
Summary

INF2140 Parallel Programming

May 9, 2012

INF2140 Parallel Programming

Summary

Plan for today

Looking ahead
Two guest lecturers with short presentations

Final exam
format
examples
discussion

Overview
main issues in the course

Questionnaire
we would like some feedback on the course from you

INF2140 Parallel Programming

Summary

Guest presentations

Peter Ölveczky
Advanced modeling of concurrent and distributed systems
INF3230 - Formal modeling and analysis of communicating
systems

Volker Stolz
Analysis which applies directly to concurrent Java programs
Demo of the Java Pathfinder tool

INF2140 Parallel Programming

Summary

Final Exam

Practical information
June 15, 09:00, 4 hours

What kinds of questions can we expect?
Theory (Understanding of main concepts)
Modelling
Programming
Applications

Approximate distribution of work load:
Theory/Modelling/Programming: 50%?
Applications: 50%?

INF2140 Parallel Programming

Summary

Example 1: Theory (deadlock and safety)

What are the four conditions for deadlock?
Give a simple example of a deadlock!

INF2140 Parallel Programming

Summary

Example 2: FSP (alphabets)

What is the alphabet of a process?
When do you need to hide actions?
When do you need to extend an alphabet?
When do you need to rename actions?

INF2140 Parallel Programming

Summary

Example 3: FSP (properties)

How do you include safety checks in FSP?
What is required from a safety property in FSP?
How do you specify liveness properties in FSP?
What is fairness, and how is this treated in FSP?
When should you use action priority in FSP?

INF2140 Parallel Programming

Summary

Example 4: Modelling in FSP

Explain the difference between

a -> (b -> P
| c -> P)

and

(a -> b -> P
| a -> c -> P)

INF2140 Parallel Programming

Summary

Example 5: Programming in Java

How do you define a monitor in Java?
How do you test a condition in Java?
When should you use notify and
when should you use notifyAll?
Can you ensure that all threads waiting on a condition variable
in a monitor will eventually get to execute?

INF2140 Parallel Programming

Summary

Example 6: Application

Format: You get an informal description of a system.

For example:

a railroad crossing

You could be asked to
model the system (or a part of it) in FSP
formulate some safety and liveness properties
discuss/analyze
implement the system (or a part of it) in Java

A “mini-assignment” in the exam

INF2140 Parallel Programming

Summary

Overview of the course

We look at the main topics covered in the lectures

INF2140 Parallel Programming

Summary

Chapter 1: Motivation

Why is concurrency difficult to understand and analyse?

For n processes with m atomic statements each, the formula
for the number of possibly different executions is

(n ∗ m)!

m!n

For 3 processes, each with given number of atomic operations:

process 1 process 2 process 3 number of executions
2 2 2 90
3 3 3 1680
4 4 4 34 650
5 5 5 756 756

INF2140 Parallel Programming

Summary

Chapter 2: Processes and Threads

FSP: Finite state processes to model processes
as sequences of actions
Basic FSP: choice, recursion, guards, indexing, alphabet
Labelled transition systems (state machines) and LTSA
Java implementation: program (sequential) processes as
threads

INF2140 Parallel Programming

Summary

Chapter 3: Concurrency

Parallel composition of processes in FSP
Interleaving:

n state machine || m state machine = n*m state machine

Synchronization: shared actions in FSP
Prefixing and renaming of actions in FSP
Silent actions
Structure diagrams

INF2140 Parallel Programming

Summary

Chapter 4: Shared Objects & Mutual Exclusion

How do threads interact in Java?
Interference and mutual exclusion
Java synchronized objects and statements
Test processes and exhaustive search in LTSA

INF2140 Parallel Programming

Summary

Chapter 5: Monitors & Condition Synchronization

Guarded actions in FSP
Condition synchronization in Java
Java: notify() vs notifyAll()
Semaphores in FSP and Java
Binary semaphores
Monitor invariants
Bounded buffer
“Nested monitor” problem, deadlock

INF2140 Parallel Programming

Summary

Chapter 6: Deadlock

4 general conditions for deadlock
Serially reusable resources, incremental acquisition,
no pre-emption, wait-for cycle

Deadlock in FSP: no eligible action
Deadlock in Java: blocked threads
Dining philosophers

“wait-for cycle”
Breaking the cycle: even numbered philosophers get their left
forks first, and odd their right first.

Deadlock avoidance: to design systems in which deadlock
cannot occur

INF2140 Parallel Programming

Summary

Chapter 7: Safety & Liveness Properties

Property: true for every possible execution
Model safety: no reachable ERROR/STOP state
Model progress: an action is eventually executed
Fairness in FSP and in Java
Terminal set of states
Imitation of worst case scenario/high load by action priority
Examples: Single Lane Bridge, Readers/Writers
Safety properties

INF2140 Parallel Programming

Summary

Chapter 8: Model-Based Design

Start from
User requirements, goals scenarios, (external) properties
Structure diagrams,
Processes and their alphabet
(Internal) properties
Implementation from the verified model

Cruise Control System

INF2140 Parallel Programming

Summary

Chapter 9: Dynamic systems

Arbitrary number of threads in Java
Finite number of recursive processes in FSP

Starvation, overtaking

Golf example
Liveness violation: some players may wait forever
Solution: Bounded overtaking using tickets

Java: slave thread
Java’s join method

INF2140 Parallel Programming

Summary

Chapter 10: Message Passing

Synchronous message passing - channel
Selective receive in FSP and Java
Asynchronous message passing - port
Rendezvous
Java Implementation: Entry
Rendezvous vs Monitor Method Invocations

INF2140 Parallel Programming

Summary

Chapter 11: Concurrent Software Architectures

Examples:
Filter pipelines
Supervisor and workers

Linda tuple space

Announcer/listener model
Goal:

General designs and general properties
Abstraction

INF2140 Parallel Programming

Summary

Chapter 12: Timed Systems

Discrete time
Ticks, Global clock
Time consistency, “time-stop”
Maximal progress in FSP, two-phase model in Java
Output intervals, jitter, timeout in FSP
Thread-based vs event-based in Java
sleep(ms), wait(ms), timeout in Java

INF2140 Parallel Programming

Summary

Next lecture: May 23

Plan for next lecture: Repetition of selected topics

Which topics would you like to discuss in more detail?
You may send us questions by email!
Deadline for questions: May 16

INF2140 Parallel Programming

Summary

