
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF2140 — Parallel Programming

Day of examination: 15. June 2012

Examination hours: 9.00 – 13.00

This problem set consists of 6 pages.

Appendices: None

Permitted aids: None, i.e., no special exam resources are allowed.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some general advises and remarks:

• This problem set consists of several independent parts. It is wise to make
good use of your time.

• You can score a total of 100 points on this exam. The number of points
stated on each part indicates the weight of that part.

• You can make your own clarifications if you find the examination text
ambiguous or imprecise. Such clarifications must be written clearly in the
delivered answer.

• Make short and clear explanations!

Good luck!

(Continued on page 2.)

Examination in INF2140, 15. June 2012 Page 2

Problem 1 Actions (weight 20)

1a Actions in FSP (weight 8)

Consider the following FSP processes:

A = (a -> b -> A | d -> A).

B = (b -> a -> B | d -> B).

C = (c -> C | d -> C).

||AB = (A || B).

||ABC = (A || B || C).

1. Draw the state machine defined by process A.

2. Explain the behavior of ||ABC.

3. Is there a possibility of deadlock for ||AB?

4. Are there any progress problems for ||AB for some of the actions? Explain
briefly.

5. Redefine A by hiding the action a. What is the resulting alphabet of A ? Is
there now a possibility of deadlock for ||AB? Are there now any progress
problems for ||AB with the redefined A?

6. Redefine C by extending the alphabet of C by {a, b}. Now consider
A || B || C. Are there any deadlock or progress violations.

1b Shared actions in Java (weight 7)

How would you implement the action d of the model ||ABC in a Java solution?

1c Buffers in FSP (weight 5)

Consider a system in FSP with connects a producer PROD to a consumer CONS

by means of a buffer.

PROD = (in[i:0..3]-> PROD).

CONS = (out[i:0..3] -> CONS).

1. Define a single-cell buffer BUF in FSP; i.e., the buffer can at most contain
one element and construct a system SYS which connects the buffer to the
producer and the consumer.

(Continued on page 3.)

Examination in INF2140, 15. June 2012 Page 3

2. Define a two-cell buffer BUF2 by composing two copies of BUF and
construct a system SYS2 which connects the buffer to the producer and
the consumer.

3. Define BUF3 by modifying BUF2 to allow two different producers and
construct a system SYS3 which connects the buffer to the producers and
the consumer.

Problem 2 Semaphores (weight 25)

2a Semaphores in FSP (weight 3)

Make an FSP process which models a semaphore.

2b Semaphores in Java (weight 3)

Semaphores can be implemented in Java as passive objects that react to up and
down actions. Define a class in Java which implements general semaphores.

2c Job processing using semaphores (weight 7)

Consider a Server object which processes jobs from Client objects. Jobs have
a given size. When a client wants to process a job, the client calls the method
request(size) on the server (the parameter size is needed for Problem 2d).
When this method returns, the client can process the job. When the jobs has
finished, the client calls release() on the Server to allow another job to be
processed. A Server class which processes jobs may be implemented as follows:

c l a s s Se r v e r {
p r i v a t e boo l f r e e ;

p u b l i c Se r v e r (){
f r e e = true ; }

p u b l i c void r e q u e s t (I n t s i z e){
f r e e = f a l s e ;
}

p u b l i c void r e l e a s e (){
f r e e = true ;

}
}

Modify the Server class to make sure that jobs are processed one at the time
and in the order of arrival. You should only use instances of the Semaphore class

(Continued on page 4.)

Examination in INF2140, 15. June 2012 Page 4

to synchronize the processes. In your solution, request and release should not
be synchronized methods.

2d Shortest job first using semaphores (weight 12)

Assume that jobs may have the sizes 1, 2, 3,. . . ,maxsize (where maxsize is a
parameter of Server). Modify your server such that jobs are scheduled using a
shortest job first strategy; i.e., if there are waiting jobs of different sizes, a job
with a smaller size should be selected before a job with a larger size.

Problem 3 A Shared Shower Room (weight 55)

Imagine that there is one shower room to be used by both girls and boys, but
not at the same time. Thus at any time, there can either be boys or girls in the
shower, but not both. The shower room has a limited capacity of M , thus the
number of persons in the shower room at a given time should be at most M .

Each boy or girl is supposed to repeat the following cycle of actions:

enter, shower, and leave.

(possibly labeled or indexed). No other actions should be needed in the first
subproblem below.

3a Process Modeling (weight 15)

Program the shower system in FSP by means of a monitor SHOWER and with
a number N of BOY processes and a number N of GIRL processes (N > M).
Define first processes BOY, GIRL, SHOWER, and afterwards the whole shower
system SYS.

3b Deadlock (weight 2)

Explain briefly if there is any deadlock in the system SYS or not.

3c Safety (weight 8)

1. Define a safety property SAFE in FSP ensuring that a boy and a girl will
never be in the shower at the same time.

2. Show how this can be checked in FSP for the shower system SYS.

(Continued on page 5.)

Examination in INF2140, 15. June 2012 Page 5

3. Will the safety property be satisfied for SYS?

4. Will the safety property be satisfied for the monitor process SHOWER
alone?

Explain briefly.

3d Progress (weight 3)

Define a progress property in FSP expressing that some girl will eventually be
able to enter the shower.

3e Adverse conditions (weight 3)

It is desired that a girl wishing to shower eventually will be able to do so even in a
worst case scenario where boys continuously enter and use the shower whenever
possible.

1. Use priorities to be able to check this fairness problem in FSP by redefining
SYS.

2. Then define the desired progress property in FSP and discuss whether it is
satisfied.

3f Fair System (weight 8)

1. Improve the shower system such that it is fair with respect to both girls
and boys wishing to enter the shower. You may introduce new actions.

2. How can you show with FSP that the revised system is fair?

3g Java implementation (weight 10)

Make a Java implementation of the first version of the (unfair) monitor
SHOWER. You do not need to consider fairness to boys and girls.

3h Java implementation: Notification (weight 3)

Explain whether you should use notify or notifyAll in your Java solution.

(Continued on page 6.)

Examination in INF2140, 15. June 2012 Page 6

3i Java implementation: Synchronization (weight 3)

Explain if all methods in the Java implementation need to by synchronized.

