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This problem set consists of 6 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

There are 12 questions with about the same weight.

Solution.

Problem 1

1a

Let C ⊆ Rn be a convex set and consider a line L = {x ∈ Rn : x = a+tr, t ∈
R} where a, r ∈ Rn are given vectors. Is C ∩ L a convex set? Depending on
your answer, give a proof or a counterexample.

Solution: True. Proof: L is also convex (may be shown directly from the
definition of convexity) and the intersection of convex sets is again convex.
Thus C ∩ L is convex.

1b

Let a, b ∈ Rn and consider the set

S = {x ∈ Rn : ‖x− a‖ ≤ ‖x− b‖}

where ‖z‖ =
√
zT z is the Euclidean norm of a vector z. Show that S is a

halfspace. (Hint: work on the inequalities in the definition of S). Give an
example in the plane, i.e., when n = 2.

Solution: Since the norm is nonnegative, the following is equivalent: (i)
‖x−a‖ ≤ ‖x−b‖, and (ii) ‖x−a‖2 ≤ ‖x−b‖2. Moreover, a calculation in (ii)
gives: xTx−2aTx+aTa ≤ xTx−2bTx+bT b, or (b−a)Tx ≤ (1/2)(‖b‖2−‖a‖2).
So S is the halfspace defined by this linear inequality (with normal vector
b − a). Example for n = 2: let a = (0, 0) and b = (2, 0), then S is the
halfspace given by x1 ≤ 1; all points closer to a than b (or equal distance).

(Continued on page 2.)
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Problem 2

2a

Let f : Rn → R be a convex function and let α ∈ R. Show that the set

K = {x ∈ Rn : f(x) ≤ α}

is convex.

Solution: Let x1, x2 ∈ K and λ ∈ [0, 1]. Then f(x1), f(x2) ≤ α so by
convexity of f

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λx2f(x2) ≤ (1− λ)α + λα = α

so (1− λ)x1 + λx2 ∈ K, and this set is convex.

2b

Let x ∈ Rn be a convex combination of the vectors z1, z2, . . . , zk ∈ Rn, and
let f : Rn → R be a convex function. Show that

f(x) ≤ max{f(z1), . . . , f(zk)}.

(Hint: Jensen’s inequality)

Solution: Then x =
∑k

j=1 λjzj for some λj ≥ 0 (j ≤ k) and
∑k

j=1 λj = 1.
By Jensen’s inequality

f(x) = f(
k∑

j=1

λjzj) ≤
k∑

j=1

λjf(zj) ≤
k∑

j=1

λjM = M
k∑

j=1

λj = M

where M = max{f(z1), . . . , f(zk)}. This proves the inequality.

2c

Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron (so A is a real m × n matrix
and b ∈ Rm). Show that the recession cone of P is given by

rec(P ) = {z ∈ Rn : Az ≤ O}

where O is the zero vector.

Solution: Let z ∈ rec(P ) and x0 ∈ P . Then x(λ) := x0 + λz ∈ P for
each λ ≥ 0. Now Ax(λ) = Ax0 + λAz. If (Az)i > 0 for some i, then
(Ax(λ))i > bi when λ is large enough, but this contradicts that x(λ) ∈ P .
This proves that Az ≤ O. Conversely: assume Az ≤ O. Then, for each
x0 ∈ P , A(x0 + λz) = Ax0 + λAz ≤ b+O = b, so z ∈ rec(P ). Thus, rec(P )
has the desired form.

(Continued on page 3.)
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2d

Let C ⊂ R3 be the unit cube, i.e.,

C = {(x1, x2, x3) ∈ R3 : 0 ≤ xi ≤ 1 (i ≤ 3)}

Determine, with reference to general theory, each face F of C such that
dim(F ) = 1 and F contains the point (1, 1, 1).

Solution: Since C is a polyhedron, each face F is an exposed face, and
it is obtained by setting certain inequalities in the defining inequalities (for
C) to equality (see Section 4.4 in “An Intro. to Convexity”). Since F has
dimension 1, we must set two such inequalities to equality, and since F
contains (1, 1, 1) we can only use the inequalities xi ≤ 1 for this. The desired
faces are therefore F1 = {x ∈ P : x2 = 1, x3 = 1} = conv{(0, 1, 1), (1, 1, 1)},
F2 = {x ∈ P : x1 = 1, x3 = 1} = conv{(1, 0, 1), (1, 1, 1)} and F3 = {x ∈ P :
x1 = 1, x2 = 1} = conv{(1, 1, 0), (1, 1, 1)}.

Problem 3

3a

Give an example of a 2 × 2 matrix B = [bij] where (a) bij ∈ {−1, 0, 1} for
1 ≤ i, j ≤ 2 and (b) B is not totally unimodular. Also, give a proof of the
following fact: the node-edge incidence matrix of a directed graph is totally
unimodular. (This is a result in the lecture notes.)

Solution: An example is

A =

[
1 1
−1 1

]
Then detA = 2 so A is not TU. The proof: see lecture notes on comb.opt.,
Proposition 2.12.

Problem 4
Let F (G) = {x ∈ IRE : Ax ≤ b} be the forest polytope associated with the
undirected graph G = (V,E) in Figure 1.a). An inequality of type xe ≥ 0
(e ∈ E) is said to be a trivial inequality.

4a

Let A be a separation oracle for F (G) and let x̂ ∈ IRE be the point indicated
in the picture (i.e. x13 = 2/3, x12 = x14 = 1/3, x23 = 0, x24 = x34 = 1). If
the input to A is x̂, what will it be its output?

Solution: The oracle returns the violated constraint x12 + x13 + x14 +
x23 + x24 + x34 ≤ 3, associated with the vertex set S = {1, 2, 3, 4} (remark
E(S) = E).

(Continued on page 4.)
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4b

Consider the spanning tree H of G given in Figure 1.b). The incidence vector
of H is xH

12 = xH
14 = xH

34 = 1, xH
13 = xH

23 = xH
24 = 0. Show that xH is a vertex

of F (G), without using trivial inequalities in your proof.

Solution: xH satisfies with equality the following |E| inequalities in the
definition of P : x12 ≤ 1 (S = {1, 2}), x14 ≤ 1 (S = {1, 4}), x34 ≤ 1
(S = {3, 4}), x12 + x14 + x24 ≤ 2, (S = {1, 2, 4}), x13 + x14 + x34 ≤ 2
(S = {1, 3, 4}), x12 + x13 + x14 + x23 + x24 + x34 ≤ 3 (S = {1, 2, 3, 4}).

Problem 5
Let G = (V,E) be an undirected simple graph (no loops, no multiple edges).
A stable set of vertices is a set S ⊆ V of pairwise non-adjacent vertices of
G, i.e. for all i, j ∈ S we have [i, j] /∈ E. For example, in Figure 2, the set
S = {2, 3, 5} is a stable set.

1

2

5

4

3

Figure 2:

Let Q(G) ⊆ {0, 1}V be the set of incidence vectors of stable sets of G.
It is not difficult to see that a (0, 1)-vector x ∈ RV lies in Q(G) if and only
if it satisfies xu + xv ≤ 1 for all [u, v] ∈ E. In other words, the polyhedron

(Continued on page 5.)
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P (G) = {x ∈ IRV : xu ≥ 0 for all u ∈ V, xu + xv ≤ 1 for all [u, v] ∈ E} is a
formulation of Q(G).

Consider now three distinct and pairwise adjacent vertices v, w, z of G,
i.e. {[v, w], [w, z], [v, z]} ⊆ E.

5a

Show that the inequality xv + xw + xz ≤ 1 is valid for the convex hull of
Q(G).

Solution: The inequality can be obtained as a Gomory cut from the
constraints defining P (G). In particular, for every edge [i, j] ∈ E, denote
by uij the multiplier associated with the constraint xi + xj ≤ 1. Then we let
uvw = uvz = uwz = 1/2, and all other multipliers be equal to 0.

5b

Show that the clique inequality xv + xw + xz ≤ 1 is not valid for P (G).
Solution: Consider the point x̂v = 1/2 (v ∈ V ). It is not difficult to see

that x̂ ∈ P (G). But the clique inequality xv + xw + xz ≤ 1 is violated by x̂.

Problem 6
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Figure 3:

Consider the graph in Figure 3 where flow xe and capacity ce are shown
next to each edge e (in this order).

6a

Show that the given flow x is a maximum st-flow.
Solution: We have val(x∗) = 4. Consider the st-cut K =

δ+({s, 1, 2, 4, 5}) = {(1, 3), (4, 3, ), (4, t)}. We have c(K) = 4, and c(K) =
val(x∗), implying that K is a minimum st-cut and x∗ a maximum st-flow.

(Continued on page 6.)
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Problem 7
(For the course INF-MAT9360)

An internet network can be modelled by means of a directed graph
G = (V,E), where the set of nodes V correspond to the routers, while a
directed edge (u, v) represents a direct link from router u to router v, so that
one can send traffic from u to v. Consider two distinct routers s and t.

7a

We want to check if it is possible to send traffic from s to t even if at most
k links fail. Find a suitable max-flow problem which solves this question.

Solution: For every (u, v) ∈ E, define the capacity c(u, v) = 1. Find a
maximum (integer) st-flow x∗ with such capacities. If val(x∗) = q > k then
the answer is YES, otherwise the answer is NO. First, suppose q > k: then
we can decompose x∗ into flows on st-paths P 1, . . . , P r, with r ≥ 1 (flows on
cycles can be neglected). Since edge capacities are unitary and x∗ is integer,
every path carries exactly 1 unit of flow, and no two paths share a common
edge: the paths are disjoint. This implies that we have exactly q distinct paths
(r = q) and we are done as no choice of k edges can “hit” all these paths. If
q ≤ k, the max-flow value is q so the min-cut capacity is also q. But then
there is a cut with at most k edges, so if they all fail, one cannot send traffic
from s to t.

Good luck!


