}

S1 = {1,3,4}

S2 = {1,2,3,4}

Two 1-6 cuts

u-v path: a directed path from u to v
in D = (V,E)
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A 1-6 path P = {1,(1,2),2,(2,5),5,(5,6),6}



u-v cuts and u-v paths

Hajhsas

da

Let EP be the set of edges of a u-v path P and let C E be a 

u-v cut. Then EP C Ø. 

Theorem (every u-v path meets every u-v cut)

u

vi-1

viv1 v

P = {v0,(v0 ,v1), v1 ,…, vk-1, (vk-1 , vk), vk}

with u = v0 and vk = v

u-v path 

P

S

V/S

Let +(S) be a u-v cut, with u S and  v V\S

Let i be the smallest index such that  vi V\S.

Since v0 S, then i 1. 

vi exists since vk V\S.  

Then vi-1 S, vi V\S (vi-1 , vi ) +(S) 



u-v cuts and u-v paths

Hajhsas

da

Let D be a directed graph. D contains no u-v path if and only

if D contains an empty u-v cut.

Theorem (connectivity and emtpy cuts)

Sufficiency. (Empty u-v cut no u-v path)

+(S)  = Ø (empty u-v cut), with u S and v V/S

1
5

2
6

3
4

S = {1,2,3,4}

V/S

+(S)  = Ø

Let EP be the set of edges of a u-v path P. 

+(S) EP = Ø, a contradiction. 



u-v cuts and u-v paths

Hajhsas

da

Let D be a directed graph. D contains no u-v path if and only

if D contains an empty u-v cut.

Theorem (u-v connectivity and emtpy u-v cuts)

Necessity. 

Suppose not. 

Concatenating Px and (x,y) provides a u-y path, contradiction

(no u-v path empty u-v cut )

Let S = {w V: there exists an u-w path in D}

v V\S and +(S) is an u-v cut.  

+(S) is empty
u

x
y

v

S

V/S

Then there exists (x,y) +(S), with x S and  y V/S

Since x S there exists a u-x path Px in D



Auxiliary graph

e = (w,v) inverse edge: e-1 = (v,w)
w

v

w

v
inverse

Let l, x, u RE, l x u

Let Ex = {e E: xe< ue} {e-1: e E, le< xe}

Auxiliary Graph Dx = (V,Ex)

(l,x,u)

(2,5,5)
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(0,1, 3)

(1,1, 3)

(0,0, 3)

(1,1, 3)

(1,1,1)

(0,3, 4)

(1,4, 4)

(0,2, 4)

Dx

forward edge e E Ex: 
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inverse

forward 

Dx = (V,Ex)

D = (V,E)



Flows and Auxiliary graph
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Dx = (V, Ex)

Ex = {e E: xe< ue} {e-1: e E, le< xe}. 

Remark: if Dx contains a forward edge e = (v,w): xvw< uvw

zvw = xvw + is still feasible (ze = xe for  e E / {(v,w)})

Remark: if Dx contains an inverse edge e = (v,w): xwv> lwv

zwv = xwv - is still feasible (ze = xe for e E / {(w,v)}) 

In both cases we say we are “sending units of flow” on 
the auxiliary edge (v,w). 
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(1,1, 3)

(0,0, 3)

(1,1, 3)

(1,1,1)

(0,3, 4)

(1,4, 4)

(0,2, 4)

D = (V,E)

Let > 0. 



Divergence and auxiliary graph
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In both cases

v

If (v,w) Ex forward 

w
divz(v) = divx(v) + 

Consider sending units of flow on edge (v,w) in Dx

zvw = xvw + 
divz(w) = divx(w) -

w

+ 

v zwv = xwv -

(v,w) E

(w,v) E

-

divz(v) = divx(v) – (- )

divz(w) = divx(w) + (- )

v

wHow does divergence change? 

Obtain a new (feasible) flow z

If (v,w) Ex inverse

divz (v) = divx(v) + INCREASES  in  v 

divz (w) = divx(w)- DECREASES  in w 



Paths on the Auxiliary graph

(0,1, 3)

(2,5,5)
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(1,1, 3)

(0,0, 3)

(1,1, 3)

(1,1,1)

(0,3, 4)

(1,4, 4)

(0,2, 4)

P = (v1 , (v1,v2) ,v2 ,…, (vk-1,vk) ,vk)   directed path on Dx 

Forward edges P+ = {e E: e Ex}

Backward edges P- = {e E: e-1 Ex}

(0,1, 3)
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(1,1, 3)
(1,4, 4)
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P

Backward 
Forward 

What happens if we send > 0 units 
of flow on all the edges of P?

You increase the flow by on the forward edges 
and you decrease it by on the backward edges

Dx = (V, Ex)



Paths on the Auxiliary graph
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P

(0,1, 3)1 5 6
4

(1,1, 3)(1,4, 4)

What happens to divergences?
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Dx = (V, Ex)

Indentify directed path

Send >0 units of flow on the edges of P

P = (v1 , (v1,v2) ,v2 ,…, (vk-1,vk) ,vk)

Auxiliary Graph Dx = (V,Ex)

Build from x a new flow z by 

1. increasing x by on forward edges

2. decreasing x by on backward edges 

Original Graph D = (V,E)



Divergence

1 5 6
4

1 5 6
4

P = (v1 , (v1,v2) ,v2 ,…, (vk-1,vk) ,vk)

(vi,vi+1) 

- augmentation on P 

Dx = (V, Ex) D = (V, E)

div(vi+1) decreases by 

div(v1) increases by 

div(vi) increases by 

div(vk) decreases by 

div(vi) stays unchanged   (2 i k-1)



Hoffman’s circulation theorem

Let l,u : E R satisfying l u. Then there exists a circulation 

x in D such that l x u if and only if

Also, if l and u are integral, then x can be taken integral

Theorem  1.1 (Hoffman’s circulation theorem)
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From l x u 

Proof. (Necessity)
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Let x be a circulation

Circulation through a cut



Hoffman’s theorem: sufficiency

Proof of Hoffman’s theorem. (Sufficiency)  

Let x such that l x u and ||divx(v)||1 is minimized

(x exists by extreme value theorem). 
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x is a circulation.
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V-

V+
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Dx = (V, Ex)

||div (v)||1 decreases by 2 , a contradiction.  

If Dx = (V, Ex) contains a path from u V- to v V+ 

Send > 0 units of flow from u to v in Dx

div(u) increases by and div(v) decreases by



Hoffman’s theorem: sufficiency

Proof of Hoffman’s theorem. (Sufficiency)  

u

z

v

S V/S

w

Dx = (V, Ex)

No u-v path in Dx  from u V- to v V+ 

Dx contains an empty u-v cut +(S)

If D = (V,E) contains an edge (w,z) with w S to z V/S

xwz = uwz (otherwise (w,z) Ex

If D = (V,E) contains an edge (z,w) with w S to z V/S

xzw = lzw (otherwise (z,w)-1 =(w,z) Ex)
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such that V- S and V+ V\S
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(The integrality proof is left as an exsercise)  



Existence of flows

Let D = (V,E), let b: V R, be a supply function and c : E 

R+ an edge capacity function. Then there exists a flow x with 

divergence b satisfying  0 x c if and only if

Theorem  1.1 (Existence of flows)
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Let V- = {v V: b(v) < 0} and V+ = {v V: b(v) > 0}. 

Let V’ = V {s} (s is a “new” vertex)

Define a new graph D’ = (V’ , E’) where E’ = E E’’



Proof of existence of flows

Let x be a circulation in D’  with l x u

D’ = (V’ , E’) where E’ = E E’’

(l,u)

-
-

+
+

s

(0,ce)

(b(v),b(v))
(-b(v),-b(v))

E’’ = {(s,v): v V+ } {(v,s): v V- } 

l, u : E’ R

l(e) = 0, u (e) = c(e) (e E)

l(s,v) = u(s,v) = b(v)  (v V+)

l(v,s) = u(v,s) = -b(v)  (v V-)

x(s,v) = b(v)  (v V+)   and x(v,s) = -b(v)  (v V-)

restriction of x to E satisfies flow balance and 0 x(e) c(e)

Hoffman’s conditions for x circulation in D’ )(      )()(
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Proof of existence of flows

(l,u)
1. s V/S.  

Hoffman’s conditions. Let S V’. 
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(0,ce)

(b(v),b(v))
(-b(v),-b(v))

S 

V’\S

-(S) E’’= {sv: v V+ S}

+(S) E’’= {vs: v V- S} 
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2. s S.  

-(S) E’’= {vs: v V- \S} 
+(S) E’’= {sv: v V+\S} 
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(b(v),b(v))
(-b(v),-b(v))
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Exercises

Show that for any flow x, we have   
Vv

x
vdiv 0)(

Two directed edges of the form (u,v) , (v,u) are said anti-parallel. 

Show how to transform an instance of max-flow problem into an 

equivalent instance with no anti-parallel edges.   
v

u

Show: if x is a flow of D = (V,E), then
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Show: if x is a circulation of D = (V,E), and lower and upper bounds l 

and u are integral, then x can be taken integral.


