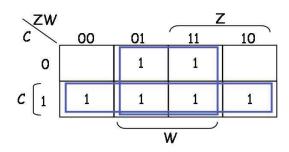
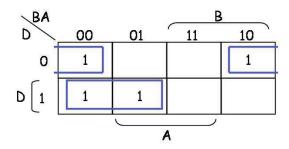

INF1400- Uke 03- FASIT

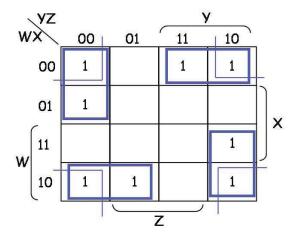
Folkens, her kommer det en del oppgaver som skal gi dere god trening innen det å bruke Karnaugh-diagram til forkortning av uttrykk. Løs også alle oppgave som står i boka i slutten av kapittel 3. Lykke til ☺


- 1. Simplify the following boolean expressions using a Karnaugh-diagram:
- a): BA + D'B' + DB'A

$$F = D'B' + A$$


b): CZ + Z'W + CW' + C'ZW

$$F = C + W$$



c): B'A' + D'A' + DB'A

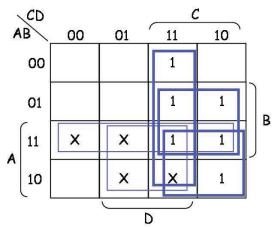
$$F = D'A' + DB$$

- 2. Simplify the following Boolean functions F
- a): F(W,X,Y,Z) = Sum m(0, 2, 3, 4, 8, 9, 10, 14)

 $F = \bar{W}\bar{Y}\bar{Z} + \bar{W}\bar{X}Y + W\bar{X}\bar{Y} + WY\bar{Z}$

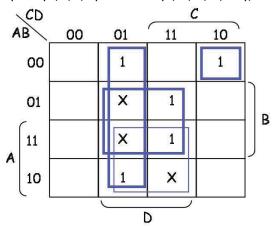
b): F(A,B,C,D) = Sum m(3, 6, 7, 8, 10, 11, 13, 14, 15)

AB)			:	
AB	<u>00</u>	01	11	10 '	
00	1		1		
01			1	1,	B
A 11		1	1	1	٦
10	1		1	1	•
			D		,

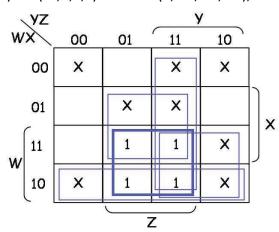

 $F = CD + BC + ABD + A\bar{B}\bar{D}$

c): F(W,X,Y,Z) = Sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15)

	•	• •			
∖ YZ)	<u>/</u>	
wx yz	00	01	11	10	
00	1	1	,	1	
01		1	1	1	$\Big]_{x}$
w 11		1	1	1]^
10	1	1		1	
		7	<u> </u>		

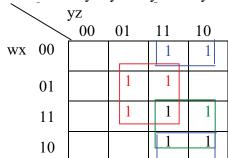

 $F = \bar{X}\bar{Y} + XZ + Y\bar{Z}.$

- 3. Simplify the following Boolean functions F together with the don't-care conditions
- a): F(A,B,C,D) = Sum m(3, 6, 7, 10, 14, 15), don't-care conditions: d(A,B,C,D) = Sum m(9, 11, 12, 13)

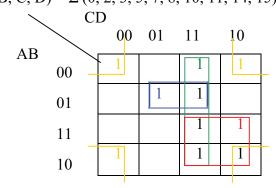

$$F = CD + BC + AC$$

b): F(A,B,C,D) = Sum m(1, 2, 7, 9, 15), don't-care conditions: d(A,B,C,D) = Sum m(5, 11, 13)

$$F = \bar{C}D + BD + \bar{A}\bar{B}C\bar{D}$$


c): F(W,X,Y,Z) = Sum m(9, 11, 13, 15), don't-care conditions: d(W,X,Y,Z) = Sum m(0, 2, 3, 5, 7, 8, 10, 14)

F = WZ


4. Simplify the following Boolean expressions, using four-variable maps:

$$F = wxy + yz + xy'z + x'y$$

$$F = xz + x'y + wy$$

5. Simplify the following Boolean function by first finding the essential prime implicants: $F(A, B, C, D) = \Sigma (0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$.

All Essential prime implicates: B'D', CD, AC, A'BDF(A, B, C, D) = B'D' + CD + AC + A'BD

6. Simplify the following Boolean function, using five-variable maps:

$$F(A, B, C, D, E) = \Sigma (0, 1, 4, 5, 16, 17, 21, 25, 29)$$

	DÉ	()	, , ,	, ,
	00	01	11	10
BC 00	1	1		
01	1	1		
11				
10				

,	,		Dl	E /
00	01	11	10	
1	1			00 BC
	1			01
	1			01
	1			11
	1			10
				10

F(A, B, C, D, E) = A'B'D' + AD'E + B'C'D'

7. Simplify the following Boolean function F, together with the don't-care conditions d, and then express the simplified function in sum of minterms:

$$F(x, y, z) = \sum (0, 1, 2, 4, 5)$$

$$d(x, y, z) = \sum (3, 6, 7).$$

$$yz$$

$$00 \quad 01 \quad 11 \quad 10$$

$$x$$

$$0 \quad 1 \quad 1 \quad X \quad 1$$

$$1 \quad 1 \quad X \quad X$$

$$F(x, y,z) = \Sigma (0, 1, 2, 3, 4, 5, 6) = 1.$$

8. Given

F(A, B, C, D) =
$$\Sigma$$
(0, 4, 5, 7, 8, 12, 13, 15)
G(A, B, C, D) = Π (0, 1, 7, 8, 9, 10, 11, 12, 15)

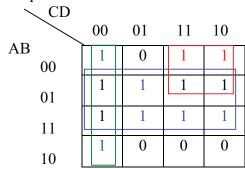
Use 4-variable maps to find

- a) Simplified F•G
- b) Simplified F+G

$$F(A, B, C, D) = \Sigma(0, 4, 5, 7, 8, 12, 13, 15)$$

_		CD			
		00	01	11	10
AB	00	1	0	0	0
	01	1	1	1	0
	11	1	1	1	0
	10	1	0	0	0

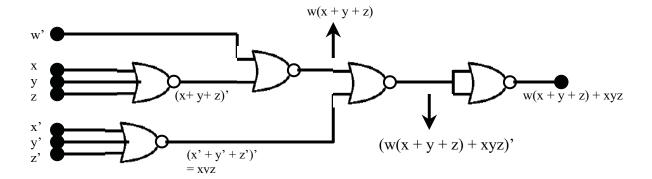
$$G(A, B, C, D) = \Pi(0, 1, 7, 8, 9, 10, 11, 12, 15)$$


\		CD			
		00	01	11	10
AB	00	0	0	1	1
	01	1	1	0	1
	11	0	1	0	1
	10	0	0	0	0

(a) Simplified F•G

_		CD			
		00	01	11	10
AB	00	0	0	0	0
	01	1	1	0	0
	11	0	1	0	0
	10	0	0	0	0

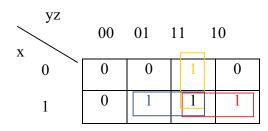
$$F \cdot G = A'BC' + BC'D$$


(b) Simplified F+G

$$F+G = B + C'D' + A'C$$

9. Draw the multiple-level NOR circuit for the following expression:

$$F = w(x + y + z) + xyz.$$


10. Design a combinational circuit with three inputs x, y and z, and three outputs A, B and C. When the binary input is 0, 1, 2 and 3, the binary output is one greater than the input. When the binary input is 4, 5, 6 and 7, the binary output is one less than the input.

Ans. → First, we need to find the truth table for the circuit:

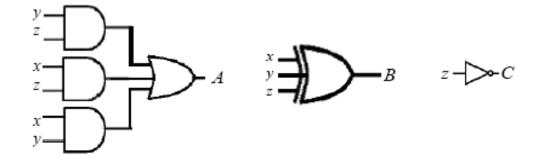
X	y	Z	A	В	C
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

Now Find the Boolean Function for output A, B and C.

For Output A::

So, Output A = yz + xz + xy

For Output B::


So, Output B =
$$\mathbf{x}$$
' \mathbf{y} ' \mathbf{z} + \mathbf{x} ' \mathbf{y} z' + \mathbf{x} y' \mathbf{z} ' + \mathbf{x} y \mathbf{z} = \mathbf{x} '(\mathbf{y} ' \mathbf{z} + \mathbf{y} z') + \mathbf{x} (\mathbf{y} ' \mathbf{z} ' + \mathbf{y} z) = \mathbf{x} "(\mathbf{y} ⊕ \mathbf{z}) + \mathbf{x} (\mathbf{y} ⊕ \mathbf{z})' = \mathbf{x} ⊕ \mathbf{y} ⊕ \mathbf{z}

For Output C::

	00	01	11 1	.0
X _		Т	Т	
0	1	0	0	1
	1	0	0	1
l _	1	U	U	

So, Output C = z'

Designing Circuit from Boolean Equations::

