
1

Formal Methods
for Software Engineers

Professor Ray Welland

Department of Computing Science

University of Glasgow

E-mail: ray@dcs.gla.ac.uk

INF3120-FM 2© Simula Research Laboratory - R. Welland 2006

Overview

• Motivation
– Why have formal specifications?
– Where is their use appropriate?
– What are the problems with using formal methods?

• Aims
– Provide the background to formal methods (the ‘big picture’)
– Cover examples of the use of one formal specification technique

• Contents
– General introduction to formal specification (see Sommerville

chapter 10)
– Introduction to OCL (Object Constraint Language) associated with

UML

2

INF3120-FM 3© Simula Research Laboratory - R. Welland 2006

Motivation - Certifiable Correctness

• Consider safety-critical systems
– patient monitoring in hospitals
– air-traffic control
– railway signalling
– process control of industrial/nuclear plants
– on-board systems in a car

• Testing does not give us enough confidence
– we need a formal proof that software is correct

• Proving an existing programs correct too difficult

• Instead, construct correct program by a series of steps
known to be safe

INF3120-FM 4© Simula Research Laboratory - R. Welland 2006

Constructing a correct program

– R1, R2, ... Rn are formally specified
representations

• each step (after the first) is small enough to
be automated or carried out simply

– We still need verification...
• proving that R2 is a correct transformation of

R1
• should be trivial if transformations preserve

correctness

– ... and validation
• convince the user that the right system is

being built

– Accurate requirements are essential!

– Concentrate on R1 - the initial specification

Requirements

R1

R2

R3

Rn

Implementation

mapping to initial
formal specification

correctness-
preserving
transformations

3

INF3120-FM 5© Simula Research Laboratory - R. Welland 2006

How to write a formal specification....?

• Not in natural language!
– impossible to supply sufficient precision
– although there have been attempts at "structured English", but....

• Diagrams tricky...
– cannot formally manipulate them easily
– but they might be used as an adjunct to formal specification -

animation

• Must use a notation that is mathematically based
– formal semantics
– can be manipulated, in a mathematical sense

INF3120-FM 6© Simula Research Laboratory - R. Welland 2006

Why not use Formal Specs for all
program development?

• The effort involved (mostly by hand) and skills required

• Lack of tool support, although some are becoming available

• Lack of necessary background and poor training of existing
staff, together with the use of unfamiliar notations

• Lack of knowledge among project managers

• Validation problems
– hard to communicate ideas to users - might build perfect, but invalid,

system
– again, tools required - animation, alternative representations

• Problems of scale
– formal specification techniques not suited for very large projects - lack of

modularity, information hiding in some traditional f.s. techniques

4

INF3120-FM 7© Simula Research Laboratory - R. Welland 2006

Background Reading

• The Mystery of Formal Methods Disuse (A story of zealotry and
chicanery) – Robert Glass (Practical Programmer column) – Comm.
ACM 47(8), August 2004, p15-17

– a typical Robert Glass column taking a sceptical view of formal methods!

– refers to the paper below

• Getting the best from formal methods, John B Wordsworth –
Information and Software Technology, 41 (1999), 1027-1032

– reviews progress made in the use of formal methods in the last 15 years

– suggests reasons for lack of widespread use of formal methods

– proposes ways to ‘infiltrate’ formal methods into software development

INF3120-FM 8© Simula Research Laboratory - R. Welland 2006

Background Reading (2)

Two older references but both very readable and still relevant:

• An Invitation to Formal Methods - IEEE Computer, April 1996)
– consists of a collection of short papers giving widely differing views

about formal methods, ranging from formal methods enthusiasts to
sceptical practitioners;

– good overview of the ‘state of the art’ and easy to read.

• Seven More Myths of Formal Methods, J Bowen & M Hinchey -
IEEE Software, July 1995

– this article is written by two formal methods enthusiasts and
strongly advocates the use of formal methods;

– very biased but again easy to read.

5

INF3120-FM 9© Simula Research Laboratory - R. Welland 2006

Formal Specification of Large Systems
• Algebraic specification

– system described using interfaces between sub-systems
• operations of an interface and the relationships between them

– entities and operations defined along with axioms defining the semantics of
the operations - hence the behaviour of the entity

• ‘formality’ is in the axioms

– More in Sommerville, 10.2

• Model-based specification
– model constructed using well-understood mathematical entities - sets,

sequences
– specification is expressed as a system state model over these entities
– Two major model-based approaches

• VDM (Vienna Development Method), IBM Vienna Research Labs
• Z, Programming Research Group, Oxford

– More in Sommerville, 10.3

INF3120-FM 10© Simula Research Laboratory - R. Welland 2006

Specifying Constraints

• A less comprehensive approach to formal specification is to
combine formal notations with existing diagrammatic
notations to improve precision

• Constraints allow us to define parts of our system model
more precisely than using only diagrams
– define the basic model using diagrams (e.g. class diagram)

– add detail using constraints attached to the diagram elements

– ensure that all requirements are captured and can be traced

– there are trade-offs between adding detail to diagrams and
using constraints - when does a diagram become too complex
to be useful?

6

INF3120-FM 11© Simula Research Laboratory - R. Welland 2006

OCL - Object Constraint Language

• Note – OCL 2.0 (with UML 2.0)

• A constraint is a restriction on one or more values of
(part of) an object-oriented model or system

• Constraints may be visually represented (restriction
constraints) or expressed textually

• OCL provides a well defined language for expressing
constraints textually

• UML diagrams provide the visual representation of the
object model, restriction constraints and the context for
OCL constraints

INF3120-FM 12© Simula Research Laboratory - R. Welland 2006

A Simple UML Example

Member

name: String
memberNo: Integer
dateOfBirth: Date

age(): Integer

Video

shortTitle: String
videoId: Integer
loanDate: Date
returnDate: Date
memberNo: Integer
onLoan: Boolean

makeLoan (toMember)

borrower loan
0..1 0..20

Date

isToday(): Boolean
isAfter (t: Date) :
 Boolean
diffDays (t: Date):
 Integer

7

INF3120-FM 13© Simula Research Laboratory - R. Welland 2006

Why use textual constraints?
• Better documentation

– additional information is linked to system model(s)

– can be versioned together with model(s)

• Reduce diagram complexity

• Improve precision
– mathematical theory underpinning the language

– textual constraints can be parsed and checked

• Communication
– an agreed common language for expressing requirements

– analyst to designer; designer to developer

• Link to detailed requirements capture
– tracing requirements through development

INF3120-FM 14© Simula Research Laboratory - R. Welland 2006

OCL - Requirements
• Precise and unambiguous language, easily read and

written by practitioners
– based on sound mathematical principles

– written in a more ‘natural’ style (avoids special symbols)

• Declarative
– No side-effects of expressions

– Not operational (no corrective actions)

• Typed, so that it can be checked (but not executed)

• NOT a programming language!

8

INF3120-FM 15© Simula Research Laboratory - R. Welland 2006

Types of Constraints

• Invariant - a constraint that must always be met by all
instances of a class, type or interface. An expression
that must evaluate to true at all times.

• Pre-condition - a constraint that must be true at the
moment an operation (method) is to be executed

• Post-condition - a constraint that must be true at the
moment an operation has just ended

• And many others not covered in these lectures …

INF3120-FM 16© Simula Research Laboratory - R. Welland 2006

UML Class Diagram - Example

Member

name: String
memberNo: Integer
dateOfBirth: Date

age(): Integer

Video

shortTitle: String
videoId: Integer
loanDate: Date
returnDate: Date
memberNo: Integer
onLoan: Boolean

makeLoan (toMember)

borrower loan
0..1 0..20

Date

isToday(): Boolean
isAfter (t: Date) :
 Boolean
diffDays (t: Date):
 Integer

9

INF3120-FM 17© Simula Research Laboratory - R. Welland 2006

Simple Invariants
context Member or context Member

inv: memberNo > 999 inv: self.memberNo > 999

context Member or context Member

inv: age () > 17 inv minAge: age () > 17

context Video context Video

inv: shortTitle.size() <= 20 inv: returnDate.isAfter (loanDate)

context Video

inv: loanDate.diffDays (returnDate) = 14

INF3120-FM 18© Simula Research Laboratory - R. Welland 2006

Pre and Post Conditions
context Video :: makeLoan (toMember)

pre: not onLoan

post: result = (loanDate .isToday ())

context Video :: makeLoan (toMember)

pre: onLoan = false

post: result = (loanDate.isToday ()

and

loanDate.diffDays (returnDate) = 14)

10

INF3120-FM 19© Simula Research Laboratory - R. Welland 2006

Navigating Associations
• Navigating an association from the context class to another class

creates a SET of objects.

• Operations on sets are denoted by ->

• There are many operations available, for example:
– set -> isEmpty -- Boolean, true if set contains no elements

– set -> notEmpty -- Boolean, true if set contains one or more
elements

– set -> size() -- Integer, number of objects in set

– set -> forAll (expression) -- Boolean, true if expression is true for all
elements of the set

– set -> exists (expression) -- Boolean, true if expression is true for at
least one element of the set

INF3120-FM 20© Simula Research Laboratory - R. Welland 2006

Associations and Sets (Examples)

- - loan is a set of Video instances; all of which

- - must have the same memberNo as the borrower (Member)

context Member

inv: loan -> forall (memberNo = self.memberNo)

- - borrower is also a set, of 0 or 1 values!

context Video

inv: borrower -> notEmpty implies

borrower -> forall (memberNo = self.memberNo)

11

INF3120-FM 21© Simula Research Laboratory - R. Welland 2006

The forall Operation

- - the constraint on the previous slide can be written more explicitly as:

context Member

inv: loan -> forall (v : Video | v.memberNo = self.MemberNo)

- - allinstances returns a set of all instances of a class

context Member

inv: Member.allinstances -> forall (m1, m2 | m1 < > m2

implies m1.memberNo < > m2.memberNo)

context Member

inv: Member.allinstances -> forall (m | m < > self

implies m.memberNo < > self.memberNo)

INF3120-FM 22© Simula Research Laboratory - R. Welland 2006

Video Example (extended)

Member

name: String
memberNo: Integer
dateOfBirth: Date
memberCategory:
 MemberCateg

age(): Integer

Video

shortTitle: String
videoId: Integer
loanDate: Date
returnDate: Date
memberNo: Integer
onLoan: Boolean
videoCategory:
 VideoCateg

makeLoan (toMember)

borrower loan
0..1 0..20

<<enumeration>>
 MemberCateg

junior
normal

<<enumeration>>
 VideoCateg

u18
adult

12

INF3120-FM 23© Simula Research Laboratory - R. Welland 2006

More Invariants (on enumerated types)
context Member

inv: memberCategory = MemberCateg::junior implies Age () < 18

and

memberCategory = MemberCateg::normal implies Age () > 17

context Member

if memberCategory = MemberCateg::junior

then Age () < 18

else Age () > 17

endif

INF3120-FM 24© Simula Research Laboratory - R. Welland 2006

More Invariants (2)
- - Restricting the number of loans for junior members:

context Member

inv: memberCategory = MemberCateg::junior implies

loan -> size() <= 10

- - Restricting video categories for junior members:

context Member

inv: memberCategory = MemberCateg::junior implies

loan -> forall (videoCategory = VideoCateg::u18)

context Video

inv: videoCategory = VideoCateg::adult implies

borrower -> forall (memberCategory = MemberCateg::normal)

13

INF3120-FM 25© Simula Research Laboratory - R. Welland 2006

Diagram or Textual Constraints?

Member

name: String
memberNo: Integer
dateOfBirth: Date

age(): Integer

Video

shortTitle: String
videoId: Integer
loanDate: Date
returnDate: Date
memberNo: Integer
onLoan: Boolean

makeLoan (toMember)

borrower loan
0..1 0..20

NormalMember JuniorMember u18Video
0..1 0..10
borrower loan

U18Video u18VideoAdultVideo

This still does not work! A U18Video may only be borrowed by a juniorMember in this model.

INF3120-FM 26© Simula Research Laboratory - R. Welland 2006

Video Example (extended again!)

Member

name: String
memberNo: Integer
dateOfBirth: Date
memberCategory:
 MemberCateg

age(): Integer

Video

shortTitle: String
videoId: Integer
loanDate: Date
returnDate: Date
memberNo: Integer
onLoan: Boolean
videoCategory:
 VideoCateg

makeLoan (toMember)

borrower loan
0..1 0..20

<<enumeration>>
 MemberCateg

junior
normal

<<enumeration>>
 VideoCateg

u18
adult
special

14

INF3120-FM 27© Simula Research Laboratory - R. Welland 2006

More Invariants

- - No normal member may have more than 3 special videos

context Member

inv: memberCategory = MemberCateg::normal implies

loan -> select (videoCategory = VideoCateg::special)
-> size() <=3

- - cannot express this diagrammatically

INF3120-FM 28© Simula Research Laboratory - R. Welland 2006

Another Simplified Example

Customer

.....

custCategory:
CustCateg

Order

.....

payType: PayType

1 *0..

orders

<<enumeration>>
 CustCateg

trade
private

<<enumeration>>
 PayType

cash
account

15

INF3120-FM 29© Simula Research Laboratory - R. Welland 2006

Constraints on Customer/Orders

context Customer

inv: custCategory = CustCateg::trade implies

orders -> forall (payType = PayType::account)

context Customer

inv: custCategory = CustCateg::private implies

orders -> forall (payType = PayType::cash)

- - could write constraints on Order

INF3120-FM 30© Simula Research Laboratory - R. Welland 2006

Diagrammatic Constraints

Customer

.....

Order

.....1 *0..

Trade

Private

Account

Cash1

1 *0..

*0..

orders

orders

orders

16

INF3120-FM 31© Simula Research Laboratory - R. Welland 2006

Mixing the constraints!

Customer

.....

Order

1 *0..

Trade

Private

orders

context Trade
inv: orders -> forall (payType = PayType::account)

context Private
inv: orders -> forall (payType = PayType::cash)

.....

payType:
PayType

<<enumeration>>
 PayType

cash
account

INF3120-FM 32© Simula Research Laboratory - R. Welland 2006

Summary

• Within the context of a class, we can write invariants on:
– the attributes of that class
– the members of classes associated with that class

• Can write pre and post conditions on an operation (method) of a
class

• OCL can be used in conjunction with other UML diagrams (not
covered in these lectures)

• OCL is declarative not operational

• All OCL expression used in constraints are:
– Boolean type (i.e. must evaluate to true or false)
– free of side effects (i.e. no update operations)

17

INF3120-FM 33© Simula Research Laboratory - R. Welland 2006

Reference(s)

• The Object Constraint Language Second Edition – Getting
Your Models Ready for MDA. Jos Warmer and Anneke
Kleppe. Addison-Wesley 2003.

• Web sites to check out:
– The website of the authors of the above book

http://www.klasse.nl/ocl
that provides useful background information,
including an OCL syntax checking tool called Octopus

– OMG standard for UML including OCL:
http://www.omg.org

{only if you really like standards!!}

INF3120-FM 34© Simula Research Laboratory - R. Welland 2006

Model Driven Architecture (MDA)

• PIM = Platform Independent Model;
UML + OCL

• PSM = Platform Specific Model; could
be Database model or EJB, for
example

• Code is generated from PSM
automatically

• PIM can be transformed to PSMs
automatically

• PIM to PSM tools are limited

PIM

Code

PSM

