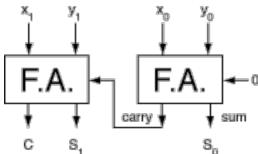
<u>INF1400- Uke 04-FASIT</u>

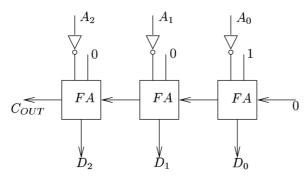
- 1. Regn ut f
 ølgende subtraksjon
 - a. 00001000 00000011
 - b. 00001100 11110111
 - c. 11100111 00010011
 - d. 10001000 11100010

```
Solution Like in other examples, the equivalent decimal subtractions are given for reference.
          (a) In this case, 8-3=8+(-3)=5.
                                                   Minuend (+8)
                                      00001000
                                                   2's complement of subtrahend (-3)
                                   + 111111101
               Discard carry ------ 1 00000101
                                                   Difference (+5)
          (b) In this case, 12 - (-9) = 12 + 9 = 21.
                            00001100 Minuend (+12)
                                         2's complement of subtrahend (+9)
                         + 00001001
                            00010101
                                         Difference (+21)
          (c) In this case, -25 - (+19) = -25 + (-19) = -44.
                                      11100111
                                                   Minuend (-25)
                                                   2's complement of subtrahend (-19)
                                   + 11101101
               Difference (-44)
          (d) In this case, -120 - (-30) = -120 + 30 = -90.
                                         Minuend (-120)
                            10001000
                                         2's complement of subtrahend (+30)
                          + 00011110
                                         Difference (-90)
                             10100110
```

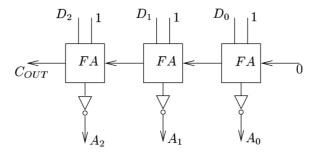

2. Design a combinational circuit that adds one to a 4-bit binary number. For example, if the input of the circuit is 1101, the output is 1110. (HINT! The circuit can be designed using four half-adders)

3. A combinational circuit produces the binary sum of two 2-bit numbers, x1x0 and y1y0. The outputs are C, S1, and S0. Provide a truth tableof the combinational circuit.

Х,	x _o	У1	y ₀	С	S ₁	S _o
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0 1 0	0	0 0 1	0
0	0	1	1	0000	1	1
	1 1 1	0	0		0	1
0	1	0	1	0	1	0
0	1	1	0 1 0	0 0 1	0 1 1 0	1
0	1	1	1		0	0
1	0	0	0	0 1 1	1	0
1	0	0	1	0	1	
1 1 1	0	0	0	1	1 0 0	0
1	0	1	1	1	0	1
1		0	0	0	1	1
1 1 1		0	0 1 0 1	0 1 1	1	0
1	1	0 1 1	0	1	0	1
1	1	1	1	1	1	0

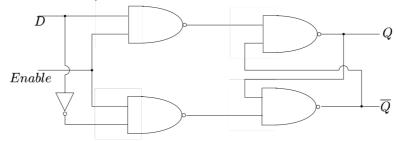

4. Design a circuit for the above problem using two full-adders.

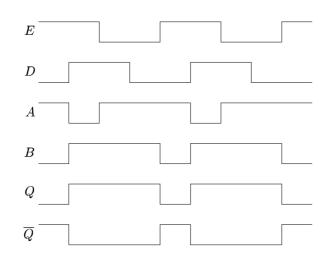
5. (VANSKELIG) Consider the 3-bit, 2-complement conversion below and implement it using full-adders


A_2	A_1	A_0	D_2	D_1	D_0
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

The 1-Complement is simply an inversion, while the addition of 1 can be done using full-adders, as seen in Figure 1.

6. Now implement the inverse operation, i.e. one that takes D2, D1, D0 and produces the output (A2,A1,A0). (HINT! Remember how to perform subtraction using 2-complements)


We note that the inverse operation is obtained by first subtracting 1, and then taking the 1-Complement. But, $(D_2, D_1, D_0) - (0, 0, 1)$ can be rewritten as $(D_2, D_1, D_0) + (1, 1, 1)$, since (1, 1, 1) is the 2-Complement of (0, 0, 1). The solution is shown in Figure 2.


7. Regn ut alle oppgavene i slutten av kapittel 4.

SE FASIT I SLUTTEN AV BOKA

- 8. (UTFORDRING) Consider the network in the figure below
 - a. Draw a timing-diagram that illustrates the behaviour of the network
 - b. Is the network a transparant latch?

(a)

(b) From the timing diagram we see that when E = 1, Q follows D faithfully, while when E = 0, Q does not change. The system is thus a transparant latch.