
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF2140 — Parallel Programming

Day of examination: 15. June 2012

Examination hours: 9.00 – 13.00

This problem set consists of 11 pages.

Appendices: None

Permitted aids: None, i.e., no special exam resources are allowed.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Some general advises and remarks:

• This problem set consists of several independent parts. It is wise to make
good use of your time.

• You can score a total of 100 points on this exam. The number of points
stated on each part indicates the weight of that part.

• You can make your own clarifications if you find the examination text
ambiguous or imprecise. Such clarifications must be written clearly in the
delivered answer.

• Make short and clear explanations!

Good luck!

(Continued on page 2.)

Examination in INF2140, 15. June 2012 Page 2

Problem 1 Actions (weight 20)

1a Actions in FSP (weight 8)

Consider the following FSP processes:

A = (a -> b -> A | d -> A).

B = (b -> a -> B | d -> B).

C = (c -> C | d -> C).

||AB = (A || B).

||ABC = (A || B || C).

1. Draw the state machine defined by process A.

2. Explain the behavior of ||ABC.

3. Is there a possibility of deadlock for ||AB? Solution: No deadlock.

4. Are there any progress problems for ||AB for some of the actions?
Explain briefly. Solution: progress violation for a and b

5. Redefine A by hiding the action a. What is the resulting alphabet of A ? Is
there now a possibility of deadlock for ||AB? Are there now any progress
problems for ||AB with the redefined A?

Solution: no deadlock, no longer progress violation for a and b

6. Redefine C by extending the alphabet of C by {a, b}. Now consider
A || B || C. Are there any deadlock or progress violations?

Solution: no deadlock, progress violation for a and b

1b Shared actions in Java (weight 7)

How would you implement the action d of the model ||ABC in a Java solution?
Solution:

class Monitor(){
int i;

publ sync void d(){
i=1+1; if(i=3) {notifyAll(); i=0 } else wait; }
}

(Continued on page 3.)

Examination in INF2140, 15. June 2012 Page 3

1c Buffers in FSP (weight 5)

Consider a system in FSP with connects a producer PROD to a consumer CONS

by means of a buffer.

PROD = (in[i:0..3]-> PROD).

CONS = (out[i:0..3] -> CONS).

1. Define a single-cell buffer BUF in FSP; i.e., the buffer can at most contain
one element and construct a system SYS which connects the buffer to the
producer and the consumer.

Solution:

BUF = (in[i:0..3] -> out[i] -> BUF).

|| SYS = (PROD || BUF || CONS) .

2. Define a two-cell buffer BUF2 by composing two copies of BUF and
construct a system SYS2 which connects the buffer to the producer and
the consumer.

Solution:

|| BUF2 = (BUF/{mid/out} || BUF/{mid/in})\{mid} .

|| SYS2 = (PROD || BUF2 || CONS) .

3. Define BUF3 by modifying BUF2 to allow two different producers and
construct a system SYS3 which connects the buffer to the producers and
the consumer.

Solution:

|| BUF3 = BUF2/{ {a.in,b.in}/in } .

|| SYS3 = ({a,b}:PROD || BUF3 || CONS) .

Problem 2 Semaphores (weight 25)

2a Semaphores in FSP (weight 3)

Make an FSP process which models a semaphore.

Solution:

const Max = 3
range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up -> SEMA[v+1]

| when (v>0) down -> SEMA[v-1]
),

SEMA[Max+1] = ERROR.

(Continued on page 4.)

Examination in INF2140, 15. June 2012 Page 4

2b Semaphores in Java (weight 3)

Semaphores can be implemented in Java as passive objects that react to up
and down actions. Define a class Semaphore in Java which implements general
semaphores.

Solution:

c l a s s Semaphore {
p r i v a t e i n t v a l u e ;

p u b l i c Semaphore (i n t i n i t i a l){
v a l u e = i n i t i a l ; }

synchronized p u b l i c void up (){
v a l u e++;
n o t i f y () ;

}

synchronized p u b l i c void down ()
throws I n t e r r u p t e dE x c e p t i o n {

whi le (v a l u e == 0) wa i t () ;
va lue −−;

}
}

2c Job processing using semaphores (weight 7)

Consider a Server object which processes jobs from Client objects. Jobs have
a given size. When a client wants to process a job, the client calls the method
request(size) on the server (the parameter size is needed for Problem 2d).
When this method returns, the client can process the job. When the jobs has
finished, the client calls release() on the Server to allow another job to be
processed. A Server class which processes jobs may be implemented as follows:

c l a s s Se r v e r {
p r i v a t e boo l f r e e ;

p u b l i c Se r v e r (){
f r e e = true ; }

p u b l i c void r e q u e s t (I n t s i z e){
f r e e = f a l s e ;
}

p u b l i c void r e l e a s e (){
f r e e = true ;

}
}

Modify the Server class to make sure that jobs are processed one at the time
and in the order of arrival. You should only use instances of the Semaphore class

(Continued on page 5.)

Examination in INF2140, 15. June 2012 Page 5

to synchronize the processes. In your solution, request and release should not
be synchronized methods.

Solution: Although many implementations of semaphores use a FIFO queue, one
cannot in general rely on FIFO queing (book, p. 87). Therefore, we implement
a ticket system. We use the baton style of signalling; i.e., we do not leave CR if
there are other waiting processes, but pass on CR to the next waiting process.

p u b l i c c l a s s Se r v e r {
p r i v a t e boolean f r e e ;
i n t wp ; // wa i t i n g p r o c e s s e s
i n t np ; // nex t p r o c e s s
p r i v a t e Semaphore mutex = new Semaphore (1) ;
p r i v a t e Semaphore queue = new Semaphore (0) ;

p u b l i c Se r v e r (){
f r e e=true ; wp=0; np=0;

}

p u b l i c void r e q u e s t (i n t s i z e) throws I n t e r r u p t e dE x c e p t i o n {
mutex . down () ; // e n t e r CR
i f (! f r e e){ // s e r v e r i s i n use

i n t myt i ck e t = wp ; // take a t i c k e t
wp++; // i n c r e a s e coun t e r
whi le (np!= myt i c k e t){ // not my tu rn

queue . up () ; // s i g n a l ano the r p r o c e s s
queue . down () ; // wa i t

}
}
f r e e = f a l s e ; // s e r v e r i s i n use
mutex . up () ; // l e a v e CR

}

p u b l i c void r e l e a s e () throws I n t e r r u p t e dE x c e p t i o n {
mutex . down () ;
i f (wp>np) { // wa i t i n g p r o c e s s e s

queue . up () ; // s i g n a l p r o c e s s
} e l s e { // no wa i t i n g p r o c e s s

f r e e = true ; // s e r v e r i s f r e e
mutex . up () ; // l e a v e CR

}
}

}

2d Shortest job first using semaphores (weight 12)

Assume that jobs may have the sizes 1, 2, 3,. . . ,maxsize (where maxsize is a
parameter of Server). Modify the server such that jobs are scheduled using a
shortest job first strategy; i.e., if there are waiting jobs of different sizes, a job
with a smaller size should be selected before a job with a larger size.

Solution: We use one semaphore for each job size i, and use the counters wp[i]
to keep track of the number of waiting processes of each size.

(Continued on page 6.)

Examination in INF2140, 15. June 2012 Page 6

p u b l i c c l a s s Se r v e r {
p r i v a t e boolean f r e e ;
p r i v a t e i n t wp [] ;
p r i v a t e Semaphore mutex ;
p r i v a t e Semaphore queue [] ;

p u b l i c Se r v e r (i n t maxs i ze){
f r e e = true ;
mutex = new Semaphore (1) ;
i n t i =1;
whi le (i<= maxs i ze){

wp [i]=0;
queue [i]= new Semaphore (0) ;
}

}

p u b l i c void r e q u e s t (i n t s i z e) throws I n t e r r u p t e dE x c e p t i o n {
mutex . down () ; // e n t e r CR
i f (! f r e e){ // s e r v e r i s i n use

wp [s i z e]++; // i n c r e a s e coun t e r f o r my queue
mutex . up () ; // l e a v e CR
queue [s i z e] . down () ; // wa i t i n my queue
wp [s i z e]−−; // d e c r e a s e coun t e r f o r my queue

}
f r e e = f a l s e ; // s e r v e r i s i n use
mutex . up () ; // l e a v e CR

}

p u b l i c void r e l e a s e () throws I n t e r r u p t e dE x c e p t i o n {
mutex . down () ; // e n t e r CR
i n t i = 1 ;
boolean f l a g = true ;
whi le (i<= maxs i ze && f l a g){ // check queues

i f (wp [i]>0) { // wa i t i n g p r o c e s s e s o f s i z e i
queue [i] . up () ; // s i g n a l p r o c e s s o f s i z e i
f l a g=f a l s e ; // s top check i ng

}
i ++;

}
i f (f l a g){ // no wa i t i n g p r o c e s s e s

f r e e = true ;
mutex . up () ;

}
}

}

Problem 3 A Shared Shower Room (weight 55)

Imagine that there is one shower room to be used by both girls and boys, but
not at the same time. Thus at any time, there can either be boys or girls in the
shower, but not both. The shower room has a limited capacity of M , thus the

(Continued on page 7.)

Examination in INF2140, 15. June 2012 Page 7

number of persons in the shower room at a given time should be at most M .

Each boy or girl is supposed to repeat the following cycle of actions:

enter, shower, and leave

(the actions may possibly be labeled or indexed). No other actions should be
needed in the first subproblem below.

3a Process Modeling (weight 15)

Program the shower system in FSP by means of a monitor SHOWER and with
a number N of BOY processes and a number N of GIRL processes (N > M).
First define processes BOY, GIRL, SHOWER, and afterwards the whole shower
system SYS.

Solution:

const M = 3 -- places in the shower

const N = 4 -- number of boys and of girls

PERSON = (enter -> shower -> leave -> PERSON).

||GIRL = girl:PERSON.

||BOY = boy:PERSON.

SHOWER = SH[0][0],

SH[girls:0..M][boys:0..M] =

(when (boys==0 && girls < M) girl.enter -> SH[girls+1][boys]

| girl.leave -> SH[girls-1][boys]

| when (girls==0 && boys < M) boy.enter -> SH[girls][boys+1]

| boy.leave -> SH[girls][boys-1]

| when (girls > 0) girl.shower -> SH[girls][boys] -- redundant

| when (boys > 0) boy.shower -> SH[girls][boys] -- redundant

).

||SYS = ([1..N]:GIRL || [1..N]:BOY || [1..N]::SHOWER) .

3b Deadlock (weight 2)

Explain briefly if there is any deadlock in the system SYS or not.

Solution: No deadlock since there is only one shared resource and at least one
girl or boy may progress.

(Continued on page 8.)

Examination in INF2140, 15. June 2012 Page 8

3c Safety (weight 8)

1. Define a safety property SAFE in FSP ensuring that a boy and a girl will
never be in the shower at the same time.

2. Show how this can be checked in FSP for the shower system SYS.

3. Will the safety property be satisfied for SYS?

4. Will the safety property be satisfied for the monitor process SHOWER
alone?

Explain briefly.

Solution 1:

property SAFE = SA[0][0],

SA[girls:0..M][boys:0..M] =

(girl.enter -> SA[girls+1][boys]

| girl.leave -> SA[girls-1][boys]

| boy.enter -> SA[girls][boys+1]

| boy.leave -> SA[girls][boys-1]

| when (girls > 0 && boys == 0) girl.shower -> SA[girls][boys]

| when (boys > 0 && girls== 0) boy.shower -> SA[girls][boys]

).

||SAFESYS = (SAFE || SYS). -- the property holds here

||SAFESHOWER = (SAFE || SHOWER). -- the pretty does NOT hold here,

This property holds for SYS, but not for SHOWER (i.e. if boys and girls processes
are omitted).

Solution 2: may have more redundancy (or use if-then-else), like

property SAFE = SA[0][0],

SA[girls:0..N][boys:0..N] =

(when (boys == 0 && girls < M) girl.enter -> SA[girls+1][boys]

| when (girls > 0 && boys == 0) girl.leave -> SA[girls-1][boys]

| when (girls ==0 && boys < M) boy.enter -> SA[girls][boys+1]

| when (boys > 0 && girls== 0) boy.leave -> SA[girls][boys-1]

| when (girls > 0 && boys == 0) girl.shower -> SA[girls][boys]

| when (boys > 0 && girls== 0) boy.shower -> SA[girls][boys]

).

||SAFESYS = (SAFE || SYS). -- the property does hold here

(Continued on page 9.)

Examination in INF2140, 15. June 2012 Page 9

||SAFESHOWER = (SAFE || SHOWER). -- the property does NOT hold here,

3d Progress (weight 3)

Define a progress property in FSP expressing that some girl will eventually be
able to enter the shower.

Solution: Progress P = { {1..N}.girl.enter}

3e Adverse Conditions (weight 3)

Solution: use priorites to give girl enter less priority and then reuse the progress
property from above

3f Fair System (weight 8)

1. Improve the shower system such that it is fair with respect to both girls
and boys wishing to enter the shower. You may introduce new actions.

2. How can you show with FSP that the revised system is fair?

Solution:

SHOWER = SH[0][0][False],

SH[girls:0..M][boys:0..M][q:0..1] =

(when (boys==0 && girls==0) boy.wait->boy.enter ->SH[girls][boys+1][q]

| when (boys==0 && girls==0)girl.wait->girl.enter->SH[girls+1][boys][q]

| when (boys==0 && girls<M && q==0) girl.enter ->SH[girls+1][boys][q]

| when (girls > 1) girl.leave ->SH[girls-1][boys][q]

| when (girls ==1&&q) girl.leave-> boy.enter ->SH[girls-1][boys+1][False]

| when (girls > 0 && q==0) girl.wait ->SH[girls][boys][False]

| when (girls > 0) boy.wait ->SH[girls][boys][True]

| when (girls==0 && boys<M && q==0) boy.enter ->SH[girls][boys+1][q]

| when (boys > 1) boy.leave ->SH[girls][boys-1][q]

| when (boys==1 && q) boy.leave -> girl.enter ->SH[girls+1][boys-1][False]

| when (boys > 0 && q==0) boy.wait ->SH[girls][boys][False]

| when (boys > 0) girl.wait ->SH[girls][boys][True]

| when (girls > 0) girl.shower ->SH[girls][boys][q]

| when (boys > 0) boy.shower ->SH[girls][boys][q]

| when (boys==0 && girls==0) boy.wait->boy.enter ->SH[girls][boys+1][q]

(Continued on page 10.)

Examination in INF2140, 15. June 2012 Page 10

| when (boys==0 && girls==0)girl.wait->girl.enter->SH[girls+1][boys][q]

).

||SYST = ([1..N]:GIRL|| [1..N]:BOY || [1..N]::SHOWER)

>> [1..N].girl.enter, [1..N].boy.enter.

progress GIRLprogress = [1..N].girl.enter

progress BOYprogress = [1..N].boy.enter

LTSA: No deadlocks/errors. No progress violations detected.

3g Java implementation (weight 10)

Make a Java implementation of the first version of the (unfair) monitor
SHOWER. You do not need to consider fairness to boys and girls.

Solution:

c l a s s SHOWER {
p r i v a t e i n t g i r l s =0;
p r i v a t e i n t boys =0;

p u b l i c synchronized void g i r l E n t e r ()
throws I n t e r r u p t e dE x c e p t i o n {

whi le (boys>0 | | g i r l s==M) wa i t () ;
++g i r l s ; }

p u b l i c synchronized void g i r l L e a v e () {
−−g i r l s ; n o t i f y A l l () ; }

p u b l i c void shower () { // f o r boy or g i r l , not s y n ch r on i z e d !
. . . t ake shower . . . }

p u b l i c synchronized void boyEnte r ()
throws I n t e r r u p t e dE x c e p t i o n {

whi le (g i r l s >0 | | boys==M) wa i t () ;
++boys ; }

synchronized p u b l i c void boyLeave () {
−−boys ; n o t i f y A l l () ; }

}

3h Java implementation: Notification (weight 3)

Explain whether you should use notify or notifyAll in your Java solution.

Solution: there are several waiting conditions therefore a simple notify is not
sufficient.

3i Java implementation: Synchronization (weight 3)

Explain if all methods in the Java implementation need to by synchronized.

(Continued on page 11.)

Examination in INF2140, 15. June 2012 Page 11

Solution: Showering is supposed to be done in parallel, so method shower need not
be synchronized. Shower variables for the showering (when added) are supposed
to be disjoint. There is nothing (so far) that makes it necessary to make shower
synchronized.

