Shortest paths and trees

Carlo Mannino
(from Lex Schrijver notes)

University of Oslo, INF-MAT5360 - Autumn 2010 (Mathematical optimization)

Combinatorial Optimization Basic Definition and examples

Combinatorial Optimization Problem

- Finite ground set E, weight function $w: E \rightarrow R$. (i.e. $w \in R^{E}$)
- Feasible solutions $\exists=\left\{F_{1}, \ldots, F_{m}\right\}$, with $F_{i} \subseteq \mathrm{E}, i=1, \ldots, m$
- Combinatorial optimization problem (CO)

$$
\max \{w(F): F \in \mathcal{}\}, \text { where } w(F)=\sum_{e \in F} w(e)
$$

- Let $S \subseteq\{0,1\}^{E}$ be the set of the incidence vectors of the sets in 7

$$
S=\left\{\chi^{F:}: F \in \mathcal{F}\right\}
$$

Remark: $\quad w(F)=\sum_{e \in F} w(e)=w^{T} \chi^{F}$

- Combinatorial optimization problem (rewritten)

$$
\max \left\{w^{\top} x: x \in S\right\} \quad 0-1 \text { linear program }
$$

- Solving (CO) and 0-1 LP is difficult (NP - hard)

Example: project selection

- Projects A e B
- Profits w_{A} e w_{B}
- Costs $c_{A}=5, c_{B}=7$
- Budget constraint $\leq D=10$
$E=\{A, B\}$
Feasible Solutions $7=\{\{ \},\{A\},\{B\}\}$

Project selection problem:

Find a selection of projects
satisfying the budget constraint and maximizing profit.

$$
\longmapsto \begin{aligned}
& \max w_{A} x_{A}+w_{B} x_{B} \\
& x \in S=\left\{\left[\begin{array}{l}
0 \\
0, f
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

$c(\})=0, c(\{A\})=5, c(\{B\})=7$,
$c(\{A, B\})=12>D \quad\{A, B\}$ not feasible

From CO to LP

$\max \left\{w^{\top} x: x \in S\right\}$

- $P=\operatorname{conv}(S)$ convex hull of the points in $S . P$ is a polytope.
- Vertices of $P=\operatorname{ext}(P)=S$.
$\max \left\{w^{\top} x: x \in S\right\}=\max \left\{w^{\top} x: x \in \operatorname{ext}(P)\right\}=\max \left\{w^{\top} x: x \in P\right\}$
linear program!
- We can solve (CO) by linear programming!

Combinatorial Optimization Course

Outline of the course

- Basic combinatorial optimization problems: shortest path, minimum spanning tree, maximum flow, minimum cut.
- Connections with linear programming and polyhedral theory
- Integer Polyhedra
- Methods: heuristic algorithms
- Methods: exact approaches

A huge number of relevant real-life applications can be modeled as COs

Example: connectivity

-Network design

- You need to connect a source s (of water, packets, ...) to a number of locations (farms, computers).
- Each connection (pipe, fiber) has a cost
- WANT: find a minium cost network connecting all locations to the source

Example: flow

-WAITING LIST

-Roma

Expected demand:

.AA	RM	MI	FR	ZU
RM	-	30	-	80
MI	-	-	40	14
FR	-	14	-	14
ZU	-	-	30	-

-Frankfurt
Passengers should
\checkmark reach their destinations
\checkmark be assigned to departing flights
\checkmark.... Satisfying capacity constraints
-Flights (available sits):

-Roma-Milano:	120 sits
•Milano-Zurich:	150 sits
-Frankfurt -Milano:	30 sits
-Zurich- Frankfurt: 80 sits	

Example: Project Scheduling

WANT: find a schedule of the activities satisfying all precedence constraints and minimizing the project completion time

Example: Job-Shop Scheduling

- A product (job) must be processed on different machines
- Processing a job on a machine is called operation
- Each machine can process at most k jobs at a time.

- WANT: find a schedule of the operations satisfying machine capacities and additional precedence constraints.

Example: vehicle routing

Transfer goods from origins to destinations

- Minimizing transportation costs
- Satisfying:
- - constraints on vehicle capacities
- - connectivity constraints
- ...

Several parameters are involved

1. Origin and destination position
2. Demand level
3. Fleet size

Example: vehicle routing

- Each vehicle visits a subset of customers and returns to depot

A famous instance

Standard test instance G-n262-k25 (Gillett \& Johnson 1976)

"The world record" for G-n262-k25: 5685 vs. 6119 (SINTEF 2003)

Shortest paths and trees

Walks and paths

- $D=(V, A)$ directed graph, $s, t \in V$
- V vertices
- A arcs
- Walk: alternating sequence of vertices and arcs:
$P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{m}, v_{m}\right): a_{i}=\left(v_{i-1}, v_{i}\right) \quad i=1, \ldots, m$

$P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{m}, v_{m}\right)$ goes from v_{0} to v_{m}
- Path: walk with no repeated vertices

Length and distance

- Distance from s to t : minimum length of any

- V_{i} : set of vertices at distance i from s

Finding shortest paths

- V_{i} : set of vertices at distance i from s

Recursive Rule:
V_{i+1} : set of vertices $v \in V \backslash\left(V_{0} \cup V_{1} \cup \ldots V_{i}\right)$ for which $(u, v) \in A$ for some $u \in V_{i}$

Shortest Path Algorithm:

1. Set $V_{0}=\{s\}, i=0$.
2. While $V_{i} \neq\{ \}$
3. Compute V_{i+1} from V_{i}
4. Set $i=i+1$

EndWhile

- Running Time: $O(|A|)$:

Graphs with non-negative arc lengths

- Length (weight) function $: A \rightarrow Q_{+}$
- Distance from s to v (w.r.t. $)$: $\operatorname{dist}(v)$ length of a minimum length $s-v$ path in $D(+\infty$ if no $s-v$ path exists)

On a shortest $s-v$ path $s=v_{0}, v_{1}, \ldots, v_{k}=v$

(every sub-path is a shortest path)

Graphs with non-negative arc lengths

 negative star

$$
\delta^{-}(v)=\{e \in A: \quad e=(u, v) \text { for some } u \in V\}
$$

positive star: $\quad \delta^{+}(v)=\{e \in A: e=(v, u)$ for some $u \in V\}$ negative neighborhood: $\quad N(v)=\{u \in V: u v \in A\}$

- Trivial Facts:
(i) $\operatorname{dist}(s)=0$
(ii) $\operatorname{dist}(v)=\min \left\{\operatorname{dist}(u)+I(u v): u v \in \delta^{-}(v)\right\}$

(iii) $\operatorname{dist}(v) \leq \operatorname{dist}(u)+I(u v), u v \in \delta^{-}(v)$

Dijkstra shortest path algorithm

Dijkstra Shortest Path Algorithm:

1. Set $U:=V, f(s):=0, f(v):=+\infty$ for $v \in U \backslash\{s\}$
2. While $U \neq\{ \}$
3. Select $u \in U$ minimizing $f(u)$. Set $U:=U \backslash\{u\}$.
4. For each $u v \in \delta^{+}(u)$
5. If $f(v)>f(u)+I(u v)$ Reset $f(v):=f(u)+I(u v)$

EndFor
EndWhile

Theorem 1.3

The final function f gives the distance from s.

Proof of Theorem 1.3

Proof.

- Claim 1: at any iteration $f(v) \geq \operatorname{dist}(v)$, for each $v \in V$.
- Suppose not. True at initialization. Then there is a first Reset and a vertex w such that:

$$
\text { (i) } f(w)<\operatorname{dist}(w) \text {; (ii) } f(w)=f(u)+l(u w) \text {; (iii) } f(u) \geq \operatorname{dist}(u)
$$

$$
\operatorname{dist}(w) \leq \operatorname{dist}(u)+I(u w) \rightarrow \operatorname{dist}(w) \leq f(u)+I(u w)=f(w), \text { contradiction }
$$

Proof of Theorem 1.3

- Claim 2: at any iteration $f(v)=\operatorname{dist}(v)$, for each $v \in V \mid U$
- We show: when the algorithm Selects $u \in V \cup$ then $f(u)=\operatorname{dist}(u)$.

Suppose not. Then, $f(u)>\operatorname{dist}(u)$ for some u (when selected)

- $s=v_{0}, v_{1}, \ldots, v_{k}=u$ shortest $s-u$ path.
- Let i smallest such that $v_{i} \in U, v_{i-1} \notin U$.

$$
\begin{aligned}
& s \in U \rightarrow i=0, f(s)=0=\operatorname{dist}(s), \text { contradiction. } \\
& s \notin U \rightarrow i>0, v_{i} \in U \rightarrow i \leq k \\
& i>0 \rightarrow f\left(v_{i-1}\right)=\operatorname{dist}\left(v_{i-1}\right) \quad\left(\text { by induction, since } v_{i-1} \in W U\right) \\
& f\left(v_{i}\right) \leq f\left(v_{i-1}\right)+l\left(v_{i-1}, v_{i}\right) \quad\left(v_{i-1} \in W U\right) \\
&=\operatorname{dist}\left(v_{i-1}\right)+I\left(v_{i-1}, v_{i}\right)=\operatorname{dist}\left(v_{i}\right) \quad \text { (shortest path) }
\end{aligned}
$$

$\rightarrow f\left(v_{i}\right)=\operatorname{dist}\left(v_{\mathrm{i}}\right) \leq \operatorname{dist}(u)<f(u)$ contradicting the choice of u.

Complexity of Dijkstra Algorithm

- The While iteration is repeated |V/
- The Select operation requires at most $/ V$ checks
- The contribution to overall complexity is then $O\left(\mid V^{2}\right)$
- Every arc is visited exactly once
- Overall complexity $O\left(\mid V^{2}\right)+O(|A|)$. This complexity can be improved when $|\mathrm{A}|<|V|^{2}$
- Improve the Select by using heaps to store $f(u), u \in U$

Heap: routed forest $(U, F), u v \in F \rightarrow f(u) \leq f(v)$

Routed Forest: every vertex has indegree at most 1.

Arbitrary arc lengths

- Dijkstra algorithm can be applied only when arcs have non-negative lengths (conservative)
- Otherwise a shortest walk may not exist (if D contains a negative length di-cycle).
- Observe that if D contains a path from s to v, then it contains a shortest path from s to v.

- Finding the shortest path with arbitrary arc lengths is difficult (NP-hard)
- Easy if D contains no negative length di-cycles, but we need a different algorithm (e.g. Bellman-Ford, or Floyd-Warshall)

The s-t path polyhedron

$\boldsymbol{x}^{P} \in\{0,1\}^{A}$ incidence vector of an s-t path P

$$
\left\{\begin{array}{cl}
\boldsymbol{x}_{u v}^{P}=1 & u v \in P \\
\boldsymbol{x}_{u v}^{P}=0 & u v \notin P
\end{array}\right.
$$

$P=(s,(s, 2), 2,(2,4), 4,(4, t), t)$

- a vector $\boldsymbol{x}^{P} \in\{0,1\}^{A}$ is the incidence vector of an s-t path of D if and only if it satisfies a number of equalities

The s-t path polyhedron

$\boldsymbol{x}^{P} \in\{0,1\}^{A}$ incidence vector of an sst path P

$$
\begin{cases}x_{u v}^{P}=1 & u v \in P \\ \boldsymbol{x}_{u v}^{P}=0 & u v \notin P\end{cases}
$$

No arc incoming s. One arc outgoing from s
$\sum x_{s=0}^{\prime}=0$

$$
\sum x_{s u}^{P}=1
$$

$$
u s \in \delta_{D}^{-}(s) \quad s u \in \delta_{D}^{+}(s)^{s u}
$$

$$
\begin{gathered}
\sum_{u t \in \delta_{D}^{-}(t)} \boldsymbol{x}_{u t}^{P}=1
\end{gathered} \sum_{t u \in \delta_{D}^{+}(t)} \boldsymbol{x}_{t u}^{P}=0 \text { One arc incoming } t \text {. No arc outgoing from } t
$$

The s-t path polyhedron

$$
\begin{align*}
& \sum_{u s \in \delta_{D}^{-}(s)} \boldsymbol{x}_{u s}^{P}-\sum_{s u \in \delta_{D}^{+}(s)} \boldsymbol{x}^{p}{ }_{s u}=-1 \\
& \sum_{u t \in \delta_{D}^{-}(t)} \boldsymbol{x}_{u t}^{P}-\sum_{t u \in \delta_{D}^{+}(t)} \boldsymbol{x}_{t u}^{P}=1 \\
& \sum_{u v \in \delta_{D}^{-}(v)} \boldsymbol{x}_{u v}^{p}-\sum_{v u \in \delta_{D}^{+}(v)} \boldsymbol{x}_{v u}^{P}=0
\end{align*}
$$

$M \in\{-1,0,1\}^{V \times A}$ be the vertex-arc incidence matrix of D

$$
b=(-1,1,0, \ldots, 0)^{\top}
$$

- The s-t path polyhedron: $Q_{s t}=\left\{x \in \Re^{A}: M x=b, x \geq 0\right\}$

The s - t path polyhedron

- The s-t path polyhedron: $Q_{s t}=\left\{x \in \Re^{A}: M x=b, x \geq 0\right\}$

Theorem

The vertices of $Q_{s t}$ are precisely the incidence vectors of the s-t paths in D.

- Consider the following LP :

$$
\begin{aligned}
(S P) \quad \min I^{\top} x \\
M x=b \\
x \geq 0
\end{aligned}
$$

- If (SP) has an optimal solution, then it has an optimal solution which is the incidence vector of an s - t path

Dual to the s - t path problem

$$
\begin{aligned}
(S P) \quad \min I^{\top} x \\
M x=b \\
x \geq 0
\end{aligned}
$$

- if D has an s - t path $(S P)$ is non-empty

Assumption

D contains an $s-v$ path for every $v \in V$

- Associate to $(S P)$ its dual problem, by introducing $y \in \mathfrak{R}^{V}$:
(DSP) max $y_{t}-y_{s}$

$$
y_{v}-y_{u} \leq l_{u v} \text { for all } u v \in A
$$

Minimum length s-t walk existence

- Since (SP) is non-empty, (SP) has an optimal solution if and only if it is not unbounded
- $(S P)$ is not unbounded if and only if ($D S P$) is non-empty.

Theorem
($D S P$) is non-empty iff D does not contain a negative length directed cycle.

Proof of existence theorem

- Proof: If part (D does not contain a negative length dicycle)
- Let P_{u}^{*} be a shortest path from s to u in $D, u \in V$.
- Let $y_{u}^{\prime}=I\left(P_{u}^{*}\right)$, for $u \in V$. Then y^{\prime} is dual feasible. Suppose not.
- Let $u v$ such that $y_{v}^{\prime}-y_{u}^{\prime}>I_{u v}$

$$
I\left(P_{v}^{*}\right)-I\left(P_{u}^{*}\right)>I_{u v} \longrightarrow I\left(P_{v}^{*}\right)>I_{u v}+\|\left(P_{u}^{*}\right)
$$

- If v does not belong to $P_{u}^{*}=(s, \ldots, u)$
 $P^{\prime}=(s, \ldots, u, u v, v)$ is $s-v$ path with $\quad l\left(P^{\prime}\right)=\|\left(P_{u}^{*}\right)+l_{u v}<l\left(P_{v}^{*}\right), \quad$ contradiction
- v belongs to $P_{u}^{*}=(s, \ldots, v, \ldots, u)$. Let $P_{v}^{*} s-v_{-}$subpath, $P^{\prime} u-v$ subpath

$$
C=P^{\prime} \cup\{u v\} \text { is a cycle }
$$

$l\left(P_{v}^{*}\right)>l\left(P_{v}^{*}\right)+I\left(P^{\prime}\right)+I_{u v} \longrightarrow 0>l\left(P^{\prime}\right)+l_{u v}=I(C)$

C Negative dicycle! contradiction

Proof of existence theorem

- Proof: Only-If part (if y^{\prime} feasible, no negative dicycles in D)
- Let $y^{\prime}=$ be a feasible dual solution
- Let $C=(1,(1,2), 2, \ldots, k,(k, 1), 1)$ be a negative length dicycle: $/(C)<0$
- y 'feasible implies

$$
\begin{gathered}
y_{2}^{\prime}-y_{1}^{\prime} \leq I_{12} \\
y_{3}^{\prime}-y_{2}^{\prime} \leq I_{23} \\
\vdots \\
y_{1}^{\prime}-y_{k}^{\prime}{ }_{k}^{\prime} \leq I_{k 1}
\end{gathered}
$$

$$
0 \leq I(C)<0 \quad \text { contradiction! }
$$

Trees and spanning trees

$G=(V, E)$ undirected graph

- G is a forest if it does not contain a cycle
- $u, v \in V$ connected if G contains an $u-v$ path
- G connected every pair $u, v \in V$ is connected

- Tree: connected forest
- Every pair of vertices in a tree is connected by a unique path (prove it).

Spanning trees

$\bullet G=(V, E)$ connected undirected graph .

- A tree $H=(W, T)$ is spanning

$$
G=(V, E) \quad \text { iff } \quad W=V \text { and } T \subseteq E
$$

- Length (weight) function $I: E \rightarrow R$

- Length of $H=(W, T): \quad l(T):=\Sigma_{e \in T} l(e)$

Minimum Spanning Tree Problem
 Given a connected undirected graph G, and length function I, find a spanning tree in G of minimum length

- When no confusion arises, forests and trees will be represented by sets of edges.

Dijkstra-Prim spanning tree algorithm

- Maintains a tree on a subset of vertices and grows it at each iteration until it becomes spanning
U-cut: $U \subseteq V \quad \delta(U):\{u v \in E: u \in U, v \in V / U\}$
Dijkstra-Prim minimum spanning tree algorithm:

1. Choose $v_{1} \in V$. Set $U_{1}=\left\{v_{1}\right\}$. Set $T_{1}=\{ \}$.
2. While $U_{k} \neq V$
3. Chose $e_{k+1} \in \delta\left(U_{k}\right)$ with minimum length 4. Reset $T_{k+1}=T_{k} \cup\left\{e_{k+1}\right\} ;$ Reset $U_{k+1}=U_{k} \cup e_{k+1}$
4. Reset $k=k+1$

EndWhile

Greedy spanning tree algorithm (Kruskal)

- Maintains a forest and grows it at each iteration until it becomes a (spanning) tree
Greedy minimum spanning tree algorithm (Kruskal):

1. Set $T_{0}=\{ \}$.
2. For $k=1, . ., \mid V-1$
3. Chose e_{k} such that:
$T_{k-1} \cup\left\{e_{k}\right\}$ is a forest and $I\left(e_{k}\right)$ is minimum
4. Reset $T_{k}=T_{k-1} \cup\left\{e_{k+1}\right\}$;

EndFor

- The proof of correctness for both algorithms is based on the properties of the greedy forests.

Greedy forests

- A forest F is greedy if there exists a minimum-length spanning tree T of G that contains F.

(6)

$$
\begin{gathered}
\delta(U)=\{\{1,5\},\{1,6\}, \\
\{2,3\}\{2,4\},\{2,5\}\} \\
e=\{2,3\}
\end{gathered}
$$

Theorem 1.11

Let F be a greedy forest, let U be one of its components, and let $e \in \delta(U)$. If e has minimum length among all edges in $\delta(U)$, then $F \cup\{e\}$ is again a greedy forest.

Proof of Theorem 1.11

- T minimum-length spanning tree that contains F.

- Punique path between end vertices of $e \in \delta(U)$
- P contains at least an edge $f \in \delta(U)$
- $T^{\prime}=T \backslash\{f\} \cup\{e\}$ is a spanning tree (prove it).
- $I(e) \leq I(f) \rightarrow I\left(T^{\prime}\right) \leq I(T)$ and T^{\prime} is a minimum length spanning tree
- $F \cup\{e\}$ does not contain cycles (forest)
- $F \cup\{e\} \subseteq T^{\prime}$ implies $F \cup\{e\}$ greedy forest

Correctness of the Dijkstra-Prim method

Corollary 1.11a

The Dijkstra-Prim method and the Kruskal method yield a spanning tree of minimum length.

- At the first stage of the algorithms T_{0} is a greedy forest
- At each subsequent stage k, T_{k} is a greedy forest.
- After |V/-1 steps the algorithms terminate with a spanning tree.

Exercises

- Show that every pair of vertices in a tree is connected by a unique path.
- Show that if $G=(V, T)$ is a tree, then $|T|=\mid V /-1$.
- Show that if T is a spanning tree of $G=(V, E)$ and $f \in E \backslash T$, then $T \cup f$ contains a unique cycle C (called fundamenta). Show that if $e \in C$, then $T \backslash\{e\} \cup f$ is a spanning tree.
- Let D be a directed graph, and M be the corresponding vertexarc incidence matrix. Show that a set of independent columns of M corresponds to the edges of a forest.
- Show formally that the 0,1 solutions of the $s-t$ path polyhedron are precisely the incidence vectors of the s-t paths.

