
Shortest paths and trees

Carlo Mannino

(from Lex Schrijver notes)

University of Oslo, INF-MAT5360 - Autumn 2010 (Mathematical optimization)

Combinatorial Optimization

Basic Definition and examples

Combinatorial Optimization Problem

Finite ground set E, weight function w : E  R. (i.e. w  RE)

Feasible solutions F = {F1, …, Fm}, with Fi  E, i = 1, …, m

Combinatorial optimization problem (CO)

max {w(F): F  F }, where

Let S  {0,1}E be the set of the incidence vectors of the sets in F

S = {F: F  F }

Combinatorial optimization problem (rewritten)

max {wTx: x  S} 0-1 linear program

Solving (CO) and 0-1 LP is difficult (NP – hard)





Fe

ewFw)()(

FT

Fe

wewFw 


)()(Remark:

Example: project selection

• Projects A e B

• Profits wA e wB

• Budget constraint < D =10

• Costs cA =5, cB =7

xS =





































1

0
 ,

0

1
 ,

0

0

max wA xA + wB xB

Project selection problem:

Find a selection of projects

satisfying the budget constraint

and maximizing profit.

E = {A, B}

Feasible Solutions F = {{}, {A}, {B}}

c({}) = 0, c({A}) = 5, c({B}) = 7,

c({A, B}) = 12 > D {A, B} not feasible

From CO to LP

max {wTx: xS}

P = conv(S) convex hull of the points in S. P is a polytope.

Vertices of P = ext(P) = S.

max {wTx: x  S} = max {wTx: x  ext(P) } = max {wTx: x  P}

S = {(0,0)T, (0,1)T, (1,0)T}










0

1









0

0










1

0










0

1









0

0










1

0

linear program!

P

We can solve (CO) by linear programming!

Combinatorial Optimization Course

Basic combinatorial optimization problems: shortest path, minimum
spanning tree, maximum flow, minimum cut.

Connections with linear programming and polyhedral theory

Integer Polyhedra

Methods: heuristic algorithms

Methods: exact approaches

Outline of the course

A huge number of relevant real-life applications can
be modeled as COs

7

•Network design

Example: connectivity

You need to connect a source s (of

water, packets, …) to a number of

locations (farms, computers).

Each connection (pipe, fiber) has a cost

WANT: find a minium cost network

connecting all locations to the source

s

2

3 7

5

2
1

3
s 11

20

1

7

1

4

s

8

Example: flow

RM MI FR ZU

RM - 30 - 80

MI - - 40 14

FR - 14 - 14

ZU - - 30 -

•Roma

•Milano

•Zurich

•Frankfurt

Expected demand:

•DA

•A

•Roma-Milano: 120 sits

•Milano-Zurich: 150 sits

•Frankfurt -Milano: 30 sits

•Zurich- Frankfurt : 80 sits

•Flights (available sits):

30+80<120 •80+40+

•14+14 <150

•14+14<30

•40+30<80

Passengers should

 reach their destinations

 be assigned to departing flights

 …. Satisfying capacity constraints

•WAITING LIST

Example: Project Scheduling

1

4

2

3

6

8

5

1

0

7

9
SSmin(2)

FFmax(3)

FFmax(4)

SSmin(0)

SSmin(2)

SSmin(1)

SSmin(1)

SSmin(2)

SFmin(10) SFmin(6)

SFmax(4)

FSmin(4)

FFmin(2)

FSmin(0)

FFmin(2)

FSmin(2)

0

7

2

3
4

4

6

4

0

5

Projects decompose into activities

Precedence Relations exist

between activities.

WANT: find a schedule of the activities satisfying all precedence

constraints and minimizing the project completion time

Activities may require resources,

which in turn may be limited

5 7
SFmin(6) = “7 must start at least 6 time units

after 5 is terminated”

Example: Job-Shop Scheduling

• A product (job) must be processed on

different machines

• Processing a job on a machine is

called operation

• Each machine can process at most k

jobs at a time.

• WANT: find a schedule of

the operations satisfying

machine capacities and

additional precedence

constraints.

Example: vehicle routing

Transfer goods from origins to destinations

• Minimizing transportation costs

• Satisfying:

• - constraints on vehicle capacities

• - connectivity constraints

• …

Several parameters are involved

1. Origin and destination position

2. Demand level

3. Fleet size

…

Example: vehicle routing

d1= 3

d2=2

d3=2
d4=1

d5=1

QA=10

A

B
C

• Each vehicle visits a subset of customers and returns to depot

A famous instance

Standard test instance G-n262-k25 (Gillett & Johnson 1976)

"The world record" for G-n262-k25: 5685 vs. 6119

(SINTEF 2003)

Shortest paths and trees

Walks and paths

D = (V,A) directed graph, s,t  V

Walk: alternating sequence of vertices and arcs:

P = (v0 , a1 , v1 , …, am , vm) : ai = (vi-1 , vi) i = 1, …, m

e1
s

1

2
t

3

e2

e3

4

e4

e7

e10

e5

e8

e6

e9 V vertices

A arcs

s 3 2 4 3 2 1
e3 e4 e9 e8 e4 e6

Path: walk with no repeated vertices

s 3 2 1 t
e3 e4 e6 e5

D = (V,A)

P = (v0 , a1 , v1 , …, am , vm) goes from v0 to vm

Length and distance

e1
s

1

e2

e3 e4

e7

e10

e8

e62
t

3
4

e9

e5

s-t walk (path): walk (path) with
starting vertex s and end vertex t

Length of walk P : number of arcs

Distance from s to t: minimum length of any
s-t path (+ if t is not reachable from s)

Vi: set of vertices at distance i from s

e1
s

1

2
t

3

e2

e3

4

e4

e7

e10

e5

e8

e6

e9

V0
V1

V2

D = (V,A)

v reachable from u: there exists and u-v path in D

Finding shortest paths

Vi: set of vertices at distance i from s
e1

s
1

2
t

3

e2

e3

4

e4

e7

e10

e5

e8

e6

e9

V0
V1

V2

Recursive Rule:

Vi+1: set of vertices v V \ (V0  V1 …Vi)

for which (u,v)  A for some u  Vi

Shortest Path Algorithm:

1. Set V0 = {s}, i = 0.

2. While Vi  {}

3. Compute Vi+1 from Vi

4. Set i = i + 1

EndWhile
At each iteration explores

new arcs; at the end every arc

is visited at most once

Finds the distance from s to all

vertices reachable from s

Finds T = (V’,A’) shortest path tree

Running Time: O(|A|):

Graphs with non-negative arc lengths

Length (weight) function l: A  Q+

Given walk P = (v0 , a1 , v1 , …, am , vm)

4
s

1

2
t

3

5

1

4

1

5
2

3

2

3

2

D = (V,A)

Length of P: 



m

i

i
alPl

1

)()(

Distance from s to v (w.r.t. l): dist(v) length of a minimum length
s-v path in D (+ if no s-v path exists)

On a shortest s-v path s = v0, v1, …, vk = v

dist(vi) = dist(vi-1) + l(vi-1, vi)s v1 vi-1 vi v
l(vi-1,vi)

(every sub-path is a shortest path)

Graphs with non-negative arc lengths

(i) dist(s) = 0

(ii) dist(v) = min {dist(u) + l(uv): uv-(v)}

(iii) dist(v)  dist(u) + l(uv), uv-(v)

Trivial Facts:

v

u

z

-(v)
l(uv)

l(zv)

negative star

-(v) = {e  A: e = (u,v) for some u  V}

negative neighborhood: N-(v) = {u  V: uv  A}

dist(u)

w

z

v
u

dist(z)

lwv

luv

lzu

dist(v)

s

dist(w)

positive star: +(v) = {e  A: e = (v,u) for some u  V}

Dijkstra shortest path algorithm

Dijkstra Shortest Path Algorithm:

1. Set U := V, f(s) := 0, f(v) := + for v  U\{s}

2. While U  {}

3. Select uU minimizing f(u). Set U := U \ {u}.

4. For each uv  +(u)

5. If f(v) > f(u)+l(uv) Reset f(v) := f(u)+l(uv)

EndFor

EndWhile

The final function f gives the distance from s.

Theorem 1.3

Proof of Theorem 1.3

Claim 1: at any iteration f(v)  dist(v), for each vV. .

Suppose not. True at initialization. Then there is a first Reset and a

vertex w such that:

(i) f(w) < dist(w) ; (ii) f(w) = f(u)+l(uw) ; (iii) f(u)  dist(u)

dist(w) dist(u) + l(uw)  dist(w)  f(u) + l(uw) = f(w), contradiction

Proof.

Proof of Theorem 1.3

Claim 2: at any iteration f(v) = dist(v), for each vV \ U

We show: when the algorithm Selects uV\U then f(u) = dist(u).

Suppose not. Then, f(u) > dist(u) for some u (when selected)

s = v0, v1, …, vk = u shortest s-u path.

Let i smallest such that vi  U, vi-1 U.

s  U  i = 0, f(s) = 0 = dist(s), contradiction.

s  U  i > 0, vi  U  i  k

i > 0  f(vi-1) = dist(vi-1) (by induction, since vi-1  V\U)

f(vi)  f(vi-1) + l(vi-1, vi) (vi-1  V\U)

= dist(vi-1) + l(vi-1, vi) = dist(vi) (shortest path)

 f(vi) = dist(vi)  dist(u) < f(u) contradicting the choice of u.

Complexity of Dijkstra Algorithm

The While iteration is repeated |V|

The Select operation requires at most |V| checks

The contribution to overall complexity is then O(|V|2)

Every arc is visited exactly once

Overall complexity O(|V|2) + O(|A|). This complexity can

be improved when |A| < |V|2

Improve the Select by using heaps to store f(u), u U

Routed Forest: every vertex has indegree at most 1.

Heap: routed forest (U,F), uvF  f(u)  f(v)

Arbitrary arc lengths

Dijkstra algorithm can be applied only when

arcs have non-negative lengths (conservative)

Otherwise a shortest walk may not exist (if D

contains a negative length di-cycle).

Observe that if D contains a path from s to v,

then it contains a shortest path from s to v.

Finding the shortest path with arbitrary arc lengths is difficult (NP-hard)

Easy if D contains no negative length di-cycles, but we need a

different algorithm (e.g. Bellman-Ford, or Floyd-Warshall)

4
s

1

2
t

3

5

1

4

-1

5
2

3

-4

3

2

The s-t path polyhedron

xP {0,1}A

4
s

1

2
t

3

5

1

4

-2

5
2

3

-1

3

4

incidence vector of an s-t path P

=1 uv  P

=0 uv  P

xP

uv

xP

uv







































1

0

0

0

1

0

0

0

1

0

4

43

34

32

24

21

1

3

2

1

t

t

s

s

s

P = (s,(s,2),2,(2,4),4,(4,t),t) xP=

a vector xP {0,1}A is the incidence vector of an s-t path

of D if and only if it satisfies a number of equalities

The s-t path polyhedron

xP {0,1}A

4
s

1

2
t

3

5

1

4

-2

5
2

3

-1

3

4

No arc incoming s. One arc outgoing from s

incidence vector of an s-t path P

In every v  {s,t}

number of incoming arcs =

= number of outgoing arcs

One arc incoming t. No arc outgoing from t

=1 uv  P

=0 uv  P

xP

uv

xP

uv

 xP

us= 0

us D(s)
-


su D(s)

+

xP

su
= 1

 xP

ut = 1

ut D(t)
-


tu D(t)

+

xP

tu
= 0

 xP

uv

uv D(v)
-

= 
vu D(v)

+

xP

vu

The s-t path polyhedron

4
s

1

2
t

3

5

1

4

-2

5
2

3

-1

3

4

 xP

us

us D(s)
-


su D(s)

+

xP

su
= -1-

 xP

uv

uv D(v)
-

- 
vu D(v)

+

xP

vu = 0

 xP

ut

ut D(t)
-


tu D(t)

+

xP

tu
= 1-

s

t

v V-{s,t}

M  {-1,0,1}VA be the vertex-arc incidence matrix of D

b = (-1, 1, 0, …,0)T

The s-t path polyhedron: Qst = {xA: Mx=b, x 0}

The s-t path polyhedron

The s-t path polyhedron: Qst = {xA: Mx=b, x 0}

(SP) min lTx

Mx=b

x 0

Consider the following LP :

The vertices of Qst are precisely the incidence vectors of the

s-t paths in D.

Theorem

If (SP) has an optimal solution, then it has an optimal

solution which is the incidence vector of an s-t path

Dual to the s-t path problem

(SP) min lTx

Mx=b

x 0

if D has an s-t path (SP) is non-empty

D contains an s-v path for every v  V

Assumption

(DSP) max yt - ys

yv - yu  luv for all uvA

Associate to (SP) its dual problem, by introducing y V :

s
1

2
t

3
4

yt

ys

y1

y2

y4

y3

Minimum length s-t walk existence

Since (SP) is non-empty, (SP) has an optimal solution if and

only if it is not unbounded

(SP) is not unbounded if and only if (DSP) is non-empty.

(DSP) is non-empty iff D does not contain a negative length

directed cycle.

Theorem

Proof of existence theorem

Let P*
u be a shortest path from s to u in D, u  V.

Let y’u = l(P*
u), for u  V. Then y’ is dual feasible. Suppose not.

Proof: If part (D does not contain a negative length dicycle)

v

u

P’

P*
u

P*
v

s

Let uv such that y’v – y’u > luv

l(P*
v)–l(P*

u) > luv l(P*
v) > luv +l(P*

u)

P’=(s,…,u,uv,v) is s-v path with l(P’)=l(P*
u)+luv< l(P*

v), contradiction

If v does not belong to P*
u=(s,…,u)

v belongs to P*
u=(s,…,v, …,u). Let P*

v s-v subpath, P’ u-v subpath

P’
uv

CP*
v

C Negative dicycle !

contradiction

l(P*
v) > l(P*

v) + l(P’) + luv 0 > l(P’)+luv= l(C)

C= P’  {uv} is a cycle

Proof of existence theorem

Let y’= be a feasible dual solution

Let C=(1,(1,2),2,…,k,(k,1),1) be a negative length dicycle: l(C) < 0

Proof: Only-If part (if y’ feasible, no negative dicycles in D)

k-1k

1

2

3

y’ feasible implies

y’2 – y’1  l12

y’3 – y’2  l23

y’1– y’k  lk1

0  l(C)< 0

+

contradiction!

l12

l23

lk1

Trees and spanning trees

G = (V,E) undirected graph

u,v  V connected if G contains an u-v path

G connected every pair u,v  V is connected

Tree: connected forest

- Every pair of vertices in a tree is connected by a unique path (prove it).

G is a forest if it does not contain a cycle

Spanning trees

G = (V,E) connected undirected graph .

A tree H = (W, T) is spanning

G = (V,E) iff W = V and T  E

5
1

2
6

3
4

4

5
1

-2

2

-4

2
4

2

Length (weight) function l: E  R

Length of H = (W, T): l(T) := eT l(e)

Given a connected undirected graph G, and length function l,

find a spanning tree in G of minimum length

Minimum Spanning Tree Problem

When no confusion arises, forests and trees will be

represented by sets of edges.

Dijkstra-Prim spanning tree algorithm

Dijkstra-Prim minimum spanning tree algorithm:

1. Choose v1V. Set U1 = {v1}. Set T1 = {}.

2. While Uk V

3. Chose ek+1  (Uk) with minimum length

4. Reset Tk+1 = Tk  {ek+1}; Reset Uk+1 = Uk  ek+1

5. Reset k = k+1

EndWhile

Maintains a tree on a subset of vertices and grows it

at each iteration until it becomes spanning

(U): {uv E: u  U, v  V/U}U-cut: U  V

Greedy spanning tree algorithm (Kruskal)

Greedy minimum spanning tree algorithm (Kruskal):

1. Set T0 = {}.

2. For k=1,..,|V|-1

3. Chose ek such that:

Tk-1{ek} is a forest and l(ek) is minimum

4. Reset Tk = Tk-1  {ek+1};

EndFor

The proof of correctness for both algorithms is based

on the properties of the greedy forests.

Maintains a forest and grows it at each iteration until

it becomes a (spanning) tree

Greedy forests

A forest F is greedy if there exists a minimum-length

spanning tree T of G that contains F.

Let F be a greedy forest, let U be one of its components, and

let e  (U). If e has minimum length among all edges in (U),

then F  {e} is again a greedy forest.

Theorem 1.11

5
1

2
6

3
4

4

5
1

-2

2

-4

3
4

2

5
1

2
6

3
4

U = {1,2}

(U) = {{1,5},{1,6},

{2,3} {2,4}, {2,5}}

e = {2,3}

Proof of Theorem 1.11

T minimum-length spanning tree that contains F.

u

ve

fG T

F

P

P unique path between end vertices of e  (U)

U

P contains at least an edge f  (U)

T’ = T\{f}  {e} is a spanning tree (prove it).

l(e)  l(f)  l(T’)  l(T) and T’ is a minimum length spanning tree

F  {e} does not contain cycles (forest)

F  {e}  T’ implies F  {e} greedy forest

f

e

Correctness of the Dijkstra-Prim method

At the first stage of the algorithms T0 is a greedy forest

At each subsequent stage k, Tk is a greedy forest.

After |V|-1 steps the algorithms terminate with a spanning

tree.

The Dijkstra-Prim method and the Kruskal method yield a

spanning tree of minimum length.

Corollary 1.11a

Exercises

Show that every pair of vertices in a tree is connected by a

unique path.

Show that if G = (V,T) is a tree, then |T| = |V|-1.

Show that if T is a spanning tree of G = (V,E) and f  E\T, then

T  f contains a unique cycle C (called fundamental). Show that if

e  C, then T\{e}  f is a spanning tree.

Let D be a directed graph, and M be the corresponding vertex-

arc incidence matrix. Show that a set of independent columns of M

corresponds to the edges of a forest.

Show formally that the 0,1 solutions of the s-t path polyhedron

are precisely the incidence vectors of the s-t paths.

