Shortest paths and trees

Carlo Mannino
(from Lex Schrijver notes)

University of Oslo, INF-MAT5360 - Autumn 2010 (Mathematical optimization)

Combinatorial Optimization
Basic Definition and examples

Combinatorial Optimization Problem

o Finite ground set E, weight function w : E — R. (i.e. w € RF)

Q

Feasible solutions 7={F,, ..., F },withF, cE,i=1, ... m

Combinatorial optimization problem (CO)
max {w(F): F € 7}, where W(F)=) w(e)

ecF

Let S — {0,1}F be the set of the incidence vectors of the sets in 7
S={y"Fez}
Remark: w(F)= ZW(e) =Wy

ecF

Combinatorial optimization problem (rewritten)

max {wW'x: x e S} 0-1 linear program

o Solving (CO) and 0-1 LP is difficult (NP — hard)

Example: project selection

* Projects Ae B

* Profits w, e wg

* Costs c, =5, cg =7

Project selection problem:

Find a selection of projects
satisfying the budget constraint
and maximizing profit.

e Budget constraint <D =10

E ={A, B}

Feasible Solutions 7 = {{}, {A}, {B}}

c({y) =0, c({A}) =5, c(iB}) =7,

Max Wy X, + Wg Xg

= B

0
0

c({A, B}) =12>D {A, B} notfeasible

From CO to LP

N A

1 s =100, .17, 1.0 ﬁ
® > &
B o)

max {w'x: xeS}

o P =conv(S) convex hull of the points in S. P is a polytope.
o Vertices of P = ext(P) = S.

max {w'x: X € S} = max {w'x: x € ext(P) } = max {w'x: x € P}

linear program!
e We can solve (CO) by linear programming!

Combinatorial Optimization Course

Outline of the course

e Basic combinatorial optimization problems: shortest path, minimum
spanning tree, maximum flow, minimum cut.

o Connections with linear programming and polyhedral theory
o Integer Polyhedra
e Methods: heuristic algorithms

o Methods: exact approaches

A huge number of relevant real-life applications can
be modeled as COs

Example: connectivity

‘Network design
° ¢ You need to connect a source s (of

s _@ Wwater, packets, ...)to a number of
locations (farms, computers).

J e Each connection (pipe, fiber) has a cost

o WANT: find a minium cost network
connecting all locations to the source

Example: flow

304+ <120 -Mllano\ +40+ Expected demand:
414 <150 A|RM [MI |[FR |ZzU
DA I i
-Roma RM | - 30 |-
MI | - - 40 |14
«Zurich FR |- ; 14
zu |- |- -
40+30<80
«Frankfurt «Flights (available sits):
Passengers should -Roma-Milano: 120 sits
v reach their destinations -Milano-Zurich: 150 sits
v be assigned to departing flights .Frankfurt -Milano: 30 sits
v Satisfying capacity constraints .Zurich- Frankfurt : 80 sits

Example: Project Scheduling

Ssmin(l)

; /\44 Projects decompose into activities
EF™(4) g FF™n(2)

4 . .
SSmin(2) W . 4 Activities may require resources,

IEFmaX(S) ssmin/(/' smn2) which in turn may be limited

0 ! SSmin(O) . ESMin(4) =6 Smm(o) 1 0

2 ax(3 min(2 ' '

m\ e SS)/Z)K (2) Precedence Relations exist
between activities.
7 SFmin(10) 5 SFin(6) SFMn(6)
SFmax(4)
SFmin(6) = "7 must start at least 6 time units

5 — > 1 : . Y
after 5 is terminated

WANT: find a schedule of the activities satisfying all precedence
constraints and minimizing the project completion time

Example: Job-Shop Scheduling

- A product (job) must be processed on
different machines

- Processing a job on a machine is
called operation

- Each machine can process at most k
jobs at a time.

[—) —= - WANT: find a schedule of
the operations satisfying
machine capacities and
additional precedence
constraints.

Example: vehicle routing

Transfer goods from origins to destinations
- Minimizing transportation costs
- Satisfying:

- constraints on vehicle capacities

- connectivity constraints

Several parameters are involved

1. Origin and destination position
2. Demand level
3. Fleet size

Example: vehicle routing

- Each vehicle visits a subset of customers and returns to depot

A famous instance

Standard test instance G-n262-k25 (Gillett & Johnson 1976)
a - . l. m]
. - .. . [] n l- .. - .l
[] - " [|
-] . - n _ [
] L -] - . - -
n = = ; - . .-' []

"The world record" for G-n262-k25: 5685 vs. 6119
(SINTEF 2003)

Shortest paths and trees

Walks and paths

o D=(V,A) directed graph, s,;t € V

o V vertices
e A arcs

o Walk: alternating sequence of vertices and arcs:

P:(VO’alivla---aam’Vm): ai:(Vi—l’Vi) i:1""’m

°s @)%) S)y B8 3 S 5 S
00600
P=(v,a;, Vv, ..., a,, Vy,) goes fromv,to v,

o Path: walk with no repeated vertices

& @ & o % o &
O——C——0——0——0

Length and distance

o s-twalk (path): walk (path) with
starting vertex s and end vertex t

o Length of walk P : number of arcs
e Vreachable from u: there exists and u-v path in D

e Distance from s to t: minimum length of any
Y, V, s-t path (+o if t is not reachable from s)
0

o V, set of vertices at distance | from s

Finding shortest paths

o V, set of vertices at distance | from s

Recursive Rule:

V., setof verticesv eV \ (Vyu V; U...V)
for which (u,v) € A for some u € V,

Shortest Path Algorithm:

e Finds the distance from s to all 1.SetV, ={s},1=0.

vertices reachable from s 2. While V. = {}

e Finds T = (V',A’) shortest path tree 3. Compute V,,, from V,
4.Seti=1+1

o At each iteration explores

_ EndWhile
new arcs; at the end every arc

IS visited at most once —> e Running Time: O(|A)):

Graphs with non-negative arc lengths

e Length (weight) function |: A - Q,
o GivenwalkP=(vy,a;,Vy,...,a,,V,y)
D = (V,A) .
o Lengthof P: I(P)=>I(a)
i=1

e Distance from s to v (w.r.t. I): dist(v) length of a minimum length
s-v path in D (+oo if no s-v path exists)

On a shortest s-v path s = vy, v,, ..., v, =V

() —— (V) ——(- (V) dist(v) = dist(v, ;) + I(vi1, V)

(every sub-path is a shortest path)

Graphs with non-negative arc lengths

m negative star
|(uv)
I(zv) o(v) ={e € A: e=(u,v) for some u € V}

positive star: &*(v) ={e € A: e =(v,u) for some u € V}

negative neighborhood: N'(v) ={u € Viuv € A}

o Trivial Facts: ‘___,/"(/:Iist(z) |
(i) dist(s) =0 \

~
~
-
-
-
- o

(ii) dist(v) = min {dist(u) + I(uv): uved(v)}

—
~N—_——

(iii) dist(v) < dist(u) + I(uv), uves(v)

Dijkstra shortest path algorithm

Dijkstra Shortest Path Algorithm:

1. SetU =V, f(s) :=0, f(v) .= +o for v € U\{s}

2. While U = {}
3. Select ueU minimizing f(u). Set U := U \ {u}.
4. For each uv € 6*(u)

5. If f(v) > f(u)+l(uv) Reset f(v) := f(u)+Il(uv)
EndFor
EndWhile

Theorem 1.3

The final function f gives the distance from s.

Proof of Theorem 1.3

Proof.

o Claim 1: at any iteration f(v) > dist(v), for each veV.

e Suppose not. True at initialization. Then there is a first Reset and a
vertex w such that:

(i) f(w) < dist(w) ; (ii) f(w) = f(u)+I(uw) : (i) f(u) > dist(u)

dist(w) < dist(u) + I(uw) — dist(w) < f(u) + I(uw) = f(w), contradiction

Proof of Theorem 1.3

o Claim 2: at any iteration f(v) = dist(v), for each veV \ U

o We show: when the algorithm Selects ueV\U then f(u) = dist(u).

Suppose not. Then, f(u) > dist(u) for some u (when selected)

@S =Vy, Vy, ..., V= Ushortest s-u path.
o Let i smallest such that v, U, v ; ¢ U.

seU—>i1=0,f(s) =0 =dist(s), contradiction.
segU—>1>0,v;e U i<k
1>0 — f(v,,) =dist(v,;) (byinduction, since v, ; € V\U)
f(v)) < 1(vig) +1(Vig, V) (Vip € VAU)
= dist(v,.y) + (v, 1, v;) = dist(v) (shortest path)

— f(v;) = dist(v;) < dist(u) < f(u) contradicting the choice of u. N

Complexity of Dijkstra Algorithm

e The While iteration is repeated |V/|

e The Select operation requires at most |V| checks

e The contribution to overall complexity is then O(|V|?)
o Every arc is visited exactly once

o Overall complexity O(|V|?) + O(JA[). This complexity can
be improved when |A| < [V]?

e Improve the Select by using heaps to store f(u), u eU

[\ Heap: routed forest (U,F), uveF — f(u) < f(v)

Routed Forest: every vertex has indegree at most 1.

Arbitrary arc lengths

o Dijkstra algorithm can be applied only when
arcs have non-negative lengths (conservative)

e Otherwise a shortest walk may not exist (if D
contains a negative length di-cycle).

e Observe that if D contains a path from s to v,
then it contains a shortest path from s to v.

¢ Finding the shortest path with arbitrary arc lengths is difficult (NP-hard)

e Easy if D contains no negative length di-cycles, but we need a
different algorithm (e.g. Bellman-Ford, or Floyd-Warshall)

The s-t path polyhedron

xPe {0,1}A Incidence vector of an s-t path P

xP =1 uveP
uv

xP =0 uveP
uv

P = (S/ (5/2)121(214)141(4/t)’t)

e a vector x’e {0,1}# is the incidence vector of an s-t path
of D if and only if it satisfies a number of equalities

xP=

sl
s2
s3
1t
21
24
32
34
43
4t

Ve

ROOOROOORDO

-

The s-t path polyhedron

xPe {0,1}A Incidence vector of an s-t path P

x° =1 uveP
uv
x° =0 uveP
uv
No arc incoming s. One arc outgoing from s

2. X =0 2 X =1

use Oy(s) sue 5,;(5)Su
Z X’Zt =1 Z x” = 0 One arcincoming t. No arc outgoing from t
ute Sp(t) tue o)
Z —_ P In every v ¢ {s,t}
Xw = vu number of incoming arcs =

uve 6p(v) vue 5p(v) = number of outgoing arcs

The s-t path polyhedron

ZXZS B ZX’D =-1 S

use Op(s) sue 5D+(S)Su
p —
Z_ Xut - Z+ X/;u =1 t
ute S,(t) tue op(t)
P P ve V-{s,t
2. x, = 2 x, =g VveVdisy
uve Op(v) vue Op(Vv)

M e {-1,0,1}V*A be the vertex-arc incidence matrix of D
b=(1,1,0,...,0)7

¢ The s-t path polyhedron: Q. = {xe %". Mx=b, x>0}

The s-t path polyhedron

o The s-t path polyhedron: Qg = {xe ¥": Mx=b, x>0}

The vertices of Q. are precisely the incidence vectors of the
s-t paths in D.

(SP) minI™x
e Consider the following LP : Mx=Db
x>0

o If (SP) has an optimal solution, then it has an optimal
solution which is the incidence vector of an s-t path

Dual to the s-t path problem

(SP) minI™x
Mx=Db o if D has an s-t path (SP) is non-empty
x>0

D contains an s-v path for everyv € V

e Associate to (SP) its dual problem, by introducing y € %V :

(DSP) max y, - Y,
Y, -V, < 1, forall uveA

Minimum length s-t walk existence

e Since (SP) is non-empty, (SP) has an optimal solution if and
only if it is not unbounded

o (SP) is not unbounded if and only if (DSP) is non-empty.

(DSP) is non-empty iff D does not contain a negative length
directed cycle.

Proof of existence theorem

o Proof: If part (D does not contain a negative length dicycle)

o Let P, be a shortest path fromstouin D, u € V.

o Lety’ =I(P",), foru € V. Then y’is dual feasible. Suppose not.

o Letuvsuchthaty , -y, >,

‘ I(P*v)_I(P*u) > Iuv ‘ I(P*v) > Iuv +I(P*u)
o If v does not belong to P° =(s.....U) mp

P’=(s,...,u,uv,v) is s-v path with I(P)=I(P",)+l,,< [(P",), contradiction ‘

o v belongs to P* =(s,...,v,u). Let P, s-v_subpath, P" u-v subpath

=) C=P’U {uv}is acycle Pl)
>
(P*) > I(P*) +I(P) + |, mmp O>I(P)+,=1(C) C Negative dicycle |

contradiction

Proof of existence theorem

o Proof: Only-If part (if y’ feasible, no negative dicycles in D)

o Let y’= be a feasible dual solution
o Let C=(1,(1,2),2,...,k,(k,1),1) be a negative length dicycle: [(C) <0

o y’ feasible implies

Yo—=Y1< i
Yi3—=Y5 < |y

Yi= Vi< g

0<I(C)<0 contradiction! B

Trees and spanning trees

G = (V,E) undirected graph

/<‘& [\. o G is a forest if it does not contain a cycle

e U,v € V connected if G contains an u-v path

e G connected every pair u,v € V is connected

o Tree: connected forest

- Every pair of vertices in a tree is connected by a unigue path (prove it).

Spanning trees
o

oG = (V,E) connected undirected graph .

o Atree H = (W, T) Is spanning
G=(V,E) ff W=VandTcE

o Length (weight) functionl: E > R

o Lengthof H=(W, T): I(T):=2,_l(e)

Minimum Spanning Tree Problem
Given a connected undirected graph G, and length function |,

find a spanning tree in G of minimum length
N

¢ When no confusion arises, forests and trees will be
represented by sets of edges.

Dijkstra-Prim spanning tree algorithm

¢ Maintains a tree on a subset of vertices and grows it
at each iteration until it becomes spanning

U-cut: UcV o(U): {uve E:u € U, v € V/U}

Dijkstra-Prim minimum spanning tree algorithm:
1. Choose v,eV. SetU,={v,}. Set T, ={}.
2. While U, #V
3. Chose e, € 6(U,) with minimum length
4. Reset T,,, =T, u{e.,.}; ResetU, , =U, Ue.,,
5. Reset k = k+1
EndWhile

Greedy spanning tree algorithm (Kruskal)

¢ Maintains a forest and grows it at each iteration until
It becomes a (spanning) tree

Greedy minimum spanning tree algorithm (Kruskal):
1. Set Ty = {}.
2. For k=1,..,|V|-1
3. Chose e, such that:
T, {e,} Is aforest and l(e,) iIs minimum
4.Reset T, =T,, uie..}:
EndFor

o The proof of correctness for both algorithms is based
on the properties of the greedy forests.

Greedy forests

o Aforest F is greedy if there exists a minimum-length
spanning tree T of G that contains F.

U={1,2}
5 g o

5(V) = {{1,5},{1,6},
® @ 32425

e ={2,3}

Let F be a greedy forest, let U be one of its components, and
let e € 6(U). If e has minimum length among all edges in 5(U),
then F U {e} is again a greedy forest.

Proof of Theorem 1.11

o T minimum-length spanning tree that contains F.

DL AN

e P unique path between end vertices of e € d(U)

o P contains at least an edge f € 6(U)

o I’'= T\{f} U {e} Is a spanning tree (prove it).

o l(e) <I(f) > I(T) <I(T) and T’is a minimum length spanning tree
o F U {e} does not contain cycles (forest)

o Fu{e} < T"implies F U {e} greedy forest

Correctness of the Dijkstra-Prim method

Corollary 1.11a

The Dijkstra-Prim method and the Kruskal method yield a
spanning tree of minimum length.

o At the first stage of the algorithms T,is a greedy forest
o At each subsequent stage k, T,Iis a greedy forest.

o After |V|-1 steps the algorithms terminate with a spanning
tree.

Exercises

e Show that every pair of vertices in a tree is connected by a

unique path.
o Show thatif G =(V,T) Is atree, then |T| = [V|-1.

o Show that if T Is a spanning tree of G = (V,E) and f € E\T, then
T u f contains a unique cycle C (called fundamental). Show that if

e € C, then T\{e} U fis a spanning tree.

o Let D be a directed graph, and M be the corresponding vertex-
arc incidence matrix. Show that a set of independent columns of M

corresponds to the edges of a forest.

o Show formally that the 0,1 solutions of the s-t path polyhedron

are precisely the incidence vectors of the s-t paths.

