

- Formal languages
- (sets of 'YES-strings')

Problem = set of strings (over an alphabet). Each string is (the encoding of) a YES-instance.

Autumn 2005

7 of 17

 $\delta(s,0) = (q_1, b, R)$

 $\delta(q_1, 1) = (q_2, b, R)$

8 of 17

 $q_{2\kappa}$

Autumn 2005

states

"loaded

program'

steps of computation

or rules

Church's thesis

'Turing machine' \cong 'algorithm'

Turing machines can compute every function that can be computed by some algorithm or program or computer.

'Expressive power' of PL's

Turing complete programming languages.

'Universality' of computer models

Neural networks are Turing complete (Mc Cullok, Pitts).

Uncomputability

If a Turing machine cannot compute *f*, no computer can!

11 of 17

Autumn 2005

INF3130 * Undecidability and Complexity * Lecture 1

M_R :

Output the M_u code modified as follows: Instead of reading its input M and x, the modified M_u has them stored in its finite control and it **writes them** on its tape. After that the modified M_u proceeds as the ordinary M_u untill the simulation is finished. Then it writes a \$.

Reduction as mathematical function

Given a reduction from L_1 to L_2 . Then M_R computes a function

$$f_R: \sum^* \to \sum^*$$

which is such that

$$\begin{aligned} x \in L_1 \Rightarrow f_R(x) \in L_2 \\ x \notin L_1 \Rightarrow f_R(x) \notin L_2 \end{aligned}$$

Autumn 2005

17 of 17