Shortest paths and trees

<u>Carlo Mannino</u> (from Lex Schrijver notes)

University of Oslo, INF-MAT5360 - Autumn 2010 (Mathematical optimization)

Combinatorial Optimization Basic Definition and examples

Combinatorial Optimization Problem

- Finite ground set *E*, weight function $w : E \to R$. (i.e. $w \in R^E$)
- Feasible solutions $\mathcal{P} = \{F_1, ..., F_m\}$, with $F_i \subseteq E$, i = 1, ..., m
- Combinatorial optimization problem (CO) $\max \{ w(F) : F \in \mathcal{P} \}, \text{ where } w(F) = \sum_{x \in F} w(e)$
- Let $S \subseteq \{0,1\}^E$ be the set of the incidence vectors of the sets in \mathcal{P}

$$\mathsf{S} = \{\chi^{F}: F \in \mathcal{P}\}$$

Remark: $w(F) = \sum_{e \in F} w(e) = w^T \chi^F$

• Combinatorial optimization problem (rewritten) max { $w^T x$: $x \in S$ } 0-1 linear program

Solving (CO) and 0-1 LP is difficult (NP – hard)

Example: project selection

- Projects A e B
- Profits *w_A* e *w_B*
- Costs $c_A = 5$, $c_B = 7$
- Budget constraint $\leq D = 10$

Project selection problem:

Find a selection of projects satisfying the budget constraint and maximizing profit.

 $E = \{A, B\}$

Feasible Solutions $\mathcal{P} = \{\{\}, \{A\}, \{B\}\}\}$

 $C(\{\}) = 0, \ C(\{A\}) = 5, \ C(\{B\}) = 7,$

 $c(\{A, B\}) = 12 > D \{A, B\}$ not feasible

$$\begin{array}{c} \max w_A x_A + w_B x_B \\ & \swarrow \\ x \in S = \begin{cases} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{cases}$$

From CO to LP

- $P = \operatorname{conv}(S)$ convex hull of the points in S. P is a polytope.
- Vertices of P = ext(P) = S.

 $\max \{w^T x: x \in S\} = \max \{w^T x: x \in ext(P)\} = \max \{w^T x: x \in P\}$

linear program!

• We can solve (CO) by linear programming!

Combinatorial Optimization Course

Outline of the course

- Basic combinatorial optimization problems: shortest path, minimum spanning tree, maximum flow, minimum cut.
- Connections with linear programming and polyhedral theory
- Integer Polyhedra
- Methods: heuristic algorithms
- Methods: exact approaches

A huge number of relevant real-life applications can be modeled as COs

Example: connectivity

- You need to connect a source s (of
- water, packets, ...) to a number of locations (*farms, computers*).
 - Each connection (pipe, fiber) has a cost
 - WANT: find a minium cost network connecting all locations to the source

Example: flow

Expected demand:

A .	RM	MI	FR	ZU
·DA				
RM	-	30	-	80
MI	-	-	40	14
FR	-	14	-	14
ZU	-	-	30	-

120 sits

150 sits

•Zurich- Frankfurt : 80 sits

Example: Project Scheduling

Projects decompose into activities

Activities may require resources, which in turn may be limited

Precedence Relations exist between activities.

WANT: find a schedule of the activities satisfying all precedence constraints and minimizing the project completion time

Example: Job-Shop Scheduling

 A product (*job*) must be processed on different machines

Processing a *job* on a machine is called *operation*

• Each machine can process at most k jobs at a time.

• WANT: find a schedule of the operations satisfying machine capacities and additional precedence constraints.

Example: vehicle routing

- Minimizing transportation costs
- Satisfying:
- constraints on vehicle capacities
- connectivity constraints
- . .

Several parameters are involved

- 1. Origin and destination position
- 2. Demand level
- 3. Fleet size

Example: vehicle routing

Each vehicle visits a subset of customers and returns to depot

A famous instance

Shortest paths and trees

Walks and paths

- D = (V, A) directed graph, $s, t \in V$

 - A arcs
- *Walk*: alternating sequence of vertices and arcs:
- $P = (v_0, a_1, v_1, ..., a_m, v_m) : a_i = (v_{i-1}, v_i) \quad i = 1, ..., m$

 $P = (v_0, a_1, v_1, \dots, a_m, v_m)$ goes from v_0 to v_m

Path: walk with no repeated vertices

Length and distance

S

е

3

e

 e_4

 e_8

 e_5

 e_{10}

- s-t walk (path): walk (path) with starting vertex s and end vertex t
- Length of walk P : number of arcs
- v reachable from u: there exists and u-v path in D
 - Distance from s to t: minimum length of any s-t path (+∞ if t is not reachable from s)

Finding shortest paths

• V_i : set of vertices at distance *i* from s

Recursive Rule:

 V_{i+1} : set of vertices $v \in V \setminus (V_0 \cup V_1 \cup \dots V_i)$ for which $(u, v) \in A$ for some $u \in V_i$

Shortest Path Algorithm:

1. Set
$$V_0 = \{s\}, i = 0$$
.

2. While $V_i \neq \{\}$

3. Compute V_{i+1} from V_i

4. Set i = i + 1

EndWhile

Running Time: O(/A/):

- Finds the distance from s to <u>all</u>
 <u>vertices</u> reachable from s
- Finds T = (V,A') shortest path tree

At each iteration explores
 new arcs; at the end every arc
 is visited at most once

Graphs with non-negative arc lengths

- Length (weight) function $I: A \rightarrow Q_+$
- Given walk $P = (v_0, a_1, v_1, ..., a_m, v_m)$ • Length of P: $I(P) = \sum_{i=1}^{m} I(a_i)$
- Distance from s to v (w.r.t. /): dist(v) length of a minimum length s-v path in D (+∞ if no s-v path exists)

On a shortest s-v path $s = v_0, v_1, \dots, v_k = v$

 $dist(v_i) = dist(v_{i-1}) + l(v_{i-1}, v_i)$

(every sub-path is a shortest path)

Graphs with non-negative arc lengths

δ⁻(*V*)

I(zv)

l(uv

$$\delta^{-}(v) = \{ e \in A: e = (u, v) \text{ for some } u \in V \}$$

positive star: $\delta^+(v) = \{e \in A: e = (v, u) \text{ for some } u \in V\}$ negative neighborhood: $N(v) = \{u \in V: uv \in A\}$

(iii) dist(v) \leq dist(u) + l(uv), $uv \in \delta^{-}(v)$

Dijkstra shortest path algorithm

Theorem 1.3

The final function *f* gives the distance from *s*.

Proof of Theorem 1.3

Proof.

• Claim 1: at any iteration $f(v) \ge \operatorname{dist}(v)$, for each $v \in V$.

- Suppose not. True at initialization. Then there is a first Reset and a vertex w such that:
 - (i) f(w) < dist(w); (ii) f(w) = f(u) + l(uw); (iii) $f(u) \ge dist(u)$

 $dist(w) \le dist(u) + l(uw) \rightarrow dist(w) \le f(u) + l(uw) = f(w)$, contradiction

Proof of Theorem 1.3

- Claim 2: at any iteration f(v) = dist(v), for each $v \in V \setminus U$
- We show: when the algorithm Selects $u \in V \setminus U$ then f(u) = dist(u). Suppose not. Then, f(u) > dist(u) for some u (when selected)
- $s = v_0, v_1, \dots, v_k = u$ shortest s-u path.
- Let *i* smallest such that $v_i \in U$, $v_{i-1} \notin U$.

 $s \in U \rightarrow i = 0, f(s) = 0 = dist(s),$ contradiction.

 $s \notin U \rightarrow i > 0, \ V_i \in U \rightarrow i \le k$

 $i > 0 \rightarrow f(v_{i-1}) = \operatorname{dist}(v_{i-1})$ (by induction, since $v_{i-1} \in V(U)$ $f(v_i) \le f(v_{i-1}) + I(v_{i-1}, v_i)$ $(v_{i-1} \in V(U))$

= dist(v_{i-1}) + $l(v_{i-1}, v_i)$ = dist(v_i) (shortest path)

 $\rightarrow f(v_i) = \operatorname{dist}(v_i) \le \operatorname{dist}(u) < f(u)$ contradicting the choice of u.

Complexity of Dijkstra Algorithm

- The *While* iteration is repeated *V*
- The Select operation requires at most *V* checks
- The contribution to overall complexity is then $O(|V|^2)$
- Every arc is visited exactly once
- Overall complexity $O(|V|^2) + O(|A|)$. This complexity can be improved when $|A| < |V|^2$
- Improve the Select by using heaps to store f(u), $u \in U$

Heap: routed forest (U,F), $uv \in F \rightarrow f(u) \leq f(v)$

Routed Forest: every vertex has indegree at most 1.

Arbitrary arc lengths

- Dijkstra algorithm can be applied only when arcs have non-negative lengths (*conservative*) (s
- Otherwise a <u>shortest walk</u> may not exist (if *D* contains a negative length di-cycle).
- Observe that if D contains a path from s to v, then it contains a *shortest path* from s to v.

- Finding the <u>shortest path</u> with <u>arbitrary arc lengths</u> is difficult (*NP-hard*)
- Easy if *D* contains no negative length di-cycles, but we need a different algorithm (e.g. Bellman-Ford, or Floyd-Warshall)

• a vector $\mathbf{x}^{P} \in \{0,1\}^{A}$ is the incidence vector of an *s-t path* of *D* if and only if it satisfies a number of equalities

 $M \in \{-1,0,1\}^{V \times A}$ be the vertex-arc incidence matrix of D $b = (-1, 1, 0, ..., 0)^{T}$

• The s-t path polyhedron: $Q_{st} = \{x \in \mathcal{R}^A: Mx = b, x \ge 0\}$

• The *s*-*t* path polyhedron: $Q_{st} = \{x \in \mathcal{R}^A: Mx = b, x \ge 0\}$

Theorem

The vertices of Q_{st} are precisely the incidence vectors of the *s*-*t* paths in *D*.

• Consider the following LP :

$$(SP) min I^{T}x$$
$$Mx=b$$
$$x \ge 0$$

 If (SP) has an optimal solution, then it has an optimal solution which is the incidence vector of an s-t path

Dual to the s-t path problem

• Associate to (SP) its dual problem, by introducing $y \in \mathcal{R}^{V}$:

(DSP) max
$$y_t - y_s$$

 $y_v - y_u \le I_{uv}$ for all $uv \in A$

Minimum length s-t walk existence

 Since (SP) is non-empty, (SP) has an optimal solution if and only if it is not unbounded

• (*SP*) is not unbounded if and only if (*DSP*) is non-empty.

Theorem

(*DSP*) is non-empty iff *D* does not contain a negative length directed cycle.

Proof of existence theorem

- **Proof**: If part (*D* does not contain a negative length dicycle)
- Let P_u^* be a shortest path from s to u in D, $u \in V$.
- Let $y'_u = I(P^*_u)$, for $u \in V$. Then y' is dual feasible. Suppose not.
- Let uv such that $y'_v y'_u > I_{uv}$

$$|(P_v) - l(P_u) > l_{uv} | |(P_v) > l_{uv} + l(P_u) |$$

 $l(P_{V}^{*}) > l(P_{V}^{*}) + l(P') + l_{UV} \implies 0 > l(P') + l_{UV} = l(C)$

If v does not belong to P^{*}_u=(s,...,u)

P'=(s,...,u,uv,v) is s-v path with $I(P')=I(P_u^*)+I_{uv} < I(P_v^*)$, <u>contradiction</u>

- <u>v</u> belongs to $P_{u}^{*} = (s, ..., v, ..., u)$. Let $P_{v}^{*} s v$ subpath, P' u v subpath
- $\implies C = P' \cup \{uv\} \text{ is a cycle}$

$$O P^*_{V} C V P' U$$

C Negative dicycle ! contradiction

Proof of existence theorem

- **Proof**: **Only-If part** (if *y*' feasible, no negative dicycles in *D*)
- Let y' = be a feasible dual solution
- Let $C = (1, (1, 2), 2, \dots, k, (k, 1), 1)$ be a negative length dicycle: I(C) < 0
 - y' feasible implies

$$y'_{2} - y'_{1} \le I_{12}$$

$$y'_{3} - y'_{2} \le I_{23}$$

$$\vdots$$

$$y'_{1} - y'_{k} \le I_{k1}$$
+

 $0 \leq I(C) < 0$ contradiction!

Trees and spanning trees

G = (V,E) undirected graph

• G is a *forest* if it does not contain a cycle

- $u, v \in V$ connected if G contains an u-v path
- G connected every pair $u, v \in V$ is connected

• Tree: connected forest

- Every pair of vertices in a tree is connected by a unique path (prove it).

Spanning trees

•G = (V, E) connected undirected graph.

- A tree H = (W, T) is <u>spanning</u> G = (V, E) iff W = V and $T \subseteq E$
- Length (weight) function $I: E \rightarrow R$
- Length of H = (W, T): $I(T) := \sum_{e \in T} I(e)$

Minimum Spanning Tree Problem

Given a connected undirected graph G, and length function I, find a spanning tree in G of minimum length

 When no confusion arises, forests and trees will be represented by sets of edges.

Dijkstra-Prim spanning tree algorithm

 Maintains a tree on a subset of vertices and grows it at each iteration until it becomes spanning

U-cut: $U \subseteq V$ $\delta(U)$: { $uv \in E$: $u \in U, v \in V/U$ }

Dijkstra-Prim minimum spanning tree algorithm:

- 1. Choose $v_1 \in V$. Set $U_1 = \{v_1\}$. Set $T_1 = \{\}$.
- 2. While $U_k \neq V$
 - 3. Chose $e_{k+1} \in \delta(U_k)$ with minimum length
 - 4. Reset $T_{k+1} = T_k \cup \{e_{k+1}\}$; Reset $U_{k+1} = U_k \cup e_{k+1}$
 - 5. Reset *k* = *k*+1

EndWhile

Greedy spanning tree algorithm (Kruskal)

 Maintains a forest and grows it at each iteration until it becomes a (spanning) tree

Greedy minimum spanning tree algorithm (Kruskal):

1. Set $T_0 = \{\}$.

2. For k=1,...,|V|-1

3. Chose e_k such that:

 $T_{k-1} \cup \{e_k\}$ is a forest and $I(e_k)$ is minimum

4. Reset $T_k = T_{k-1} \cup \{e_{k+1}\};$

EndFor

• The proof of correctness for both algorithms is based on the properties of the *greedy forests*.

Greedy forests

 A forest *F* is greedy if there exists a minimum-length spanning tree *T* of *G* that contains *F*.

Theorem 1.11

Let *F* be a greedy forest, let *U* be one of its components, and let $e \in \delta(U)$. If *e* has minimum length among all edges in $\delta(U)$, then $F \cup \{e\}$ is again a greedy forest.

Proof of Theorem 1.11

• T minimum-length spanning tree that contains F.

- *P* unique path between end vertices of $e \in \delta(U)$
- *P* contains at least an edge $f \in \delta(U)$
- $T' = T \setminus \{f\} \cup \{e\}$ is a spanning tree (prove it).
- $l(e) \leq l(f) \rightarrow l(T') \leq l(T)$ and T' is a minimum length spanning tree
- *F* ∪ {*e*} does not contain cycles (forest)
- $F \cup \{e\} \subseteq T'$ implies $F \cup \{e\}$ greedy forest

Correctness of the Dijkstra-Prim method

Corollary 1.11a

The Dijkstra-Prim method and the Kruskal method yield a spanning tree of minimum length.

- At the first stage of the algorithms T_0 is a greedy forest
- At each subsequent stage k, T_k is a greedy forest.

• After |V|-1 steps the algorithms terminate with a spanning tree.

Exercises

 Show that every pair of vertices in a tree is connected by a unique path.

• Show that if G = (V, T) is a tree, then |T| = |V|-1.

• Show that if *T* is a spanning tree of G = (V, E) and $f \in E \setminus T$, then $T \cup f$ contains a unique cycle *C* (called *fundamental*). Show that if $e \in C$, then $T \setminus \{e\} \cup f$ is a spanning tree.

 Let D be a directed graph, and M be the corresponding vertexarc incidence matrix. Show that a set of independent columns of M corresponds to the edges of a forest.

 Show formally that the 0,1 solutions of the s-t path polyhedron are precisely the incidence vectors of the s-t paths.