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Example: IP network

- IP networks are constituted by routers
connected by optical fibers

- Packets cross the network entering and exiting through
edge routers

- Internal nodes are called label switch router (LSR)
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C D
_y - 1
R / AN
W/ - — —— -
-_— NN
-~ : N
Sender =

Receiver

- Each connection (e.g. Voice over IP) needs to be assigned a
given amount of bandwidth (capacity)
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Example: two connections . c -

Can we satisfy traffic demand with
the given capacities?

Commodity 1: flows
1Mb 1Mb 2Mb

1,(1,2),2,(2,4),4 1,(1,3),3,(3,4),4 1,(1,2),2,(2,3),3,(34).4
——3Mb

Commodity 2: flows 5,(5,2),2,(2,3),3



Network Flow

o Given a directed graph D = (V,E)

AFLOW isafunctionx:E - R,i.e. x € RE

o Typically flows are required to be non-negative i.e. Xe& Rf

The divergence of a flow x is the function div, : V — R, given by

div,(v) = D x(e)— D x(e)

ecd™ (v) eed (V)

o Remark: .div,(v)=0 Pro_xe
veV I I

X(e) = X, : flow sent on edge e (ecE)




Circulations

o We are interested in flows with given divergence b € RY
div,(v) =b(v) (veV)

D x(e)- D x(®)=b(v) (veV) flow balance equations

eeo’ (V) eed (V)

e Remark: The set of flows with given divergence is a polyhedron

A circulation is a flow x with div(v)=0 (v € V)

o Often an upper bound (capacity
function) c : E - R is defined

0 <x(e) <c(e) (ecE)

o Sometimes a lower bound
function | : E - R Is defined and

I(e) < x(e) <c(e) (eeE)




Cuts

o Let ScV.

CUT (of S) set of edges leaving S
o'(S) = {(v\w)eE: veS, wgS}

0(S) set of edges entering S

o'(S) ={(1,2),(3,2),(4,2
5(S) = {(v.w)eE: v ¢S, w € S} )= {12 E.2)(42)

6(S) =1{(5.1).(6,4)}

o Remark: 6(S) =: 07(V/S) (the cut of V/S)



Cuts and Divergence

Theorem (flow through a cut)

Let o*(S) be a cut of of D = (V,E). Then

o Proof: excercise. flow through cut 5(S)

Corollary (circulation through a cut)

Let x be a circulation of D = (V,E). Then
D .x@E) =D x) (ScV)

ecd (9) eed” (S)




o Let ScVandletu,veV ueS andv ¢ S, then
o"(S) iIs u-v cut

o Two 1-6 cuts
S1=1{1,3,4}
d"(St) ={(1,2),(3,2),(4,2)}

S2={1,2,3,4}
6(S%) ={(2,5)}

u-v path: a directed path from u to v
in D = (V,E)

o A1-6pathP={1,(1,2).2,(2,5),5,(5,6),6}



u-v cuts and u-v paths

Theorem (every u-v path meets every u-v cut)

Let EP be the set of edges of a u-v path P and let C c E be a
u-v cut. Then EP N C # @.

P = {VO’(VO ,Vl), Vi ooos Vg (Vk—l , Vk)’ Vk} u-v path

with u =vyand v, = v

Let 5*(S) be a u-v cut, with ueS and veW\S

o Letibe the smallest index such that v,eV\S. e /

e V; exists since v, € V\S. S

e Sincev, € S, theni=>1.
o Thenv, ,eS,veW\S == (Vi) Vi )€ 6°(S)



u-v cuts and u-v paths

Theorem (connectivity and emtpy cuts)

Let D be a directed graph. D contains no u-v path if and only
If D contains an empty u-v cut.

Sufficiency. (Empty u-v cut — no u-v path)
0"(S) =@ (empty u-v cut), with ueS and veV/S
Let EP be the set of edges of a u-v path P.

0" (S) N EP = @, a contradiction.




u-v cuts and u-v paths

Theorem (u-v connectivity and emtpy u-v cuts)

Let D be a directed graph. D contains no u-v path if and only
If D contains an empty u-v cut.

Necessity. (N0 u-v path - empty u-v cut)

VIS

Let S = {weV: there exists an u-w path in D}

:> v eV\S and ¢6*(S) is an u-v cut.

o'(S) isempty  Suppose not.

Then there exists (x,y) € 6*(S), with x e Sand ye VIS

Since x € S there exists a u-x path P, in D

Concatenating P, and (x,y) provides a u-y path, contradiction




Auxiliary graph

e = (w,Vv) inverse edge: e'l=(v,w)

inverse

o Letl, x,ueRE I<x<u M

o LetE,={e e E:x,<u}u {elecekE, |l.<x}

Auxiliary Graph D, = (V,E,)

forward edge e e E n E:




Flows and Auxiliary graph

E.,={e e E: x<uj}u {el e eE,l<x.}
Let ¢ > 0.

o Remark: if D, contains a forward edge e = (V,w): X,,,< Uy,
—> z,,= X, * ¢ Iis still feasible (z, = x, for e € E/{(v,w)})

o Remark: if D, contains an inverse edge e = (V,W): X,,,> I,
—>  Z,, = X, - € IS still feasible (z, = x, for e € E/ {(w,V)})

o In both cases we say we are “sending ¢ units of flow” on
the auxiliary edge (v,w).



Divergence and auxiliary graph

o Consider sending ¢ units of flow on edge (v,w) in D,
e ODbtain a new (feasible) flow z
o How does divergence change? div,(v)= > z(e)- > z(e)

eed” (V) eed (V)

If (v,w) e E, forward

(v,w) e E div,(v) = div,(v) + €

Z. = X T
=W = Zw=Xute div,(w) = div,(w) - &

If (v,w) € E, inverse
(wyv) e E div,(v) = div,(v) — (- €)
W——) = Zw Xw & gy W) = div,Ww) + (- &)

- &

div, (v) =div,(v) + ¢ INCREASES Iin v
o In both cases
div, (w) = div(w)-¢ DECREASES inw



Paths on the Auxiliary graph

D, =M. E)

o P=(vy, (Vy,Vy) Vs .o, (Vi Vy) 1V, ) directed path on D,

Forward edges P*={e e E: e € E}

Backward edges P-={e e E: el € E }

o What happens if we send ¢ > 0 units

Backward
of flow on all the edges of P?

@ You increase the flow by € on the forward edges
and you decrease it by € on the backward edges



Paths on the Auxiliary graph

Auxiliary Graph D, = (V,E,)
P Indentify directed path

P=(vy, (Vi,V2) Vo, (Ve Vi) Vi)

Send ¢ >0 units of flow on the edges of P

Original Graph D = (V,E)

@) (L4 4)@&’32@\@@ Build from x a new flow z by

1. increasing x by € on forward edges

2. decreasing x by € on backward edges

o What happens to divergences?  div,(v)= > x(e)- > x(e)

ees” (V) eed (V)



Divergence

D, = (V, E}) °=.B)
——6—@ OO —e¢

@ @
P=(vy, (V,V2) Vo seeny (Ve Vi) Vi)

& - augmentation on P
(V,v,,) ==  div(v) increases by ¢ div(vi,,) decreases by ¢

div(v,) increases by ¢

div(v,) decreases by ¢

div(v;) stays unchanged (2 <i<Kk-1)



Hoffman’s circulation theorem

Theorem 1.1 (Hoffman’s circulation theorem)

Let [,u : E —» R satisfying | < u. Then there exists a circulation
xin D such that | < x < u if and only if

YIE)< due) (ScV)

eed (9) eed” (9)

Also, if | and u are integral, then x can be taken integral

Proof. (Necessity)

Let x be a circulation

Froml<x<u = Zl(e)é Z x(e) = Zx(e)é Zu(e) (ScV)

eed (9) ees (9) ees” (S) eed” (S)

v -
Circulation through a cut



Hoffman’s theorem: sufficiency

Proof of Hoffman’s theorem. (Sufficiency)

o Letxsuchthat!|<x<uand ||div,(V)|[,; IS minimized

(x exists by extreme value theorem).
Let V- ={veV:idiv (v)<0} V' ={veV:dv (v)>0}
1. V =@ = V=g (since) div,(v)=0)
> xis a circulation. - _ D =(V.E) V'
2.V 20 = V'z2Q g
If D, = (V, E,) contains a path fromu V- tov eV* @

Send ¢ > 0 units of flow from u to v in D, '

div(u) increases by ¢ and div(v) decreases by ¢

—> |[|div(v)][;, decreases by 2g, a contradiction.



Hoffman’s theorem: sufficiency

Proof of Hoffman’s theorem. (Sufficiency) D, =(V, E))
No u-v path in D, fromu e V- tov e V* (W) @
—> D, contains an empty u-v cut 5*(S) @ O V)

suchthat V- < S and V- < V\S

If D= (V,E) contains an edge (w,z) with weS to zeV/S
—> X, = U,, (otherwise (w,z) ¢ E, = D X(&)= > u(e)

eedp (S) eedp (S)

If D= (V,E) contains an edge (z,w) with weS to zeV/S
= X, = |, (otherwise (z,w)! =(w,z) e E) = D x@) = I(e)

eedp (S) eedy (S)

duE) - D IE)= > x(e)- > x(e)=> div,(v) = > div, (v) <0

ees” (S) eeo (S) ees (S) esd (S) VeS

— Due)< > 1) a contradiction.

eest (9) ecs (S)

(The integrality proof is left as an exsercise)



Existence of flows

Theorem 1.1 (Existence of flows)

Let D = (V,E), let b: V —> R, be a supply functionandc: E —
R, an edge capacity function. Then there exists a flow x with
divergence b satisfying 0 <x <c if and only if

> 'b(v)=0

Zb(v)eg Sce) (ScV)

eed (S)

Proof.
Necessity of 2.b(v)=0 derives from szdiVx(V) =0

o LetV ={veV:Db(v) <0}and V*={veV: b(v) > 0}.

o LetV =V uU({s}(sisa ‘nhew” vertex)
o Defineanewgraph D’=(V , E)where E'=E U E”



Proof of existence of flows

D’=(V, E)where E=EUE”

(I,u) E”={(s,v):ve V" } U {(v,s): ve V' }
Lu:E'> R
(e) =0, u (e)=c(e) (e € E)
(-b(v),-b(v I(s,v) = u(s,v) = b(v) (ve V)

l(v,s) = u(v,s) =-b(v) (veV)
o Letx be acirculationin D’ with | <x<u

> x(s,v)=b(v) (veV") and x(v,s)=-b) (veV)
—)> restriction of x to E satisfies flow balance and 0 <'x(e)<c(e)

o Hoffman’s conditions for x circulation in D’ 2. 1€ < > ue) (ScV)

ecd (S) eedt (9)

SiEe+ Yie< SuE+ Sue = 21E@=< DuE+ > cl)

— " + n +
ecs (S)AE" ecs™ (S)E ecs” (S)~E" ecs” (S)~E eed (S)nE eco” (S)nE eeo” (S)nE



Proof of existence of flows

o Hoffman’s conditions. Let S V. 2.1@< > u@)+ > c(e)

ecs (S)NE" ees’ (S)nE" ees” (S)NE

1.s € VIS.
0 (S) N E"={sv:ve V* " S}
o*(S) N E"'={vs: veV S}

—> VZb(v)s > -bv)+ D cle)

eV S veV ™S eed” (S)nE

2.5 € S.
0 (S) N E"={vs: veV \S}
o*(S) N E"={sv: veV\S}
= > -bv)< > bv)+ > cle)

veV\S veV \S ecd’ (S)nE
— > -bv)< > cle)
vev\S eed” (S)nE

The claim follows from ;b(v) +V;\Sb(v) =0 |



Exercises

o Show that for any flow x, we have > div, (v) =0

veV

o Show: if x is a flow of D = (V,E), then > x(@)— X x(e) = div(v)

ees” (S) eed (S) veS

e Show: if x is a circulation of D = (V,E), and lower and upper bounds |
and u are integral, then x can be taken integral.

e Two directed edges of the form (u,v) , (v,u) are said anti-parallel. @
Show how to transform an instance of max-flow problem into an

equivalent instance with no anti-parallel edges.



