Formal Methods
for Software Engineers

Professor Ray Welland
Department of Computing Science
University of Glasgow
ray@dcs.gla.ac.uk

© Institutt for informatikk - R. Welland 2004 INF3120-FM 1 —

Overview

* Motivation
— Why have formal specifications?
— Where is their use appropriate?
— What are the problems with using formal methods?
+ Aims
— Provide the background to formal methods (the ‘big picture’)
— Cover examples of the use of one formal specification technique

+ Contents

— General introduction to formal specification (see Sommerville
chapter 10)

— Introduction to OCL (Object Constraint Language) associated with
UML

© Institutt for informatikk - R. Welland 2004 INF3120-FM 2 —

Motivation - Certifiable Correctness

» Consider safety-critical systems
— patient monitoring in hospitals
— air-traffic control
— railway signalling
— process control of industrial/nuclear plants
— on-board systems in a car
+ Testing does not give us enough confidence
— we need a formal proof that software is correct

* Proving an existing programs correct too difficult

» Instead, construct correct program by a series of
steps known to be safe

© Institutt for informatikk - R. Welland 2004

INF3120-FM3 —

Constructing a correct program

ReqU|rements mapping to initial
‘ formal specification
R1 -
‘ — R1, R2, ... Rn are formally specified
\ -
correctness- representations
R2 preserving » each step (after the first) is small enough to be
‘ +~~ transformations automated or carried out simply
— We still need verification...
R3 » proving that R2 is a correct transformation of R1

» should be trivial if transformations preserve

correctness
— ... and validation

» convince the user that the right system is being built
Accurate requirements are essential!
Concentrate on R1 - the initial specification

© Institutt for informatikk - R. Welland 2004

INF3120-FM 4 —

How to write a formal specification....?

Not in natural language!
— impossible to supply sufficient precision
— although there have been attempts at "structured English", but....

Diagrams tricky...

— cannot formally manipulate them easily

— but they might be used as an adjunct to formal specification -
animation

Must use a notation that is mathematically based
— formal semantics
— Can be manipulated, in a mathematical sense

© Institutt for informatikk - R. Welland 2004 INF3120-FM 5 —

Why not use Formal Specs for all
program development?

The effort involved (mostly by hand) and skills required
Lack of tool support, although some are becoming
available

Lack of necessary background and poor training of
existing staff, together with the use of unfamiliar notations
Lack of knowledge among project managers

Validation problems
— hard to communicate ideas to users - might build perfect, but invalid, system
— again, tools required - animation, alternative representations

Problems of scale

— formal specification techniques not suited for very large projects - lack of
modularity, information hiding in some traditional f.s. techniques

© Institutt for informatikk - R. Welland 2004 INF3120-FM 6 —

Background Reading

* The Mystery of Formal Methods Disuse (A story of zealotry and
chicanery) — Robert Glass (Practical Programmer column) —
Comm. ACM 47(8), August 2004, p15-17

— atypical Robert Glass column taking a sceptical view of formal methods!
— refers to the paper below

* Getting the best from formal methods, John B Wordsworth —
Information and Software Technology, 41 (1999), 1027-1032
— reviews progress made in the use of formal methods in the last 15 years
— suggests reasons for lack of widespread use of formal methods
— proposes ways to ‘infiltrate’ formal methods into software development

© Institutt for informatikk - R. Welland 2004 INF3120-FM7 =

Background Reading (2)

Two older references but both very readable and still relevant:

* An Invitation to Formal Methods - IEEE Computer, April 1996)

— consists of a collection of short papers giving widely differing views about
formal methods, ranging from formal methods enthusiasts to sceptical
practitioners;

— good overview of the ‘state of the art’ and easy to read.

+ Seven More Myths of Formal Methods, J Bowen & M Hinchey -
IEEE Software, July 1995

— this article is written by two formal methods enthusiasts and strongly
advocates the use of formal methods;

— very biased but again easy to read.

© Institutt for informatikk - R. Welland 2004 INF3120-FM8 —

Formal Specification of Large Systems

» Algebraic specification
— system described using interfaces between sub-systems
+ operations of an interface and the relationships between them
— entities and operations defined along with axioms defining the semantics of
the operations - hence the behaviour of the entity
+ ‘formality’ is in the axioms

— More in Sommerville, 10.2

* Model-based specification

— model constructed using well-understood mathematical entities - sets,
sequences
— specification is expressed as a system state model over these entities
— Two major model-based approaches
+ VDM (Vienna Development Method), IBM Vienna Research Labs
» Z, Programming Research Group, Oxford
— More in Sommerville, 10.3

© Institutt for informatikk - R. Welland 2004 INF3120-FM9 —

Specifying Constraints

* A less comprehensive approach to formal
specification is to combine formal notations with
existing diagrammatic notations to improve precision

+ Constraints allow us to define parts of our system
model more precisely than using only diagrams
— define the basic model using diagrams (e.g. class diagram)
— add detail using constraints attached to the diagram elements
— ensure that all requirements are captured and can be traced

— there are trade-offs between adding detail to diagrams and using
constraints - when does a diagram become too complex to be
useful?

© Institutt for informatikk - R. Welland 2004 INF3120-FM 10 —

OCL - Object Constraint Language

Note — OCL 2.0 (with UML 2.0)

A constraint is a restriction on one or more values
of (part of) an object-oriented model or system

Constraints may be visually represented (restriction
constraints) or expressed textually

OCL provides a well defined language for expressing
constraints textually

UML diagrams provide the visual representation of the
object model, restriction constraints and the context
for OCL constraints

© Institutt for informatikk - R. Welland 2004 INF3120-FM 11—

A Simple UML Example

Member Video Date

name: String 0.1 0.20 shortTitle: String .

memberNo: Integer - - videold: Integer isToday(): Boolean

dateOfBirth: Date borrower loan | loanDate: Date isAfter (t: Date) :
returnDate: Date Boolean
memberNo: Integer diffDays (t: Date):
onlLoan: Boolean Integer

age(): Integer makelLoan (toMember)

© Institutt for informatikk - R. Welland 2004 INF3120-FM 12 —

Why use textual constraints?

+ Better documentation
— additional information is linked to system model(s)
— can be versioned together with model(s)
* Reduce diagram complexity
* Improve precision
— mathematical theory underpinning the language
— textual constraints can be parsed and checked
+ Communication
— an agreed common language for expressing requirements
— analyst to designer; designer to developer
* Link to detailed requirements capture
— tracing requirements through development

© Institutt for informatikk - R. Welland 2004 INF3120-FM 13—

OCL - Requirements

* Precise and unambiguous language, easily read and
written by practitioners
— based on sound mathematical principles
— written in a more ‘natural’ style (avoids special symbols)
» Declarative
— No side-effects of expressions
— Not operational (no corrective actions)

+ Typed, so that it can be checked (but not executed)
* NOT a programming language!

© Institutt for informatikk - R. Welland 2004 INF3120-FM 14—

© Institutt for informatikk - R. Welland 2004

Types of Constraints

* Invariant - a constraint that must always be met by
all instances of a class, type or interface. An
expression that must evaluate to true at all times.

* Pre-condition - a constraint that must be true at the
moment an operation (method) is to be executed

* Post-condition - a constraint that must be true at
the moment an operation has just ended

« And many others not covered in these lectures ...

INF3120-FM 15—

UML Class Diagram - Example

Video

Date

age(): Integer

Member

name: String

memberNo: Integer 0.1 0..20
dateOfBirth: Date borrower loan

© Institutt for informatikk - R. Welland 2004

shortTitle: String
videold: Integer
loanDate: Date
returnDate: Date
memberNo: Integer
onLoan: Boolean

isToday(): Boolean

isAfter (t: Date) :
Boolean

diffDays (t: Date):
Integer

makelLoan (toMember)

INF3120-FM 16 —

Simple Invariants

context Member or context Member

inv: memberNo > 999 inv: self. nemberNo > 999
context Member or context Member

inv: age () > 17 inv minAge: age () > 17
context Video context Video

inv: shortTitle.size <= 20 inv: returnDate.isAfter (loanDate)

context Video
inv: loanDate.diffDays (returnDate) = 14

© Institutt for informatikk - R. Welland 2004 INF3120-FM 17—

Pre and Post Conditions

context Video :: makeLoan (toMember)
pre: not onLoan
post: result = (loanDate .isToday ())

context Video :: makeLoan (toMember)
pre: onLoan = false
post: result = (loanDate.isToday ()
and
loanDate.diffDays (returnDate) = 14)

© Institutt for informatikk - R. Welland 2004 INF3120-FM 18 —

* Navigating an association from the context class to

Navigating Associations

another class creates a SET of objects.
* Operations on sets are denoted by ->

+ There are many operations available, for example:

set -> isEmpty -- Boolean, true if set contains no elements

set -> notEmpty

set -> size

set -> forAll (expression)

-- Integer, number of objects in set

elements of the set

set -> exists (expression) -- Boolean, true if expression is true for at

least one element of the set

-- Boolean, true if set contains one or more elements

-- Boolean, true if expression is true for all

© Institutt for informatikk - R. Welland 2004

INF3120-FM 19 —

Associations and Sets (Examples)

- - loan is a set of Video instances; all of which

- - must have the same memberNo as the borrower (Member)

context Member
inv: loan -> forall (memberNo = self.memberNo)

- - borrower is also a set, of 0 or 1 values!

context Video

inv: borrower -> notEmpty implies
borrower -> forall (memberNo = self. mnemberNo)

© Institutt for informatikk - R. Welland 2004

INF3120-FM 20 —

The forall Operation

- - the constraint on the previous slide can be written more explicitly as:
context Member
inv: loan -> forall (v : Video | v.memberNo = self. MemberNo)

- - allinstances returns a set of all instances of a class

context Member
inv: Member.allinstances -> forall (m1, m2 | m1 <> m2
implies m1.memberNo < > m2.memberNo)

context Member
inv: Member.allinstances -> forall (m | m < > self
implies m.memberNo < > self.memberNo)

© Institutt for informatikk - R. Welland 2004 INF3120-FM 21—

Video Example (extended)

i <<enumeration>>
Member Video MemberCateg
name: String shortTitle: String junior
memberNo: Integer 01 0.20 videold: I_nteger normal
dateOfBirth: Date - - loanDate: Date
memberCategory: borrower loan | returnDate: Date
MemberCateg memberNo: Integer
onLoan: Boolean .
videoCategory: <<enumeration>>
VideoCateg VideoCateg
age(): Integer w18
makeLoan (toMember) adult

© Institutt for informatikk - R. Welland 2004 INF3120-FM 22 —

More Invariants (on enumerated types)

context Member
inv: memberCategory = MemberCateg::junior implies Age () < 18
and
memberCategory = MemberCateg::normal implies Age () > 17

context Member

if memberCategory = MemberCateg::junior
then Age () <18
else Age () > 17

endif

© Institutt for informatikk - R. Welland 2004 INF3120-FM 23—

More Invariants (2)

- - Restricting the number of loans for junior members:
context Member
inv: memberCategory = MemberCateg::junior implies

loan -> size <= 10

- - Restricting video categories for junior members:

context Member

inv: memberCategory = MemberCateg::junior implies
loan -> forall (videoCategory = VideoCateg::u18)

context Video
inv: videoCategory = VideoCateg::adult implies
borrower -> forall (memberCategory = MemberCateg::normal)

© Institutt for informatikk - R. Welland 2004 INF3120-FM 24—

Diagram or Textual Constraints?

Member Video
name: String shortTitle: String
memberNo: Integer videold: Integer
dateOfBirth: Date loanDate: Date
0..1 0..20 returnDate: Date
memberNo: Integer
borrower loan| 551 oan: Boolean
age(): Integer makeLoan (toMember)
NormalMember JuniorMember 0.1 0.10 U18Video AdultVideo
borrower loan

This still does not work! A U18Video may only be borrowed by a juniorMember in this model.

© Institutt for informatikk - R. Welland 2004 INF3120-FM 25—

Video Example (extended again!)

; <<enumeration>>
Member Video MemberCateg
name: String shortTitle: String junior
memberNo: Integer 0.1 0.20 videold: I_nteger normal
dateOfBirth: Date & = loanDate: Date
memberCategory: borrower loan | returnDate: Date
MemberCateg memberNo: Integer
onLoan: Boolean <<enumeration>>
videoCategory: VideoCateg
VideoCateg
age(): Integer w18
makeLoan (toMember) adult
special

© Institutt for informatikk - R. Welland 2004 INF3120-FM 26 —

More Invariants

- - No normal member may have more than 3 special
videos

context Member
inv: memberCategory = MemberCateg::normal implies

loan -> select (videoCategory = VideoCateg::special)
-> size <=3

- - cannot express this diagrammatically

© Institutt for informatikk - R. Welland 2004 INF3120-FM 27 —

Another Simplified Example

Customer Order

----- 1 0.%

custCategory: orders ayType: PayType

CustCateg paylyp yiyp

<<enumeration>> <<enumeration>>

CustCateg PayType
trade cash
private account

© Institutt for informatikk - R. Welland 2004 INF3120-FM 28 —

Constraints on Customer/Orders

context Customer
inv: custCategory = CustCateg::trade implies

orders -> forall (payType = PayType::account)

context Customer
inv: custCategory = CustCateg::private implies
orders -> forall (payType = PayType::cash)

- = could write constraints on Order

© Institutt for informatikk - R. Welland 2004

INF3120-FM 29 —

Diagrammatic Constraints

Customer Order
..... 1 0" * aann
orders
Trade 1 0..% | Account
orders

Private

0..% | Cash

© Institutt for informatikk - R. Welland 2

orders

004

INF3120-FM 30 —

Customer Order
..... 1 0" * CLLET)
<<enumeration>>
orders payType: PayType
PayType
cash
account

Trade context Trade

context Private

Private

inv: orders -> forall (payType = PayType::account)

inv: orders -> forall (payType = PayType::cash)

© Institutt for informatikk - R. Welland 2004

INF3120-FM 31 —

Summary

Within the context of a class, we can write invariants

on:
— the attributes of that class
— the members of classes associated with that class

Can write pre and post conditions on an operation

(method) of a class

OCL can be used in conjunction with other UML

diagrams (not covered in these lectures)
OCL is declarative not operational

All OCL expression used in constraints are:

— Boolean type (i.e. must evaluate to true or false)
— free of side effects (i.e. no update operations)

© Institutt for informatikk - R. Welland 2004

INF3120-FM 32 —

Reference(s)

» The Object Constraint Language Second Edition —
Getting Your Models Ready for MDA. Jos Warmer and
Anneke Kleppe. Addison-Wesley 2003.

* Web sites to check out:
— The website of the authors of the above book
http://lwww.klasse.nl/ocl
that provides useful background information,
including an OCL syntax checking tool called Octopus
— OMG standard for UML including OCL:
http://www.omg.org
{only if you really like standards!!}

© Institutt for informatikk - R. Welland 2004 INF3120-FM 33 —

Model Driven Architecture (MDA)

* PIM = Platform Independent
PIM Model; UML + OCL

+ PSM = Platform Specific Model;
A could be Database model or
2 EJB, for example

* Code is generated from PSM
automatically

* PIM can be transformed to
Code PSMs automatically

| « PIMto PSM tools are limited

© Institutt for informatikk - R. Welland 2004 INF3120-FM 34 —

