Undecidability and Complexity in Four Lectures

Overview

- Lecture 1: Introduction. Uncomputability.
- Lecture 2: Intractability.
- Lecture 3: Proving Intractability.
- Lecture 4: Coping With Intractability.

Lecture 1 overview

- Our approach - modeling
- The subject matter - what is this all about
- Historical introduction
- How to model problems
- How to model solutions
- How to prove that some problems have no solutions

Autumn 2005

Our approach

Modeling

Perspective

Lectures \rightarrow Mainly high-level understanding
Group sessions \rightarrow Practice skills: proofs, problems
Studying strategy: Don't memorize pensum try to understand the whole!

Subject matter

How to solve information-processing problems efficiently.

Problems \sim interesting, \leadsto formal natural languages problems (F.L.s)
(Ex. MATCHING, sORTING, T.S.P.)
Solutions \leadsto algorithms \leadsto Turing machines

Efficiency \leadsto complexity \leadsto complexity classes

Problems,
F.L.s

Historical introduction

In mathematics (cooking, engineering, life) solution $=$ algorithm

Examples:

- $\sqrt{253}=$
- $a x^{2}+b x+c=0$
- Euclid's g.c.d. algorithm - the earliest non-trivial algorithm?
\exists algorithm? \rightarrow metamathematics
- K. Gödel (1931): nonexistent theories
- A. Turing (1936): nonexistent algorithms (article: "On computable Numbers ...

- Von Neumann (ca. 1948): first computer
- Edmonds (ca. 1965): an algorithm for MAXIMUM MATCHING

Edmonds' article rejected based on existence of trivial algorithm: Try all possibilities!

Complexity analysis of trivial algorithm (using approximation)

- $n=100$ boys
- $n!=100 \times 99 \times \cdots \times 1 \geq 10^{90}$ possibilities
- assume $\leq 10^{12}$ possibilites tested per second
- $\leq 10^{12+4+2+3+2} \leq 10^{23}$ tested per century
- running time of trivial algorithm for $n=100$ is $\geq 10^{90-23}=10^{67}$ centuries!

Compare: "only" ca. 10^{13} years since Big Bang!

Edmonds: My algorithm is a polynomial-time algorithm, the trivial algorithm is exponential-time!

- \exists polynomial-time algorithm for a given problem?
- Cook / Levin (1972): $\mathcal{N} \mathcal{P}$-completeness

Intractable
Cook/Levin results \& techniques

Problems, formal languages

All the world's Ex. compute salaries, information-processing control Lunar problems module landing
\sum graphs,
numbers ...
"Interesting",
"natural"
problems
MATCHING
TSP
SORTING
$\sum \xrightarrow{\text { inp. }} \square \xrightarrow{\text { outp. }}$
Functions

```
\{ output= 3 YES/NO
```

Formal languages
(sets of 'YES-strings')

Problem = set of strings (over an alphabet).
Each string is (the encoding of) a YES-instance.

Algorithm

Turing machine - intuitive description

We say that Turing machine M decides language L if (and only if) M computes the function
$f: \Sigma^{*} \rightarrow\{Y, N\}$ and for each $x \in L: f(x)=Y$ for each $x \notin L: f(x)=N$
Language L is (Turing) decidable if (and only if) there is a Turing machine which decides it.

We say that Turing machine M accepts language L if M halts if and only if its input is an string in L .

Language L is (Turing) acceptable if (and only if) there is a Turing machine which accepts it.

Example

A Turing machine M which decides
$L=\{010\}$.

$\xi \cdots$	b	0	1	0	b	b	\cdots

$$
\begin{aligned}
M & =(\Sigma, \Gamma, Q, \delta) & & \Sigma\{0,1\} \\
\Gamma & =\{0,1, b, Y, N\} & & Q=\left\{s, h, q_{1}, q_{2}, q_{3}, q_{e}\right\}
\end{aligned}
$$

$\delta:$

	0	1	b
s	$\left(q_{1}, b, R\right)$	$\left(q_{e}, b, R\right)$	$(h, N,-)$
q_{1}	$\left(q_{e}, b, R\right)$	$\left(q_{2}, b, R\right)$	$(h, N,-)$
q_{2}	$\left(q_{3}, b, R\right)$	$\left(q_{e}, b, R\right)$	$(h, N,-)$
q_{3}	$\left(q_{e}, b, R\right)$	$\left(q_{e}, b, R\right)$	$(h, Y,-)$
q_{e}	$\left(q_{e}, b, R\right)$	$\left(q_{e}, b, R\right)$	$(h, N,-)$

('-' means "don't move the read/write head")

Church's thesis

'Turing machine' \cong 'algorithm'

Turing machines can compute every function that can be computed by some algorithm or program or computer.

'Expressive power' of PL's

Turing complete programming languages.
'Universality' of computer models
Neural networks are Turing complete (Mc Cullok, Pitts).

Uncomputability

If a Turing machine cannot compute f, no computer can!

Uncomputability

What algorithms can and cannot do.

Strategy

1. Show that Halting (the Halting problem) is unsolvable

2. Use reductions $\stackrel{R}{\longleftrightarrow}$ to show that other problems are unsolvable

Step 1: Halting is unsolvable

Def. 1 (Halting)

$$
L_{H}=\{(M, x) \mid M \text { halts on input } x\}
$$

Theorem 1 The Halting Problem is undecidable.

Proof (by diagonalization): Given a Turing machine M^{\prime} that decides L_{H} we can construct a Turing machine $M^{\prime \prime}$ as follows:

M"
QUESTION: What does $M^{\prime \prime}$ do when given $M^{\prime \prime}, M^{\prime \prime}$ as input?

CONCLUSION: Since the assumption that M' exists leads to a contradiction (i.e. an impossible machine), it must be false.

Reductions

Meaning of a reduction

Image: You meet an old friend with a brand new M_{L}-machine under his shoulder.
Without even looking at the machine you say:
"It is fake!"

How the reduction works

Image (an old riddle): You are standing at a crossroad deep in the forest. One way leads to the hungry crocodiles, the other way to the castle with the huge piles of gold. In front of you stands one of the two twin brothers. One of them always lies, the other always tells the truth. You can ask one question. What do you say?

INF3130 * Undecidability and Complexity * Ledture 1

The universal Turing machine M_{u}

- M_{u} works like an ordinary computer: It takes a code (program) M and a string x as input and simulates (runs) M on input x.
- M_{u} exists by Church's thesis.
- To prove existence of M_{u} we must construct it. Here is a 3-tape M_{u} :

INF3130 * Undecidability and Complexity * Lecture 1

A typical reduction

$L_{\$}=\{M \mid M$ (eventually) writes a $\$$ when started with a blank tape\}
Claim: L_{\S} is undecidable

Proof:

M':
Simulate M on input x;
IF M halts THEN write a \$;
Important points:

- M^{\prime} must not write a $\$$ during the simulation of M !
- 'Write a \$' is an arbitrarly chosen action!

M_{R} :

Output the M_{u} code modified as follows: Instead of reading its input M and x, the modified M_{u} has them stored in its finite control and it writes them on its tape. After that the modified M_{u} proceeds as the ordinary M_{u} untill the simulation is finished. Then it writes a $\$$.

Reduction as mathematical function

Given a reduction from L_{1} to L_{2}. Then M_{R} computes a function

$$
f_{R}: \sum^{*} \rightarrow \sum^{*}
$$

which is such that

$$
\begin{aligned}
& x \in L_{1} \Rightarrow f_{R}(x) \in L_{2} \\
& x \notin L_{1} \Rightarrow f_{R}(x) \notin L_{2}
\end{aligned}
$$

