Summary

INF2140 Parallel Programming

May 9, 2012

INF2140 Parallel Programming

Plan for today

Looking ahead
e Two guest lecturers with short presentations

Final exam

e format
e examples
e discussion

o Overview
e main issues in the course

Questionnaire
o we would like some feedback on the course from you

INF2140 Parallel Programming

Guest presentations

Peter Olveczky
@ Advanced modeling of concurrent and distributed systems

@ INF3230 - Formal modeling and analysis of communicating
systems

Volker Stolz
@ Analysis which applies directly to concurrent Java programs

@ Demo of the Java Pathfinder tool

INF2140 Parallel Programming

Final Exam

Practical information
June 15, 09:00, 4 hours

What kinds of questions can we expect?
@ Theory (Understanding of main concepts)
@ Modelling
@ Programming

@ Applications

Approximate distribution of work load:
@ Theory/Modelling/Programming: 50%?7?
o Applications: 50%7

INF2140 Parallel Programming

Example 1: Theory (deadlock and safety)

@ What are the four conditions for deadlock?

@ Give a simple example of a deadlock!

INF2140 Parallel Programming

Example 2: FSP (alphabets)

@ What is the alphabet of a process?
@ When do you need to hide actions?
@ When do you need to extend an alphabet?

@ When do you need to rename actions?

INF2140 Parallel Programming

Example 3: FSP (properties)

How do you include safety checks in FSP?
What is required from a safety property in FSP?

What is fairness, and how is this treated in FSP?

°
°
@ How do you specify liveness properties in FSP?
°
@ When should you use action priority in FSP?

INF2140 Parallel Programming

Example 4. Modelling in FSP

Explain the difference between

a->(C(b->P
| ¢ -> P)

and

(a->b->P
| a -=> ¢c -> P)

INF2140 Parallel Programming

Example 5: Programming in Java

@ How do you define a monitor in Java?
@ How do you test a condition in Java?

@ When should you use notify and
when should you use notifyAl1l?

e Can you ensure that all threads waiting on a condition variable
in a monitor will eventually get to execute?

INF2140 Parallel Programming

Example 6: Application

Format: You get an informal description of a system.

For example:
a railroad crossing

You could be asked to
e model the system (or a part of it) in FSP
o formulate some safety and liveness properties
o discuss/analyze

@ implement the system (or a part of it) in Java

@ A “mini-assignment” in the exam

INF2140 Parallel Programming

Overview of the course

@ We look at the main topics covered in the lectures

INF2140 Parallel Programming

Chapter 1: Motivation

Why is concurrency difficult to understand and analyse?

@ For n processes with m atomic statements each, the formula
for the number of possibly different executions is

(nx m)!

min

@ For 3 processes, each with given number of atomic operations:

process 1 | process 2 ‘ process 3 ‘ number of executions

2 2 2 90
3 3 3 1680
4 4 4 34 650
5 5 5 756 756

INF2140 Parallel Programming

Chapter 2: Processes and Threads

@ FSP: Finite state processes to model processes
as sequences of actions

Basic FSP: choice, recursion, guards, indexing, alphabet

Labelled transition systems (state machines) and LTSA

Java implementation: program (sequential) processes as
threads

INF2140 Parallel Programming

Chapter 3: Concurrency

@ Parallel composition of processes in FSP
@ Interleaving:
e n state machine || m state machine = n*m state machine
@ Synchronization: shared actions in FSP
@ Prefixing and renaming of actions in FSP
@ Silent actions
@ Structure diagrams

INF2140 Parallel Programming

Chapter 4: Shared Objects & Mutual Exclusion

How do threads interact in Java?
Interference and mutual exclusion

Java synchronized objects and statements

Test processes and exhaustive search in LTSA

INF2140 Parallel Programming

Chapter 5: Monitors & Condition Synchronization

Guarded actions in FSP
Condition synchronization in Java
Java: notify () vs notifyAll()
Semaphores in FSP and Java
Binary semaphores

Monitor invariants

Bounded buffer

“Nested monitor”" problem, deadlock

INF2140 Parallel Programming

Chapter 6: Deadlock

4 general conditions for deadlock

o Serially reusable resources, incremental acquisition,
no pre-emption, wait-for cycle

Deadlock in FSP: no eligible action
Deadlock in Java: blocked threads
Dining philosophers

e “wait-for cycle”

e Breaking the cycle: even numbered philosophers get their left
forks first, and odd their right first.

Deadlock avoidance: to design systems in which deadlock
cannot occur

INF2140 Parallel Programming

Chapter 7: Safety & Liveness Properties

Property: true for every possible execution

Model safety: no reachable ERROR/STOP state

Model progress: an action is eventually executed

Fairness in FSP and in Java

Terminal set of states

Imitation of worst case scenario/high load by action priority

Examples: Single Lane Bridge, Readers/Writers

Safety properties

INF2140 Parallel Programming

Chapter 8: Model-Based Design

o Start from

User requirements, goals scenarios, (external) properties
Structure diagrams,

Processes and their alphabet

(Internal) properties

Implementation from the verified model

@ Cruise Control System

INF2140 Parallel Programming

Chapter 9: Dynamic systems

Arbitrary number of threads in Java

Finite number of recursive processes in FSP

Starvation, overtaking

e Golf example

o Liveness violation: some players may wait forever
e Solution: Bounded overtaking using tickets

Java: slave thread

Java’s join method

INF2140 Parallel Programming

Chapter 10: Message Passing

@ Synchronous message passing - channel
Selective receive in FSP and Java

Asynchronous message passing - port

°
°

@ Rendezvous
@ Java Implementation: Entry
°

Rendezvous vs Monitor Method Invocations

INF2140 Parallel Programming

Chapter 11: Concurrent Software Architectures

Examples:
o Filter pipelines
@ Supervisor and workers
e Linda tuple space

@ Announcer/listener model
Goal:
@ General designs and general properties

o Abstraction

INF2140 Parallel Programming

Chapter 12: Timed Systems

Discrete time

Ticks, Global clock

Time consistency, “time-stop”

Maximal progress in FSP, two-phase model in Java
Output intervals, jitter, timeout in FSP

Thread-based vs event-based in Java

sleep(ms), wait (ms), timeout in Java

INF2140 Parallel Programming

Next lecture: May 23

Plan for next lecture: Repetition of selected topics

@ Which topics would you like to discuss in more detail?
@ You may send us questions by email!

@ Deadline for questions: May 16

INF2140 Parallel Programming

