
University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 1

INF3120-RE 1© Institutt for informatikk - R. Welland 2005

Requirements Engineering

Professor Ray Welland
Department of Computing Science

University of Glasgow

E-mail: ray@dcs.gla.ac.uk

INF3120-RE 2© Institutt for informatikk - R. Welland 2005

The Importance of Requirements

• Identifying (some) requirements is the starting point for all software
development projects regardless of the development method being
used.

• In conventional development, the cost of fixing problems after
system delivery is high (perhaps 100 times the cost of fixing an
implementation error)

• Changes in requirements are inevitable
– as understanding of the requirements develops
– as the software development proceeds
– after the system is delivered (maintenance, evolution)

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 2

INF3120-RE 3© Institutt for informatikk - R. Welland 2005

Why Requirements Engineering?

• Many projects have failed because of inadequate understanding of
requirements

• Need for a systematic approach to specifying requirements, stages
in the process:
– Feasibility Study – cost/benefit analysis for business and risk analysis

prepared for management decision making
– Requirements Elicitation and Analysis (requirements capture or discovery)

- finding out what is needed from the customers
– Specify Requirements for the customer (contract) and the system developer
– Validate Requirements - do the specified requirements actually define what

the customer wants?

INF3120-RE 4© Institutt for informatikk - R. Welland 2005

Requirements Engineering - Process

From Sommerville 7 – p143

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 3

INF3120-RE 5© Institutt for informatikk - R. Welland 2005

Desirable Features of a
Requirements Specification

• Emphasise what is required not how to do it; but there are always
constraints (non-functional requirements)

• Standardised presentation of documents (e.g. Sommerville 6.5: The
Software Requirements Document), agreed design notations

• Agreed by all customers (need for compromise and trade-offs)
• Realistic: can be realised within cost constraints and using existing

technology (or known future technology)
• Consistent: no conflicting requirements
• Complete: identifies all requirements

INF3120-RE 6© Institutt for informatikk - R. Welland 2005

Requirements Validation
(Sommerville 7.3)

How to ensure that a Requirements Document does define the
customers’ requirements (check against desirable features)

• Comprehensibility - do customers understand the requirements?
• Verifiability (testability) - can requirements be realistically tested?

{If you cannot test it, it is not a requirement!}
• Traceability - source of the requirement? {Important when

making changes.}
• Adaptability (changeability) - what is the impact of changing a

particular requirement?

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 4

INF3120-RE 7© Institutt for informatikk - R. Welland 2005

Requirements Evolution
(Sommerville 7.4 Requirements Management)

• Change is inevitable and must be managed!
• Some requirements are enduring (stable) while others are more

volatile (likely to change). Sommerville (7.4.1, Figure 7.11)
divides volatile requirements into:
– Mutable - caused by environmental changes, changes outside the organisation

(e.g. changes in the law)
– Emergent - occur as the customers (and analysts) understanding of the system

develops
– Consequential - resulting from the introduction of the new system creating

opportunities for further work
– Compatibility - dependent upon other parts of the business, must change if

they change

INF3120-RE 8© Institutt for informatikk - R. Welland 2005

Functional and Non-Functional
Requirements

• Requirements can be divided into two main categories; functional
and non-functional.

• Functional requirements, as the name suggests, define the basic
functions of the system and are usually fairly easy to identify and
specify.

• Non-functional requirements are constraints which restrict the
product and the development process, and place external
conditions which the product must meet.

• There is a trade-off between functional and non-functional
requirements (another compromise)

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 5

INF3120-RE 9© Institutt for informatikk - R. Welland 2005

Non-functional Requirements

• Must be objective and testable
– (e.g. ‘the system must be user-friendly’ is subjective and there are no criteria

for testing the requirement)
• Sommerville (6.1.2, Figure 6.4) divides non-functional

requirements into three major categories:
– Product requirements: usability; efficiency (performance, space); reliability;

portability.
– Organisational requirements: delivery; implementation; standards.
– External requirements: interoperability; legal (safety, privacy)

• There are standard checklists of non-functional requirements, for
example: IEEE Std-830-1993

INF3120-RE 10© Institutt for informatikk - R. Welland 2005

Non-Functional Requirements - Examples

Compatibility with other systems (internal and external)

Existing Practices - programming languages, methods, tools, platforms

Security of Data and Communications

Performance
throughput (transactions per hour)
response time (maximum acceptable)

Reliability
test load (stress testing)
mean time between failures
availability (up time)

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 6

INF3120-RE 11© Institutt for informatikk - R. Welland 2005

Requirements Elicitation and Analysis
• Sommerville, section 7.2
• Elicitation, also called requirement collection, capture or

discovery
• Identifying the customers’ real requirements
• Who are the customers?
• The term stakeholder is often used rather than customer -

anyone who has some direct or indirect influence on the system
requirements

• Stakeholders can be managers, end-users of the system, other
parts of the organisation, external organisations, ...

INF3120-RE 12© Institutt for informatikk - R. Welland 2005

Elicitation and Analysis - Problems

• Different types of businesses have their own domain
terminology (jargon)

• Organisations have their own terminology and business
practices, which are unfamiliar to the system developers

• Stakeholders do not know what they want or make unrealistic
demands (e.g. technically infeasible or too expensive)

• Conflict between stakeholder requirements
• Organisational structure and politics (often implicit)
• The organisational environment may change (in the worst case

there is a business take over or a major restructuring of the
organisation)

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 7

INF3120-RE 13© Institutt for informatikk - R. Welland 2005

Elicitation and Analysis - Process

• Domain understanding - the application area and terminology
• Requirements Elicitation - identifying requirements by talking to

stakeholders, observing processes, analysing data, etc.
• Classification - organising the information collected, imposing

structure (hierarchies, clusters)
• Conflict Resolution - identify and resolve conflicts between

different stakeholders requirements
• Prioritisation - identify the most important requirements
• Validation - completeness, consistency and realism

INF3120-RE 14© Institutt for informatikk - R. Welland 2005

Elicitation and Analysis - Process (2)

Domain
Understanding

Classification

Requirements
Elicitation

Conflict
Resolution

Prioritisation

Validation Requirements
Definition and
Specification

Requirements
Document

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 8

INF3120-RE 15© Institutt for informatikk - R. Welland 2005

Requirements Elicitation
Elicit = “to draw forth”

In order to analyse the requirements it is necessary to study the
existing system and understand it. This is the field of traditional
systems analysis and also usability studies. A major part of this
work requires communication skills rather than technical ability!

Possible techniques:

• Interviews
– planning, recording and analysing; with managers, customers (strategists and

those paying for the system!)
• Structured, with pre-planned questions, can be used over telephone
• Unstructured, free format, difficult to analyse
• Hybrid, anywhere between Structured and Unstructured!

INF3120-RE 16© Institutt for informatikk - R. Welland 2005

Requirements Elicitation (2)
• Inspection

– studying existing records, statistical sampling; useful where there are large
volumes of data

• Observation (Ethnography, Sommerville 7.2.2)
– observation of activities, processes and workflows
– participation in activities with end-users
– video recording of activities, very difficult to analyse

• Scenarios
– talk through different scenarios with users to understand normal and

exceptional processes (what if?)
• Prototypes

– Build partial prototypes, quick and dirty, usually focussed on interfaces; try
out ideas with users (c.f. active scenario?)

• Questionnaires
– high-volume, low-quality input, difficult to design; suitable for gathering

background data (e.g. customer attitudes)

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 9

INF3120-RE 17© Institutt for informatikk - R. Welland 2005

Classification of Requirements

• We need to classify (organise) requirements in order to make it
easier to find conflict and redundancy

• There is remarkably little material about classification in general
terms!

• Three suggested techniques
– Partitioning - identifying aggregations
– Abstraction - identifying generalisations
– Projection - organisation of knowledge from different viewpoints

INF3120-RE 18© Institutt for informatikk - R. Welland 2005

Identifying Conflicts and Priorities
• Analysing a draft set of requirements for inconsistencies between

requirements
• Using checklists (see next slide for example)
• Systematically checking for conflicts using an interaction matrix
• Negotiating with the stakeholders to resolve conflicts
• Prioritising the agreed requirements, either to meet cost constraints

or phased delivery

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 10

INF3120-RE 19© Institutt for informatikk - R. Welland 2005

Checklist for Internal Validation

• Kotonya & Sommerville suggest the following:
– Premature design - early commitment to design or implementation
– Complex requirements - could be split into simpler units
– Unnecessary requirements - “gold-plating”
– Use of non-standard platform - special hardware / software
– Conformance with business goals - consistent with business aims (project

mandate)
– Ambiguity - different possible interpretations?
– Realism - given the proposed (available) technology
– Testability - can you write a test for this requirement?

INF3120-RE 20© Institutt for informatikk - R. Welland 2005

Requirements Engineering - Summary

• Requirements Engineering attempts to provide a systematic
approach (framework) to an imprecise problem area

• A major part of requirements engineering concerns conflict
resolution between:
– stakeholder requirements (different viewpoints)
– functional and non-functional requirements (e.g. level of functionality versus

delivery time)
– non-functional requirements (e.g. performance versus reliability)

• Requirements Engineering process is iterative
• Change is inevitable and must be managed.

University of Oslo - Department of Informatics

INF3120 - Software Engineering

Requirements Engineering; Ray Welland 11

INF3120-RE 21© Institutt for informatikk - R. Welland 2005

Requirements Engineering - Summary (cont.)

• These lectures were intended to identify the general principles that
apply to requirements engineering, regardless of the methods used

• Background information can be found in:
Ian Sommerville, Software Engineering (7th Edition), Chapters
6 and 7.
(Specific references to topics given in the slides.)

• More detailed information in:
Gerald Kotonya & Ian Sommerville, Requirements Engineering
- Processes and Techniques, John Wiley & Sons, 1998

INF3120-RE 22© Institutt for informatikk - R. Welland 2005

Requirements and Processes

• Requirements Engineering assumes that the bulk of the
requirements are identified before development (design,
implementation, testing)

• Incremental techniques, such as the Rational Unified Process (using
UML) and Extreme Programming (XP), integrate requirements
capture within the development cycle. But requirements still have
to be identified, conflicts resolved, functions prioritised, …

• Outsourcing (‘Offshoring’) of software development puts the
emphasis back onto requirement specification before development.

