
Digital Circuit Optimization and
Manipulation

Markus Gasser

TU Wien
markus.gasser@tuwien.ac.at

Omid Mirmotahari

Universitetet i Oslo
omidmi@ifi.uio.no

August 21, 2016

Abstract

This paper explains the optimization process of Boolean expressions through K-maps.

I. Two-Level Circuit Optimization

Although the truth table is a unique represen-
tation of a logic function an algebraic expres-
sion for it is not unique. As we have already
discussed each can be represented by standard-
ized forms such as sum of minterms or prod-
uct of maxterm but also simplified into sum of
products or product of sums.

The K-map or Karnaugh map offers an easy
way to simplify algebraic expression to an opti-
mal sum of products or product of sums form.

i. Cost Criteria

To define the optimal solution for our expres-
sions we first have to define a cost criteria to
then be able to measure the optimality. Two
possibilities are the literal cost and the gate-input
cost.

The literal cost is the number of literal ap-
pearances in the Boolean expression. This num-
ber is easy to determine but is not a good indi-
cation of the complexity of the resulting logic
circuit. Gate-input cost on the other hand is
defined as the number of inputs to the gates in
the implementation through gate logic corre-
sponding to the equation. This is a very good
indication for complexity of the circuit since
it’s directly proportional to the number of tran-
sistors and wires used in the realization.

It is however important to note, that inde-

YZ
WX

00 01 11 10

00

01

11

10

0 1 23

4 5 67

8 9 1011

12 13 1415

Figure 1: K-map structure for 4 variables

pendent of the used cost criteria the solution
is not necessarily unique, meaning that there
can be more than one Boolean expression with
identical lowest cost.

ii. Map Structures

Each cell in a K-map corresponds to one
minterm in the function’s Boolean expression.
A K-map for 4 variables, resulting in 24 = 16
cells is depicted in figure 1. The cells are ar-
ranged according to a Gray code, resulting in
the fact that minterms that differ in exactly one
value of a variable are share the same edge
in the map. Two terms that fulfill this fact
are called adjacent. Additionally in a 3 vari-
able K-map The terms of cells in the left and

1

mailto:markus.gasser@tuwien.ac.at
mailto:omidmi@ifi.uio.no


Digital Circuit Optimization and Manipulation

right border of the map are adjacent (building
a cylinder). In a 3 variable K-map the terms
of cells in the left and right border and in the
bottom and top border are adjacent (resulting
in a torus).

When placing a the minterms of a func-
tions onto the map the decimal indexes of the
minterms written inside the cells or the binary
variable representations along the top and the
left of figure 1 can be used as guidance.

iii. Optimization Process

The whole process of optimizing a Boolean
expression through a K-map can be executed
in 4 steps.

1. Filling the values (1 or 0) into the cells of
the minterms into the cells of the K-map.

2. Identifying rectangles of groups of 1s in
the map. These rectangles have to con-
tain number of cells that are powers of 2,
each 1 on the map needs to be inside of
at least one rectangle and each rectangle
should be constructed as large as possi-
ble. As mentioned previously adjacent
cells are also placed on opposite borders
of the map which can result in rectangles
running over the borders.

3. Eliminating all unneeded rectangles.

4. Reading off the sum-of-products expres-
sion, determining the corresponding prod-
uct terms for the required rectangles in the
map.

II. Map Manipulation

To define the optimization process explained
in the last section more systematic a new terms
need to be defined.

i. Essential Prime Implicants

The new terms introduced are:

• An implicant is a product of minterms in a
sum of products expression of a function.

Equivalently the function has the value 1
for all the minterms of the product term.
In the map representation all rectangles of
1s correspond to implicants.

• A prime implicant is a implicant that is not
an implicant anymore if any literal is re-
moved from it. In the map representation
the set of prime implicants of a n-variable
function is constructed by rectangles made
up of 2m squares (m = 0, 1, . . . , n) with
rectangles containing as many squares as
possible.

• A prime implicant is essential if a minterm
is not included in any other implicant.
Otherwise the implicant is said to be
nonessential.

We can now formulate a more systematic
optimization procedure:

1. Prime implicants can be obtained from
the map representation of a function by
building all possible maximum rectangles
of size 2m, m = 0, 1, . . . , n squares.

2. Essential prime implicants are the found
by searching for squares that are only con-
tained in one implicant.

3. The optimized Boolean expression of the
function is finally obtained by the logical
sum of all essential prime implicants in ad-
dition to other prime implicants that con-
tain remaining minterms not yet included
in the expression.

ii. Nonessential Prime Implicants

To simplify the expression format further a se-
lection rule for the needed nonessential prime
implicants can be used. It states that the
overlap among primes used in the expression
should be minimized as much as possible.

iii. Product-of-Sums Optimization

The previous sections explained the procedure
to obtained the sum-of-products expression for
a function. To obtain the product-of-sums one,
we mark the empty squares in the map by 0,

2



Digital Circuit Optimization and Manipulation

combine them into rectangles and obtain in an
analog way as previously the complement of
the function F. Taking the complement results
in the function F expressed as product of sums.

iv. Don’t-Care Conditions

In case of a incompletely specified function where
there are unspecified output for certain input
combinations (e.g. BCD code) the Boolean ex-
pression can be further optimized. The unspec-
ified minterms are called don’t-care conditions,
are marked with “X” in the K-map and can be
used in the optimization process when build-
ing rectangles each of these squares may but
does not have to be included in one or more
rectangles.

III. Summary

In this paper we explained the concepts of K-
maps and how they can be used to optimize
Boolean expressions to their product of sums
and sum of product forms. We detailed a more
systematic approach to optimization and ex-
plain the concept of don’t care conditions.

References

[Kime and Mano, 2004] Kime, Charles R and
Mano, M Morris (2004). Logic and com-
puter design fundamentals. Pearson Edu-
cation.

3


	Two-Level Circuit Optimization
	Cost Criteria
	Map Structures
	Optimization Process

	Map Manipulation
	Essential Prime Implicants
	Nonessential Prime Implicants
	Product-of-Sums Optimization
	Don't-Care Conditions

	Summary

