Review of unsolvability

To prove unsolvability: show a reduction.

To prove solvability: show an algorithm.

Unsolvable problems (main insight)

- Turing machine (algorithm) properties
- Pattern matching and replacement (tiles, formal systems, proofs etc.)

Complexity

➤ Unsolvable

Horrible (intractable)

Nice (tractable)

- Horrible problems are solvable by algorithms that take billions of years to produce a solution.
- Nice problems are solvable by "proper" algorithms.
- We want **techniques** and **insights**

$\underbrace{\textbf{Complexity}}_{\uparrow} \longleftrightarrow \underbrace{\textbf{resources}}_{:} \text{ time, space}$

complexity classes:

P(olynomial time), NP-complete, Co-NP-complete, Exponential time, PSPACE, ...

→ Impossible
→ Horrible (intractable)
→ Nice (tractable)

Intractable , best algorithms are infeasible Tractable , solved by feasible algorithms

Problems	Complexity classes
Horrible \rightsquigarrow	\mathcal{NP} -complete, \mathcal{NP} -hard,
	PSPACE-complete,
	EXP-complete,

Nice $\rightsquigarrow \mathcal{P}$ (Polynomial time)

Goal of complexity theory

Organize problems into complexity classes.

- Put problems of a similiar complexity into the same class.
- Complexity reveals what approaches to solution should be taken.

Complexity theory will give us an organized view of both problems and algorithms.

Time complexity and the class \mathcal{P}

We say that Turing machine M recognizes language L in time t(n) if given any $x \in \sum^*$ as input M halts after at most t(|x|) steps scanning 'Y' or 'N' on its tape, scanning 'Y' if and only if $x \in L$.

(|x|is the input length – the number of TM tape squares containing the characters of x)

Note: We are measuring **worst-case** behavior of *M*, i.e. the number of steps used for the most "difficult" input.

We say that **language L has time complexity** t(n) and write $L \in \text{TIME}(t(n))$ if there is a Turing machine M which recognizes L in time $\mathcal{O}(t(n))$.

Polynomial time $\mathcal{P} = \bigcup_k \text{TIME}(n^k)$

Note: \mathcal{P} (as well as every other complexity class) is a class (a set) of formal languages.

"Nice" or "tractable" $\longrightarrow \mathcal{P}$

Real time on Hypercube/...

Real time on a PC/Mac/Cray/ ~ Turing machine **time** (number of steps)

Computation Complexity Thesis All reasonable computer models are polynomial-time equivalent (i.e. they can simulate each other in polynomial time).

Consequence: \mathcal{P} is **robust** (i.e. machine independent).

Worst-case \longrightarrow Real-world complexity difficulty

 \rightarrow Polynomial-time Feasible solution algorithm

- $t(n) \longrightarrow \mathcal{O}(t(n))$ **Argument:** "for large-enough *n*..."
- $n^{100} \le n^{\log n}$. Yes, but only for $n > 2^{100}$. **Argument:** Functions like n^{100} or $n^{\log n}$ don't tend to arrise in practice.

 $n^2 \ll 2^n$ already for small or medium-sized inputs:

Polynomial-time simulations & reductions

We say that Turing machine M computes function f(x) in time t(n) if, when given x as input, M halts after t(|x|) = t(n) steps with f(x) as output on its tape.

Function f(x) is **computable in time** t(n) if there is a TM that computes f(x) in time $\mathcal{O}(t(n))$.

For constructing the complexity theory we need a suitable notion of an efficient 'reduction':

We say that L_1 is **polynomial-time reducible** to L_2 and write $L_1 \propto L_2$ if there is a polynomial-time computable reduction from L_1 to L_2 . For arguments of the type

 L_1 is hard/complex $\Rightarrow L_2$ is hard/complex we need the following lemma:

Lemma 1 A composition of polynomial-time computable functions is polynomial-time computable.

Proof:

- $|f_1(x)| \le t_1(|x|)$ because a Turing machine can only write one symbol in each step.
- "polynomial ^{polynomial} = polynomial" or $(n^k)^l = n^{k*l}$
- $t_2(|f_1(x)|)$ is a polynomial.
- TIME $(t) = t_1(|x|) + t_2(|f_1(x)|)$ is a polynomial because the sum of two polynomials is a polynomial.

all solvable problems

Strategy

It is the same as before (in uncomputability):

- Prove that a problem *L* is easy by showing an efficient (polynomial-time) algorithm for *L*.
- Prove that a problem *L* is hard by showing an efficient (polynomial-time) reduction (*L*₁ ∝ *L*) from a known hard problem *L*₁ to *L*.

Difficulty

Finding the first truly/provably "hard" problem.

Way out Completeness & Hardness

\mathcal{NP} -completeness

How to prove that a problem is hard?

Completeness

We say that language L is **hard for class C** with respect to polynomial-time reductions[†], or **C-hard**, if every language in C is polynomial-time reducible to L.

We say that language *L* is **complete for class C** with respect to polynomial-time reductions[†], or **C-complete**, if $L \in C$ and *L* is C-hard.

† Other kinds of reductions may be used

- If *L* is C-complete/C-hard and *L* is **easy** $(L \in \mathcal{P})$ then every language in C is easy.
- *L* is C-complete means that *L* is "hardest in" C or that *L* "characterizes" C.

\mathcal{NP} (non-deterministic polynomial time)

A **non-deterministic Turing machine (NTM)** is defined as deterministic TM with the following modifications:

• NTM has a **transition relation** \triangle instead of transition function δ

 $\Delta : \left\{ ((s,0), (q_1, b, R)), ((s,0), (q_2, 1, L)), \dots \right\}$

• NTM says 'Yes' (accepts) by halting

Note: A NTM has many possible computations for a given input. That is why it is non-deterministic.

- Mathematician doing a proof \rightsquigarrow NTM
- The original TM was a NTM

We say that a non-deterministic Turing machine M accepts language L if there exists a halting computation of M on input x if and only if $x \in L$.

Note: This implies that NTM *M* never stops if $x \notin L$ (all paths in the tree of computations have infinite lengths).

We say that a NTM M accepts language L in (non-deterministic) time t(n) if M accepts Land for every $x \in L$ there is at least one accepting computation of M on x that has t(|x|) or fewer steps.

We say that $L \in \text{NTIME}(t(n))$ if *L* is accepted by some non-deterministic Turing machine *M* in time O(t(n)).

 $\mathcal{NP} = \bigcup_k \operatorname{NTIME}(n^k)$

Note: All problems in \mathcal{NP} are decision problems since a NTM can answer only 'Yes' (there exists a halting computation) or 'No' (all computations "run" forever).

Autumn 2005

12 of 24

The meaning of "L **is** \mathcal{NP} **-complete"**

Complexity

Many people have tried to solve \mathcal{NP} -complete problems efficiently without succeeding, so most people believe $\mathcal{NP}\neq\mathcal{P}$, but nobody has **proven** yet that \mathcal{NPC} problems need exponential time to be solved.

L is computationally hard ($L \in \mathcal{NP}$ -complete):

 $L \in \mathcal{P} \Rightarrow \mathcal{NP} = \mathcal{P}$

Physiognomy

Checking if $x \in L$ is easy, given a certificate.

Example: HAMILTONICITY

• A deterministic algorithm "must" do exhaustive search:

$$v_1 \rightarrow v_4 \rightarrow v_3 \rightarrow v_2 \rightarrow \mathbf{backtrack}$$

 $\searrow v_2 \rightarrow$

- *n*! possibilities (exponentially many!)
- A non-deterministic algorithm can **guess** the solution/**certificate** and verify it in polynomial time.

Note: A certificate is like a ticket or an ID.

Proving \mathcal{NP} **-completeness**

1. $L \in \mathcal{NP}$

Prove that *L* has a "short certificate of membership".

Ex.: HAMILTONICITY certificate = Hamiltonian path itself.

2. $L \in \mathcal{NP}$ -hard

Show that a known \mathcal{NP} -complete language (problem) is polynomial-time reducible to L, the language we want to show \mathcal{NP} -hard.

Skills to learn

• Transforming problems into each other.

Insight to gain

• Seeing unity in the midst of diversity: A variety of graph-theoretical, numerical, set & other problems are just variants of one another.

But before we can use reductions we need the first \mathcal{NP} -hard problem.

Strategy

As before:

- 'Cook up' a complete Turing machine problem
- Turn it into / reduce it to a natural/known real-world problem (by using the familiar techniques).

BOUNDED HALTING problem

 $L_{BH} = \left\{ (M, x, 1^k) \,|\, \text{NTM } M \text{ accepts string } x \\ \text{ in } k \text{ steps or less} \right\}$

Note: 1^k means k written in unary, i.e. as a sequence of k 1's.

Theorem 1 L_{BH} *is* \mathcal{NP} *-complete.*

Proof:

•
$$L_{BH} \in \mathcal{NP}$$

Certificate: (4, 2, 1, 2). The certificate, which consists of k numbers, is "short enough" (polynomial) compared to the length of the input because k is given in unary in the input!

- For every $L \in \mathcal{NP}$ there exists by definition a pair (M, P_M) such that NTM M accepts every string x that is in L (and only those strings) in $P_M(|x|)$ steps or less.
- Given an instance x of L the reduction module M_R computes $(M, x, 1^{P_M(|x|)})$ and feeds it to M_{BH} . This can be done in time polynomial in the length of x.
- If M_{BH} says 'YES', M_L answers 'YES'. If M_{BH} says 'NO', M_L answers 'NO'.

SATISFIABILITY (SAT)

The first real-world problem shown to be \mathcal{NP} -complete.

Instance: A set $C = \{C_1, \ldots, C_m\}$ of **clauses**. A clause consists of a number of **literals** over a finite set *U* of Boolean variables. (If *u* is a variable in *U*, then *u* and $\neg u$ are literals over *U*.)

Question: A clause is **satisfied** if at least one of its literals is TRUE. Is there a **truth assignment T**, $T : U \rightarrow \{\text{TRUE}, \text{FALSE}\}$, which satisfies all the clauses?

Example

$$I = C \cup U$$

$$C = \{ (x_1 \lor \neg x_2), (\neg x_1 \lor \neg x_2), (x_1 \lor x_2) \}$$

$$U = \{ x_1, x_2 \}$$

 $T = x_1 \mapsto \text{TRUE}, x_2 \mapsto \text{FALSE}$ is a satisfying truth assignment. Hence the given instance *I* is **satisfiable**, i.e. $I \in \text{SAT}$.

$$I' = \begin{cases} C' = \{(x_1 \lor x_2), (x_1 \lor \neg x_2), (\neg x_1)\} \\ U' = \{x_1, x_2\} \end{cases}$$

is not satisfiable.

Theorem 2 (Cook 1971) SATISFIABILITY *is* \mathcal{NP} -complete.

Proof – main ideas:

BOUNDED HALTING "There is a computation"

SATISFIABILITY "There is a

truth assignment"

computation \rightsquigarrow (computation) matrix

Example: input $(M, 010, 1^4)$

Computation matrix *A* is polynomial-sized (in length of input) because a TM moves only one square per time step and *k* is given in unary.

Autumn 2005

20 of 24

tape squares \longmapsto boolean variables

Ex. Square A(2, 6) gives variables B(2, 6, 0), B(2, 6, b), $B(2, 6, \frac{q_0}{0})$, etc. – but only polynomially many.

input symbols \longmapsto single-variable clauses

Ex. $A(1,5) = {}^{s}_{0}$ gives clause $(B(1,5,{}^{s}_{0})) \in C$.

Note that any satisfying truth assignment must map $B(1, 5, {}^{S}_{0})$ to TRUE.

rules/templates \longrightarrow **"if-then clauses" Ex.** a b c gives $((B(i-1, j, a) \land B(i, j, b)) \land B(i+1, j, c)) \Rightarrow B(i, j+1, d)) \in C.$

Note: $(u \land v \land w) \Rightarrow z \equiv \neg u \lor \neg v \lor \neg w \lor z$

Since the tile can be anywhere in the matrix, we must create clauses for all $2 \le i \le 2k$ and $1 \le j \le k$, but only polynomially many.

Autumn 2005

21 of 24

non-determinism → "choice" variables Ex.

G(t) tells us what non-deterministic choice was taken by the machine at step t. We extend the "if-then clauses" with k choice variables:

 $(G(t) \wedge \text{``a''} \wedge \text{``b''} \wedge \text{``c''} \Rightarrow \text{``d''}) \vee (\neg G(t) \wedge \cdots)$

Note: We assume a **canonical NTM** which

- has exactly 2 choices for each (state,scanned symbol)-pair.
- halts (if it does) after exactly *k* steps.

Autumn 2005

24 of 24