
Digital Systems and Information
Markus Gasser

TU Wien
markus.gasser@tuwien.ac.at

Omid Mirmotahari

Universitetet i Oslo
omidmi@ifi.uio.no

August 25, 2016

Abstract

This paper will give a brief overview of digital systems and information representations therein, mainly the
binary, octal and hexadecimal number representations. It shows how to perform arithmetic operations and
introduces codes for several applications.

I. Information Representation

Information values, also called signals can be
broadly divided into two types: analog signals,
which can take all possible values over a de-
fined range and discrete signals, that can take
only a finite number of values (e.g. integers) in
a specific range.

An extreme case of the discrete signal is the
binary signal, which can only take two values.
In a physical information system these 2 values
are typically represented by “high” (H) and
“low” (L) voltage. Completely equivalent they
can also be represented from a more theoretical
viewpoint by “true” and “false” or just “0” and
“1”. To map these different representations to
each other a convention called positive logic can
be used, where H corresponds to true and 1,
and L corresponds to false and 0.

A single binary digit in a system is called
bit and groups of bits represent information
according to their coding or even instructions
to be executed within the system.

The dominant use of binary signals within
systems instead of the use of higher order dis-
crete signals or even analog signals is due to
it’s simplicity, ease of of design and reliability.

II. Number Systems

From everyday arithmetic we are already
familiar with the decimal number system that

represents numbers by strings of digits
each an integer between 0 and 9 and rep-
resenting the value of an integer raised to
the power of 10 based on it’s position in
the string. As an example the the value
of the string 24.5 can be computed as
2 × 101 + 4 × 100 + 5 × 10−1. More general
each number in an arbitrary number system
can be represented by a string of coefficients
An−1 An−2 . . . A1 A0.A−1 A−2 . . . A−m+1 A−m
and equivalently evaluated by the power
series in r: An−1rn−1 + An−2rn−1 + · · · +
A1r1 + A0r0 + A−1r−1 + A−2r−2 + · · · +
A−m+1r−m+1 + A−mr−m where r is called
the radix or base, “.“ the radix point and the
coefficients are from the range of r values
and they are multiplied by powers of r. The
coefficient An−1 is called most significant digit
(MSD) and A−m is called least significant digit
(LSD). To distinguish between numbers of
different bases the base can be indicated in
subscript e.g. (An−1 . . . A−m)r.

i. Binary Numbers

In the binary number system r = 2 meaning
it is a base 2 system with digits 0 and 1. To
convert a binary number to it’s decimal equiva-
lent it suffices to evaluate the power series with
a base of 2, e.g. (110.1)2 = 1× 22 + 1× 21 +
0× 20 + 1× 2−1 = (6.5)10. Decimal numbers
can be converted to their binary representa-

1

mailto:markus.gasser@tuwien.ac.at
mailto:omidmi@ifi.uio.no


Digital Systems and Information

tion by successively subtracting smaller pow-
ers of two and starting with the greatest one
that is smaller than the decimal number e.g.
(13)10 = 23 + 22 + 20 = (1101)2

ii. Octal and Hexadecimal Numbers

Octal and Hexadecimal number systems are
useful because they let us represent binary
numbers indirectly since their bases are both
powers of 2.

The octal number system is base 8 = 23 and
therefore let’s us represent 3 binary digits with
each octal digit. An example for a octal number
is (706)8 = 7× 82 + 0× 81 + 6× 80 = (454)10.

The hexadecimal number system is base 16 =
24 and thus each hexadecimal digit represents
4 binary digits. The digits 10, 11, 12, 13, 14
and 15 are represented by the letters A, B, C, D,
E and F. An exemplary hexadecimal number
is (F3A)16 = 15× 162 + 3× 161 + 10× 160 =
(3898)10.

Conversion from octal or hexadecimal to bi-
nary is performed by grouping the binary dig-
its into groups of 3 or 4 respectively and then
converting these groups individually. Convert-
ing from octal or hexadecimal to binary is done
by reversing this procedure.

III. Arithmetic Operations

Arithmetic operations with numbers in base r
follow the same rules as for the decimal num-
ber system. However one has to be careful only
to use only the r allowed digits to perform all
the operations. In the following sections the op-
erations are explained by means of the binary
number system.

i. Addition

The sum of two binary numbers is calculated
the same way as in the decimal system however
only the digits 1 and 0 are used. A carry to the
higher position is obtained if the sum at any
given position is greater than 1. As an example
we calculate the sum of 0011 and 0110 as shown
in table 1.

Augend 0010
Addend +0110
Carries 1100
Sum 1000

Table 1: Binary addition example

Minuend 0110
Subtrahend -0011
Borrows 0010
Difference 0011

Table 2: Binary subtraction example

ii. Subtraction

Subtraction in binary works analogous to the
decimal system except that a borrow into a
given digit adds 2 to the minuend bit. As an
example we subtract 0011 from 0110 as shown
in table 2.

iii. Multiplication

The binary multiplication is really simple, be-
cause the multiplier digits are always either 1
or 0. This the partial products are equal either
to the multiplicand or 0.

IV. Decimal Codes

We now want to investigate how common dec-
imal numbers can be saved in computers, i.e.
being represented by binary digits. Thus we
are searching for a code that converts our deci-
mal digits into binary digits.

A n-bit binary code is a group of n bits that
can assume up to 2n distinct combinations of
1s and 0s. Each combination represents one
element of the set being coded.

The code binary-coded decimal assigns the dec-
imal digits 0, 1, . . . 9 to a 4 bit string as shown
in table 3.

According to this code the exemplary
number 420 is represented by the 12 bits
0100 0001 0000.

2



Digital Systems and Information

Decimal digit BCD digit
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table 3: BCD code

Note that a decimal number in BCD is gen-
erally not the same as its equivalent binary
number, e.g. our example number (420)10 =
(1 1010 0100)2 6= (0100 0001 0000)BCD. Note
also that generally a BCD number needs more
bits than its equivalent binary value. It is most
accurate to think of BCD numbers of decimal
numbers written with binary digits, and not as
binary numbers.

V. Alphanumeric Codes

Binary codes can not only represent digits as
we discovered i the last section, but also letters.

i. ASCII Character Code

The most prominent code for letters is called
ASCII (American Standard Code for Informa-
tion Interchange). It consists of 7 bits and thus
can code 128 characters. It entails the letters
a-z, a-Z, the decimal digits 0-9, special print-
able and non-printable characters and control
characters. As most computer systems use
groupings of 8 bit length, also called one byte,
a MSD is usually added. This digit can be set
to 0, used for encoding international characters
or used as a parity bit.

ii. Unicode and UTF-8

Since ASCII does not provide support for inter-
national character sets Unicode has been devel-

Decimal digit Binary Code Gray Code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Table 4: Gray and binary code

oped. Its goal is to provide a code point and a
unique name for each character of the worlds
languages. To encode this code points with
binary digits multiple codes are available. The
most prominent one is UTF-8, a variable length
encoding ranging from 1 to 4 bytes per code
point.

iii. Parity Bit

To add redundancy to a code and thus be able
to detect errors during the transmission of a bit
sequence a parity bit can be used. It is an extra
bit that makes the total number of 1s in each
codeword either even or odd. For example
when adding even parity to the sequence 01011
at the MSD, the codeword becomes 101011.

VI. Gray Codes

There are application were when counting
down or up, changes in multiple bits are prob-
lematic. The Gray code solves this problem. As
can be seen in the table 4 two adjacent code
symbols always only differ at one bit position.

VII. Summary

We introduced the basis of digital systems, the
binary number system. We gave an overview
over this system and the octal and hexadeci-
mal number systems. We have shown how to
perform arithmetic operations with them. We
have shown multiple codes for different appli-

3



Digital Systems and Information

cations, most notably BCD, ASCII and Gray
Code.

References

[Kime and Mano, 2004] Kime, Charles R and
Mano, M Morris (2004). Logic and com-
puter design fundamentals. Pearson Edu-
cation.

4


	Information Representation
	Number Systems
	Binary Numbers
	Octal and Hexadecimal Numbers

	Arithmetic Operations
	Addition
	Subtraction
	Multiplication

	Decimal Codes
	Alphanumeric Codes
	ASCII Character Code
	Unicode and UTF-8
	Parity Bit

	Gray Codes
	Summary

