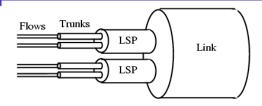
Network Flows and Cuts

Carlo Mannino (from Geir Dahl notes)

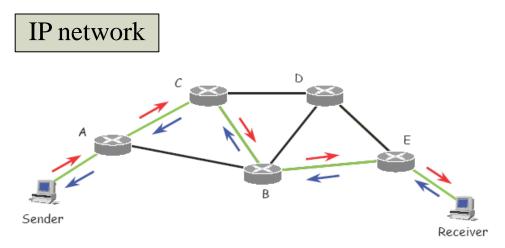
University of Oslo, INF-MAT5360 - Autumn 2010 (Mathematical optimization)

Example: IP network

 IP networks are constituted by routers connected by optical fibers

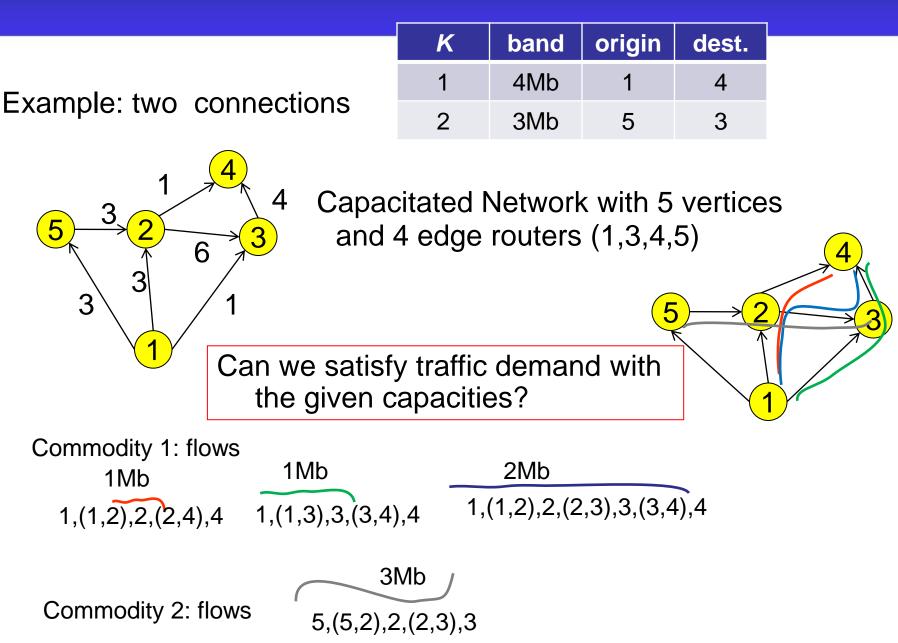


- Packets cross the network entering and exiting through edge routers
- Internal nodes are called *label switch router* (LSR)



 Each connection (e.g. Voice over IP) needs to be assigned a given amount of bandwidth (capacity)

Example



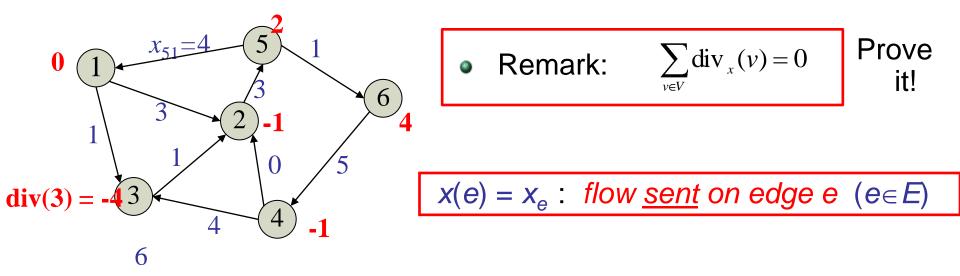
Network Flow

• Given a directed graph D = (V, E)

A *FLOW* is a function $x : E \to R$, *i.e.* $x \in R^E$

• Typically flows are required to be non-negative *i.e.* $x \in R_{+}^{E}$

The *divergence* of a flow *x* is the function $div_x : V \to R$, given by $div_x(v) = \sum_{e \in \delta^+(v)} x(e) - \sum_{e \in \delta^-(v)} x(e)$



Circulations

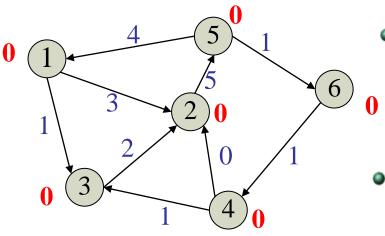
• We are interested in flows with given divergence $b \in R^V$

 $\operatorname{div}_{X}(V) = b(V) \quad (V \in V)$

 $\sum_{e \in \delta^+(v)} x(e) - \sum_{e \in \delta^-(v)} x(e) = b(v) \qquad (v \in V) \qquad \underline{\text{flow balance equations}}$

Remark: The set of flows with given divergence is a polyhedron

A *circulation* is a flow x with $div_x(v) = 0$ ($v \in V$)



• Often an upper bound (*capacity* function) $c : E \to R$ is defined

 $0 \leq x(e) \leq c(e) \quad (e \in E)$

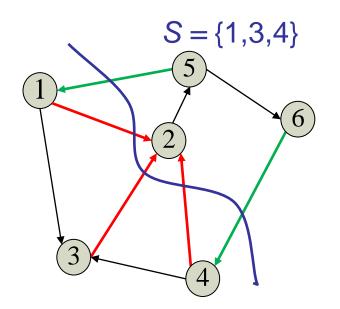
Sometimes a lower bound function $I: E \rightarrow R$ is defined and

$$l(e) \leq x(e) \leq c(e) \quad (e \in E)$$

Cuts

CUT (of S) set of edges leaving S $\delta^+(S) = \{(v, w) \in E: v \in S, w \notin S\}$

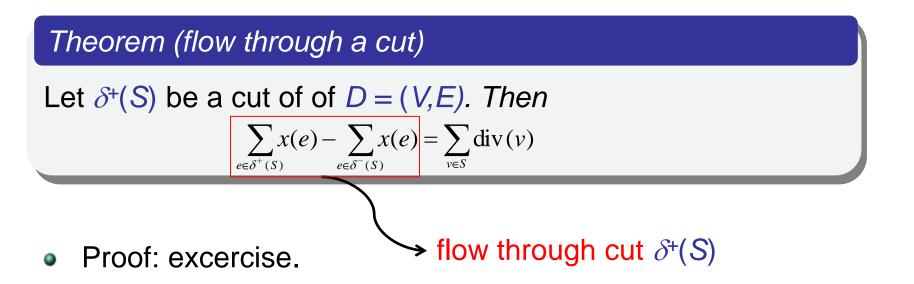
$$\delta^{-}(S) \text{ set of edges entering } S$$
$$\delta^{-}(S) = \{(v, w) \in E: v \notin S, w \in S\}$$



 $\delta^{+}(S) = \{(1,2),(3,2),(4,2)\}$ $\delta^{-}(S) = \{(5,1),(6,4)\}$

• Remark: $\delta(S) = \delta(V/S)$ (the cut of V/S)

Cuts and Divergence



Corollary (circulation through a cut)

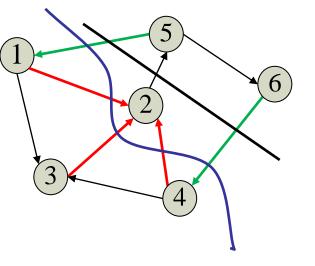
Let x be a circulation of D = (V, E). Then

$$\sum_{e \in \delta^{-}(S)} x(e) = \sum_{e \in \delta^{+}(S)} x(e) \qquad (S \subseteq V)$$

u-v Cuts

• Let $S \subseteq V$ and let $u, v \in V$

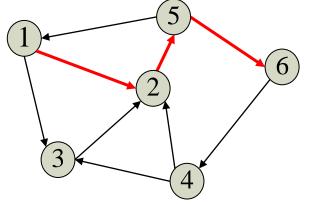
 $u \in S$ and $v \notin S$, then $\delta^+(S)$ is *u-v cut*



Two 1-6 *cuts* $S^{1} = \{1,3,4\}$ $\delta^{+}(S^{1}) = \{(1,2),(3,2),(4,2)\}$

 $S^2 = \{1, 2, 3, 4\}$ $\delta(S^2) = \{(2, 5)\}$

u-v path: a directed path from *u* to *v* in D = (V, E)



• A 1-6 path $P = \{1, (1,2), 2, (2,5), 5, (5,6), 6\}$

u-v cuts and *u-v* paths

Theorem (every u-v path meets every u-v cut)

Let *EP* be the set of edges of a *u*-*v* path *P* and let $C \subseteq E$ be a *u*-*v* cut. Then $EP \cap C \neq \emptyset$.

$$P = \{v_0, (v_0, v_1), v_1, \dots, v_{k-1}, (v_{k-1}, v_k), v_k\} \quad u \text{-}v \text{ path}$$
with $u = v_0$ and $v_k = v$
Let $\delta^+(S)$ be a *u*-*v* cut, with $u \in S$ and $v \in V \setminus S$
Let *i* be the smallest index such that $v_j \in V \setminus S$.

- Since $v_0 \in S$, then $i \ge 1$.
- Then $v_{i-1} \in S$, $v_i \in V \setminus S$ \implies $(v_{i-1}, v_i) \in \delta^+(S)$

u-v cuts and u-v paths

Theorem (connectivity and emtpy cuts)

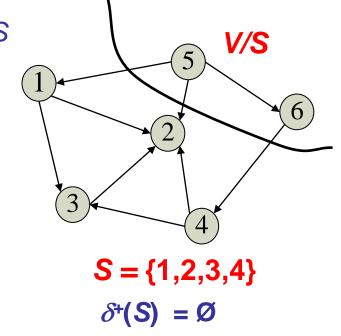
Let *D* be a directed graph. *D* contains no u-v path if and only if *D* contains an empty u-v cut.

Sufficiency. (Empty u-v cut \rightarrow no u-v path)

 $\delta^+(S) = \emptyset$ (empty *u-v cut*), with $u \in S$ and $v \in V/S$

Let EP be the set of edges of a *u*-*v* path P.

 $\delta^+(S) \cap EP = \emptyset$, a contradiction.



u-v cuts and u-v paths

Theorem (*u*-*v* connectivity and emtpy *u*-*v* cuts)

Let D be a directed graph. D contains no u-v path if and only if D contains an empty u-v cut.

V/S

Necessity. (no u-v path \rightarrow empty u-v cut)

Let $S = \{w \in V: \text{ there exists an } u - w \text{ path in } D\}$

 \lor $v \in V \setminus S$ and $\delta^+(S)$ is an *u-v cut.*

 $\delta^+(S)$ is empty Suppose not.

Then there exists $(x,y) \in \delta^+(S)$, with $x \in S$ and $y \in V/S$

Since $x \in S$ there exists a *u-x* path P_x in *D*

Concatenating P_x and (x, y) provides a u-y path, contradiction

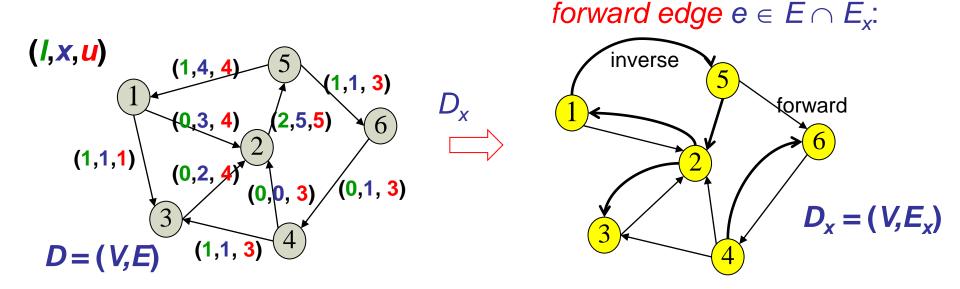
Auxiliary graph

$$e = (w, v)$$
 inverse edge: $e^{-1} = (v, w)$

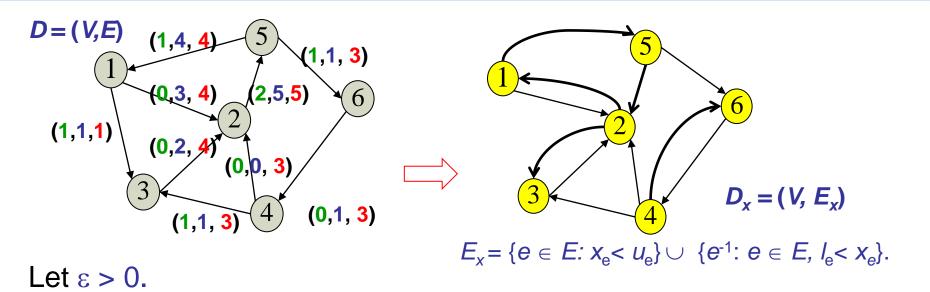
• Let $I, x, u \in \mathbb{R}^{E}, I \leq x \leq u$

- w inverse
- Let $E_x = \{e \in E: x_e < u_e\} \cup \{e^{-1}: e \in E, l_e < x_e\}$

Auxiliary Graph $D_x = (V, E_x)$



Flows and Auxiliary graph



• Remark: if D_x contains a *forward edge* e = (v, w): $x_{vw} < u_{vw}$ $\implies z_{vw} = x_{vw} + \varepsilon$ is still feasible $(z_e = x_e \text{ for } e \in E / \{(v, w)\})$

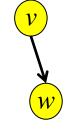
- Remark: if D_x contains an *inverse edge* e = (v, w): $x_{wv} > I_{wv}$ $Z_{wv} = x_{wv} - \varepsilon$ is still feasible $(z_e = x_e \text{ for } e \in E / \{(w, v)\})$
- In both cases we say we are "sending ε units of flow" on the auxiliary edge (ν, w).

Divergence and auxiliary graph

- Consider sending ε units of flow on edge (*v*, *w*) in D_x
- Obtain a new (feasible) flow z
- How does divergence change?

 $v \rightarrow w \qquad \Longrightarrow \qquad Z_{vw} = X_{vw} + \varepsilon$

$$div_{z}(v) = \sum_{e \in \delta^{+}(v)} z(e) - \sum_{e \in \delta^{-}(v)} z(e)$$



 $div_{z}(v) = div_{x}(v) + \varepsilon$ $div_{z}(w) = div_{x}(w) - \varepsilon$

If $(V, W) \in E_X$ inverse

If $(V, W) \in E_x$ forward

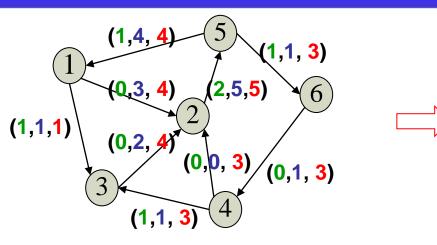
 $(v, w) \in E$

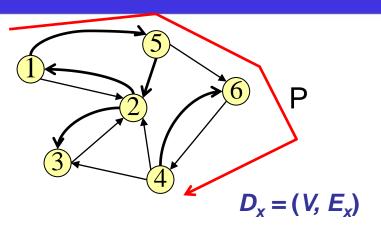
 $(W,V) \in E$ $w \longrightarrow v \qquad \Longrightarrow \qquad Z_{WV} = X_{WV} - \varepsilon$ $div_z(V) = div_x(v) - (-\varepsilon)$ $div_z(W) = div_x(w) + (-\varepsilon)$

> $\operatorname{div}_{z}(v) = \operatorname{div}_{x}(v) + \varepsilon$ INCREASES in v $\operatorname{div}_{z}(w) = \operatorname{div}_{x}(w) - \varepsilon$ DECREASES in w

In both cases

Paths on the Auxiliary graph





Backward

(1,1, 3)

(**0**,**1**, **3**)

Forward

4

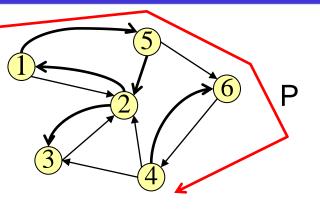
• $P = (v_1, (v_1, v_2), v_2, ..., (v_{k-1}, v_k), v_k)$ directed path on D_x

Forward edges $P^+ = \{e \in E: e \in E_x\}$

Backward edges $P^{-} = \{ e \in E : e^{-1} \in E_x \}$

- What happens if we send ε > 0 units of flow on all the edges of *P*?
- You increase the flow by ε on the forward edges and you decrease it by ε on the backward edges

Paths on the Auxiliary graph



 $D_x = (V, E_x)$

Auxiliary Graph $D_x = (V, E_x)$

Indentify directed path

$$P = (v_1, (v_1, v_2), v_2, \dots, (v_{k-1}, v_k), v_k)$$

Send $\varepsilon > 0$ units of flow on the edges of *P*

1 + (1,4,4) - 5(1,1,3) - (0,1,3) - (0,1,3) - (1,1,3) -

Original Graph D = (V, E)

Build from x a new flow z by

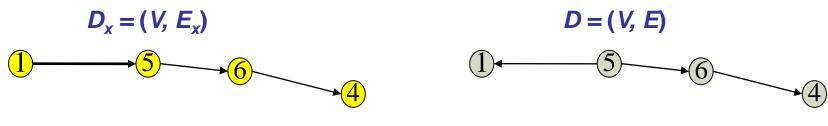
1. increasing x by ε on forward edges

2. decreasing x by ε on backward edges

• What happens to divergences?

$$\operatorname{div}_{x}(v) = \sum_{e \in \delta^{+}(v)} x(e) - \sum_{e \in \delta^{-}(v)} x(e)$$

Divergence



 $\mathsf{P} = (v_1, (v_1, v_2), v_2, \dots, (v_{k-1}, v_k), v_k)$

 ϵ - augmentation on *P*

 $(v_i, v_{i+1}) \implies \operatorname{div}(v_i)$ increases by $\varepsilon \qquad \operatorname{div}(v_{i+1})$ decreases by ε

 $\operatorname{div}(v_1)$ increases by ε

 $\operatorname{div}(v_k)$ decreases by ε

div (v_i) stays unchanged $(2 \le i \le k-1)$

Hoffman's circulation theorem

Theorem 1.1 (Hoffman's circulation theorem)

Let $I, u : E \to R$ satisfying $I \le u$. Then there exists a circulation x in D such that $I \le x \le u$ if and only if

$$\sum_{e \in \delta^{-}(S)} l(e) \le \sum_{e \in \delta^{+}(S)} u(e) \qquad (S \subseteq V)$$

Also, if I and u are integral, then x can be taken integral

Proof. (*Necessity*)

Let x be a circulation

From
$$I \le \mathbf{X} \le \mathbf{U}$$
 \longrightarrow $\sum_{e \in \delta^{-}(S)} l(e) \le \sum_{e \in \delta^{-}(S)} \mathbf{X}(e) = \sum_{e \in \delta^{+}(S)} \mathbf{X}(e) \le \sum_{e \in \delta^{+}(S)} u(e)$ $(S \subseteq V)$

Circulation through a cut

Hoffman's theorem: sufficiency

Proof of Hoffman's theorem. (Sufficiency)

• Let x such that $l \le x \le u$ and $||div_x(v)||_1$ is minimized (x exists by extreme value theorem).

Let $V^- = \{v \in V : div_x(v) < 0\}$ $V^+ = \{v \in V : div_x(v) > 0\}$

1.
$$V^- = \emptyset \implies V^+ = \emptyset \quad (\text{since } \sum_{v \in V} \operatorname{div}_x(v) = 0)$$

 $\xrightarrow{} x \text{ is a circulation.}$
2. $V^- \neq \emptyset \implies V^+ \neq \emptyset$

2. $V^- \neq \emptyset$ \bigvee $v \neq \infty$ If $D_x = (V, E_x)$ contains a path from $u \in V^+$ to $v \in V^+$ u \bigvee Send $\varepsilon > 0$ units of flow from u to v in D_x div(u) increases by ε and div(v) decreases by ε

 $||\operatorname{div}(v)||_1$ decreases by 2ε , a contradiction.

Hoffman's theorem: sufficiency

 $D_{\rm x} = (V, E_{\rm x})$ **Proof** of Hoffman's theorem. (Sufficiency) No *u*-*v* path in D_x from $u \in V^+$ to $v \in V^+$ \square D_x contains an empty u - v cut $\delta^+(S)$ (u)such that $V \subset S$ and $V \subset V \setminus S$ S If D = (V, E) contains an edge (w, z) with $w \in S$ to $z \in V/S$ If D = (V, E) contains an edge (z, w) with $w \in S$ to $z \in V/S$ $\sum_{e \in \delta^+(S)} u(e) - \sum_{e \in \delta^-(S)} l(e) = \sum_{e \in \delta^+(S)} x(e) - \sum_{e \in \delta^-(S)} x(e) = \sum_{v \in S} \operatorname{div}_x(v) = \sum_{v \in V^-} \operatorname{div}_x(v) < 0$ $e \in \overline{\delta^+(S)}$ $\sum_{e \in \delta^+(S)} u(e) < \sum_{e \in \delta^-(S)} l(e) \qquad \text{a contradiction.}$

(The integrality proof is left as an exsercise)

Existence of flows

Theorem 1.1 (Existence of flows)

Let D = (V, E), let $b: V \rightarrow R$, be a supply function and $c: E \rightarrow R_+$ an edge capacity function. Then there exists a flow x with divergence b satisfying $0 \le x \le c$ if and only if

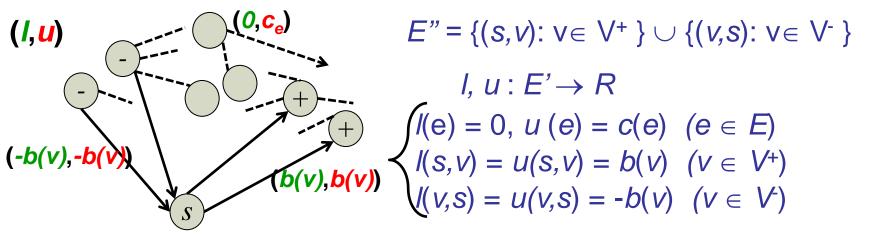
$$\sum_{v \in V} b(v) = 0$$
$$\sum_{v \in S} b(v) \le \sum_{e \in \delta^+(S)} c(e) \qquad (S \subseteq V)$$

Proof.

Necessity of
$$\sum_{v \in V} b(v) = 0$$
 derives from $\sum_{v \in V} \operatorname{div}_{x}(v) = 0$

- Let $V = \{v \in V: b(v) < 0\}$ and $V^+ = \{v \in V: b(v) > 0\}$.
- Let $V = V \cup \{s\}$ (s is a "new" vertex)
- Define a new graph D' = (V, E') where $E' = E \cup E''$

Proof of existence of flows



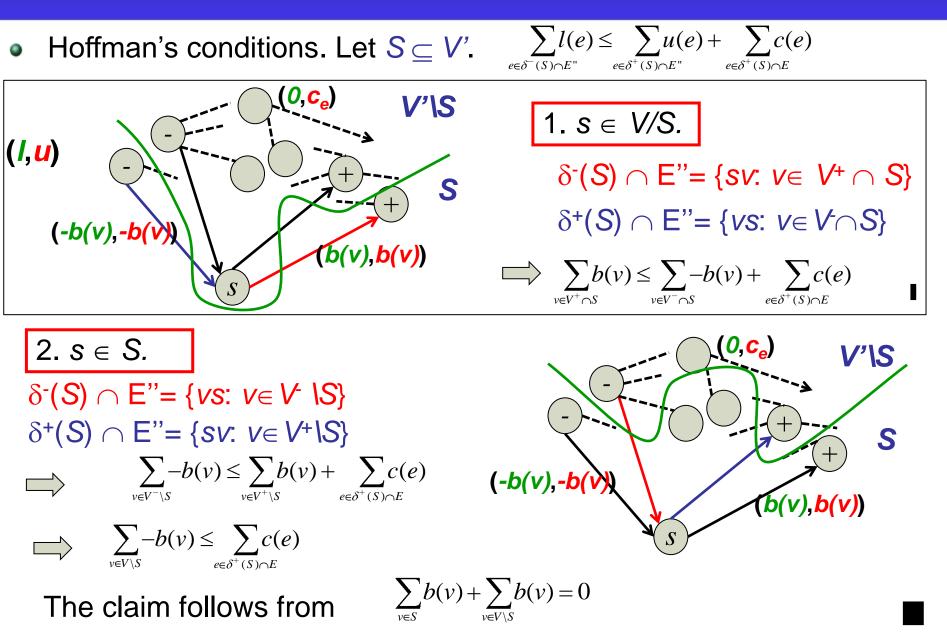
• Let *x* be a circulation in *D*' with $l \le x \le u$

 $x(s,v) = b(v) \quad (v \in V^+) \quad \text{and} \quad x(v,s) = -b(v) \quad (v \in V^-)$ restriction of x to E satisfies flow balance and $0 \le x(e) \le c(e)$

• Hoffman's conditions for *x* circulation in *D*' $\sum_{e \in \delta^{-}(S)} l(e) \le \sum_{e \in \delta^{+}(S)} u(e)$ $(S \subseteq V)$

$$\sum_{e \in \delta^-(S) \cap E^"} l(e) + \sum_{e \in \delta^-(S) \cap E} l(e) \leq \sum_{e \in \delta^+(S) \cap E^"} u(e) + \sum_{e \in \delta^+(S) \cap E} u(e) \qquad \Longrightarrow \qquad \sum_{e \in \delta^-(S) \cap E^"} l(e) \leq \sum_{e \in \delta^+(S) \cap E^"} u(e) + \sum_{e \in \delta^+(S) \cap E^"} c(e) = \sum_{e \in \delta^+(S) \cap E^-} u(e) + \sum_{e \in \delta^+} u(e) + \sum_{e \in \delta^$$

Proof of existence of flows



Exercises

Show that for any flow x, we have

• Show: if x is a flow of D = (V, E), then

$$\sum_{v\in V} div_x(v) = 0$$

$$\sum_{e\in\delta^+(S)} x(e) - \sum_{e\in\delta^-(S)} x(e) = \sum_{v\in S} \operatorname{div}(v)$$

 \mathcal{U}

• Show: if x is a circulation of D = (V, E), and lower and upper bounds / and u are integral, then x can be taken integral.

Two directed edges of the form (*u*,*v*), (*v*,*u*) are said *anti-parallel*.
 Show how to transform an instance of max-flow problem into an equivalent instance with no anti-parallel edges.