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o Given a directed graph D = (V,E)
e 2 distinct vertices s,;t e V
@ S source: no edges entering s

e tsink: no edges outgoing from t

o Edge capacity functionc:E > R,

An st-flow Is a function x: E — R, satisfying

>'xE)= D> x(e) (veV\{st}) flow conservation constraints

ees™” (V) ees (V)

0<x<c non-negativity and capacity constraints

o Obs: div,(v) =0 forallv =s.t.



Flow value

VALUE of an st-flow  val(x)= ) x(e)=div,(s) = flow outgoing from s

eeo” (s)

Theorem (net st-flow through an st-cut)

Let 6%(S) be a st-cut of D = (V,E) and x be an st-flow. Then
D x(e)— D x(e) =val(x)

ees™ (S) eco (S)

o Since seS and t¢T we have D _div, (v) =div(s) = val(x)

veS

o The result follows from 2. X(€)— 2 x(€) = > div(v)

eest (S) ees (S) veS

Corollary (the flow sent by s equals the flow into t)
Let 6*(S) be a st-cut of D = (V,E) and x be an st-flow. Then
val(x) = > x(e) =—div,(t)

eco (t




The maximum st-flow problem

Maximum st-flow problem

Given a directed graph D = (V,E) with edge capacity c:E—>R,,
source s and sink t, find an st-flow of maximum value.

max > x(e) maximize flow value
ees™ (s)
Zx(e) = Zx(e) (veV \{s,t}) flow conservation constraints
eeds™ (V) ees (V)

0<x<c non-negativity and capacity constraints

o LP- program: optimum exists. We can apply simplex method.
o More effective combinatorial algorithms.



o Let K=o*(S)beanstcut(se S, tgS)

K 1 e
CAPACITY of K: cap,(K) = D_C(€) 9\‘ (U
2@

eeK
3

cap,(K) = 6
Minimum st-cut problem

Given a directed graph D = (V,E) with edge capacity c:E—>R,,
source s and sink t, find an st-cut with minimum capacity.

o Combinatorial optimization problem with linear
objective function.



Lemma (weak max-flow min-cut property)

The following inequality holds:
max{val(x): x is st-flow} < min{cap.(K): K is st-cut}

o Let K=0%(S) be a(minimum capacity) st-cut (s € S,t ¢ S)

val(x) = D> x(e)— D x(e)< > x(e)< D c(e)=cap,(K)

eed” (S) eed (S) ees” (S) ees” (S)



The max-flow min-cut theorem

Theorem (max-flow / min-cut )

The value of a maximum st-flow equals the minimum st-cut capacity:

max{val(x): x is st-flow} = min{cap.(K): K is st-cut}

o Let M = min{cap.(K): K is st-cut}

o The flow value is no larger than M

o Letl(t,s) =u(t,s) =M,
I(e) = 0, u(e) =c(e) for ecE

e We show that D’, | and u satisfy Hoffman’s conditions
Sle)< Due) (ScV)

ees (S) eest (S)

and D’ admits a circulation x’.



Sie)< Yue) (scv) Hoffman’s
ecs (S) eest (S) condition

1. 1f (t,5) € 5(S)E> 2.1)=0< > c(e)= > u(e)

eed (S) eed*(S) SO

2.1f (ts) € 5(S) B> | 2/©=M

eco (S)

C>»seS,tgS == K =5%S) is an st-cut
2 > u(e)= > c(e)=cap,(K)=M satisfying Hoffman’s condition

ees” (S) ees” (S)

—> o There exists a circulation x in D’ with | <x <u — x(t,s) = M
o xcirculation ==> . X(€)= > x(e)=x(t,s)=M
ees™ (s) ees ™ (s)

e The restriction of x to the edges of D
provides an st-flow with value M N



Augmention paths

D = (V,E), capacity c € RE,, st-flow x € RE
Auxiliary Graph D, = (V,E,)

E.={e e E:x.<u}u {eleeE, 0<x}

X-AUGMENTING PATH: st-path P in D,

Forward edges P* ={e e E: e € E }

Backward edges P-={e € E: el € E,}




The augmenting path theorem

Theorem (augmenting path theorem)

An st-flow x is maximum if and only if D, contains no x-augmenting
path.

Proof. (Necessity) By contradiction.

Suppose x iIs maximum and P st-path of D,

Let ¢* = min{c(e)-x(e): e € P*} >0
Let & =min{x(e):e e P}>0

e=min{e, €} >0

Send ¢ units of flow on P. Obtain flow x’
X(e) ife P
X’ (e)= x(e)+e ifeeP”
x(e)- ¢ ifeeP-




The augmenting path theorem

Proof. (Necessity)

Send ¢ units of flow on P. Obtain flow x’
X(e) ife zP

X’ (e)= X(e)+e ifeeP”*
x(e)- ¢ ifeeP-

X is a feasible st-flow (show it!)

Since P is an st-path, we have:

val(x')= D x'(e)= > x(e)+&> > x(e) =v2al(x)

ees™ (s) ees  (S) ees ™ (S)

and x IS not maximum, a contradiction. I



The augmenting path theorem

Proof. (Sufficiency)
Suppose no st-path in D,
Then there is an empty st-cut K=6*(S) in D,

(i.,e. S = {weV: there is a sw-path in D}

If D = (V,E) contains an edge (w,z) with weS to zeV\S
— X, = Gy, (otherwise (w,z) € E)) E=> 2 X(&)= 2.c(e)

eesp (S) eedp (S)

If D = (V,E) contains an edge (z,w) with weS to zeV/S
—> x,,, =0 (otherwise (z,w)! =(w,z) € E)) T—> > X(€)=0

—) val(x) = Zx(e)— D x(e) = Zc(e):capc(K
=

X 1S a maximum flow and

K is a minimum cut



Ford-Fulkerson algorithm

1. Start with the zero flow x = 0
2. Look for an x-augmenting path P in D,

3. if P exists, then find the maximum possible increase ¢
along P and augment x. Goto 2.

4. 1f no such P exists then x iIs a maximum flow.

A minimum st-cut is 6*(S(x)) where S(x)={weV: there
IS a sw-path in D_}.

¢ The algorthm can take C iterations, where C is the maximum

capacity of an edge.

e There are more efficient versions (polynomial in [V| and |E]).



Exercises

o Show that for any st-flow x, we have val(x)= > x(e)

ess” (t)

e Use the augmenting path theorem to give an alternative proof to the
max-flow / min-cut theorem

e Show: if x is a maximum st-flow of D = (V,E), and all capacity are
integral, then x can be taken integral.

e Show that the augmented flow x’ in the necessity proof of the
augmenting path theorem is a (feasible) st-flow.

o Two directed edges of the form (u,v) , (v,u) are said anti-parallel.
Show how to transform an instance of max-flow problem D=(V,
E), ceRFE into an equivalent instance D’= (V’, E’) , ¢’ € REF with
no anti-parallel edges.



