Review of unsolvability

To prove unsolvability: show a reduction.
To prove solvability: show an algorithm.
Unsolvable problems (main insight)

- Turing machine (algorithm) properties
- Pattern matching and replacement (tiles, formal systems, proofs etc.)

INF3130 * Undecidability and Complexity * Le ture 2

Complexity

- Horrible problems are solvable by algorithms that take billions of years to produce a solution.
- Nice problems are solvable by "proper" algorithms.
- We want techniques and insights

Complexity \longleftrightarrow resources: time, space \uparrow
complexity classes: P(olynomial time), NP-complete, Co-NP-complete, Exponential time, PSPACE, ...

INF3130 * Undecidability and Complexity * Le ture 2

Goal

Map of classes
= complete or "hardest" problems in a class

INF3130 * Undecidability and Complexity * Le ture 2

Complexity: techniques

Intractable, best algorithms are infeasible Tractable , solved by feasible algorithms

Problems Complexity classes

Horrible $\sim \mathcal{N} \mathcal{P}$-complete, $\mathcal{N} \mathcal{P}$-hard, PSPACE-complete, EXP-complete, ... Nice $\leadsto \mathcal{P}$ (Polynomial time)

Goal of complexity theory

Organize problems into complexity classes.

- Put problems of a similiar complexity into the same class.
- Complexity reveals what approaches to solution should be taken.

Complexity theory will give us an organized view of both problems and algorithms.

Time complexity and the class \mathcal{P}

We say that Turing machine M recognizes language L in time $t(n)$ if given any $x \in \sum^{*}$ as input M halts after at most $t(|x|)$ steps scanning ' Y ' or ' N ' on its tape, scanning ' Y ' if and only if $x \in \mathrm{~L}$.
($|x|$ is the input length - the number of TM tape squares containing the characters of x)

Note: We are measuring worst-case behavior of M, i.e. the number of steps used for the most "difficult" input.

We say that language L has time complexity $t(n)$ and write $L \in \operatorname{TIME}(t(n))$ if there is a Turing machine M which recognizes L in time $\mathcal{O}(t(n))$.

Polynomial time $\mathcal{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)$
Note: \mathcal{P} (as well as every other complexity class) is a class (a set) of formal languages.

INF3130 * Undecidability and Complexity * Le ture 2

"Nice" or "tractable" $\sim \mathcal{P}$

Real time on a PC/Mac/Cray/ (number of steps) Hypercube/...

Turing machine time

Computation Complexity Thesis
All reasonable computer models are polynomial-time equivalent (i.e. they can simulate each other in polynomial time).

Consequence: \mathcal{P} is robust (i.e. machine independent).
Worst-case
complexity $\leadsto \begin{aligned} & \text { Real-world } \\ & \text { difficulty }\end{aligned}$
Feasible
solution $\leadsto \begin{aligned} & \text { Polynomial-time } \\ & \text { algorithm }\end{aligned}$

- $t(n) \sim \mathcal{O}(t(n))$

Argument: "for large-enough $n . .$. "

- $n^{100} \leq n^{\log n}$. Yes, but only for $n>2^{100}$.

Argument: Functions like n^{100} or $n^{\log n}$ don't tend to arrise in practice.
$n^{2} \ll 2^{n}$ already for small or medium-sized inputs:

Polynomial-time simulations \& reductions

We say that Turing machine M computes function $f(x)$ in time $t(n)$ if, when given x as input, M halts after $t(|x|)=t(n)$ steps with $f(x)$ as output on its tape.

Function $f(x)$ is computable in time $t(n)$ if there is a TM that computes $f(x)$ in time $\mathcal{O}(t(n))$.

For constructing the complexity theory we need a suitable notion of an efficient 'reduction':

We say that L_{1} is polynomial-time reducible to L_{2} and write $L_{1} \propto L_{2}$ if there is a polynomial-time computable reduction from L_{1} to L_{2}.

For arguments of the type
L_{1} is hard/complex $\Rightarrow L_{2}$ is hard/complex we need the following lemma:

Lemma 1 A composition of polynomial-time computable functions is polynomial-time computable.

Proof:

- $\left|f_{1}(x)\right| \leq t_{1}(|x|)$ because a Turing machine can only write one symbol in each step.
- "polynomial ${ }^{\text {polynomial }}=$ polynomial" or $\left(n^{k}\right)^{l}=n^{k * l}$
- $t_{2}\left(\left|f_{1}(x)\right|\right)$ is a polynomial.
- $\operatorname{TIME}(t)=t_{1}(|x|)+t_{2}\left(\left|f_{1}(x)\right|\right)$ is a polynomial because the sum of two polynomials is a polynomial.

INF3130 * Undecidability and Complexity * Le ture 2

(computationally)

all solvable
problems

Strategy

It is the same as before (in uncomputability):

- Prove that a problem L is easy by showing an efficient (polynomial-time) algorithm for L.
- Prove that a problem L is hard by showing an efficient (polynomial-time) reduction ($L_{1} \propto L$) from a known hard problem L_{1} to L.

Difficulty

Finding the first truly/provably "hard" problem.

Way out

Completeness \& Hardness

INF3130 * Undecidability and Complexity * Le ture 2

$\mathcal{N} \mathcal{P}$-completeness

How to prove that a problem is hard?

We say that language L is hard for class \mathbf{C} with respect to polynomial-time reductions ${ }^{\dagger}$, or C-hard, if every language in C is polynomial-time reducible to L.

We say that language L is complete for class C with respect to polynomial-time reductions ${ }^{\dagger}$, or C-complete, if $L \in \mathrm{C}$ and L is C-hard.
\dagger Other kinds of reductions may be used

Note:

- If L is C-complete/C-hard and L is easy ($L \in \mathcal{P}$) then every language in C is easy.
- L is C-complete means that L is "hardest in" C or that L "characterizes" C.

INF3130 * Undecidability and Complexity * Lecture 2

$\mathcal{N} \mathcal{P}$ (non-deterministic polynomial time)

A non-deterministic Turing machine (NTM) is defined as deterministic TM with the following modifications:

- NTM has a transition relation \triangle instead of transition function δ
$\Delta:\left\{\left((s, 0),\left(q_{1}, b, R\right)\right),\left((s, 0),\left(q_{2}, 1, L\right)\right), \ldots\right\}$
- NTM says ‘Yes’ (accepts) by halting

Note: A NTM has many possible computations for a given input. That is why it is non-deterministic.

time
initial config.

- Mathematician doing a proof \sim NTM
- The original TM was a NTM

We say that a non-deterministic Turing machine M accepts language L if there exists a halting computation of M on input x if and only if $x \in L$.

Note: This implies that NTM M never stops if $x \notin L$ (all paths in the tree of computations have infinite lengths).

We say that a NTM M accepts language L in (non-deterministic) time $t(n)$ if M accepts L and for every $x \in L$ there is at least one accepting computation of M on x that has $t(|x|)$ or fewer steps.

We say that $L \in \operatorname{NTIME}(\boldsymbol{t}(\boldsymbol{n}))$ if L is accepted by some non-deterministic Turing machine M in time $\mathcal{O}(t(n))$.
$\boldsymbol{\mathcal { N }} \mathcal{P}=\bigcup_{k} \operatorname{NTIME}\left(n^{k}\right)$
Note: All problems in $\mathcal{N P}$ are decision problems since a NTM can answer only 'Yes' (there exists a halting computation) or 'No' (all computations "run" forever).

Complexity

Many people have tried to solve $\mathcal{N} \mathcal{P}$-complete problems efficiently without succeeding, so most people believe $\mathcal{N} \mathcal{P} \neq \mathcal{P}$, but nobody has proven yet that $\mathcal{N} \mathcal{P C}$ problems need exponential time to be solved.
L is computationally hard ($L \in$ $\mathcal{N} \mathcal{P}$-complete):

$$
L \in \mathcal{P} \Rightarrow \mathcal{N P}=\mathcal{P}
$$

Physiognomy

Checking if $x \in L$ is easy, given a certificate.

Example: Hamiltonicity

- A deterministic algorithm "must" do exhaustive search:
$\begin{aligned} & v_{1} \rightarrow v_{4} \rightarrow v_{3} \rightarrow v_{2} \rightarrow \text { backtrack } \\ & \searrow v_{2} \rightarrow\end{aligned}$
$n!$ possibilities (exponentially many!)
- A non-deterministic algorithm can guess the solution/certificate and verify it in polynomial time.

Certificate: (1,1,1,1,1)
Note: A certificate is like a ticket or an ID.

Proving $\mathcal{N} \mathcal{P}$-completeness

1. $L \in \mathcal{N P}$

Prove that L has a "short certificate of membership".
Ex.: Hamiltonicity certificate $=$ Hamiltonian path itself.

2. $L \in \mathcal{N} \mathcal{P}$-hard

Show that a known $\mathcal{N} \mathcal{P}$-complete language (problem) is polynomial-time reducible to L, the language we want to show $\mathcal{N} \mathcal{P}$-hard.

Skills to learn

- Transforming problems into each other.

Insight to gain

- Seeing unity in the midst of diversity: A variety of graph-theoretical, numerical, set \& other problems are just variants of one another.

But before we can use reductions we need the first $\mathcal{N} \mathcal{P}$-hard problem.

Strategy

As before:

- 'Cook up' a complete Turing machine problem
- Turn it into / reduce it to a natural/known real-world problem (by using the familiar techniques).

Bounded Halting problem

$$
\begin{gathered}
L_{B H}=\left\{\left(M, x, 1^{k}\right) \mid \text { NTM } M \text { accepts string } x\right. \\
\text { in } k \text { steps or less }\}
\end{gathered}
$$

Note: 1^{k} means k written in unary, i.e. as a sequence of k l's.

Theorem $1 L_{B H}$ is $\mathcal{N P}$-complete.

Proof:

- $L_{B H} \in \mathcal{N P}$

time
(steps)
Certificate: (4, 2, 1, 2). The certificate, which consists of k numbers, is "short enough" (polynomial) compared to the length of the input because k is given in unary in the input!
- $L_{B H} \in \mathcal{N} \mathcal{P}$-hard

M_{L}
- For every $L \in \mathcal{N} \mathcal{P}$ there exists by definition a pair $\left(M, P_{M}\right)$ such that NTM M accepts every string x that is in L (and only those strings) in $P_{M}(|x|)$ steps or less.
- Given an instance x of L the reduction module M_{R} computes ($M, x, 1^{P_{M}(|x|)}$) and feeds it to $M_{B H}$. This can be done in time polynomial in the length of x.
- If $M_{B H}$ says 'YEs', M_{L} answers 'YES'. If $M_{B H}$ says 'NO', M_{L} answers 'No'.

Satisfiability (SAT)

The first real-world problem shown to be $\mathcal{N} \mathcal{P}$-complete.

Instance: A set $C=\left\{C_{1}, \ldots, C_{m}\right\}$ of clauses. A clause consists of a number of literals over a finite set U of Boolean variables. (If u is a variable in U, then u and $\neg u$ are literals over U.

Question: A clause is satisfied if at least one of its literals is TRUE. Is there a truth assignment $T, T: U \rightarrow\{$ TRUE, FALSE $\}$, which satisfies all the clauses?

Example

$I=C \cup U$
$C=\left\{\left(x_{1} \vee \neg x_{2}\right),\left(\neg x_{1} \vee \neg x_{2}\right),\left(x_{1} \vee x_{2}\right)\right\}$
$U=\left\{x_{1}, x_{2}\right\}$
$T=x_{1} \mapsto$ TRUE, $x_{2} \mapsto$ FALSE is a satisfying truth assignment. Hence the given instance I is satisfiable, i.e. $I \in$ SAT.

$$
I^{\prime}=\left\{\begin{array}{l}
C^{\prime}=\left\{\left(x_{1} \vee x_{2}\right),\left(x_{1} \vee \neg x_{2}\right),\left(\neg x_{1}\right)\right\} \\
U^{\prime}=\left\{x_{1}, x_{2}\right\}
\end{array}\right.
$$

is not satisfiable.

INF3130 * Undecidability and Complexity * Ledture 2

Theorem 2 (Cook 1971) SATISFIABILITY is
$\mathcal{N} \mathcal{P}$-complete.
Proof-main ideas:

Bounded Halting

"There is a computation"

SATISFIABILITY

 "There is a truth assignment"computation \sim (computation) matrix
Example: input $\left(M, 010,1^{4}\right)$

		b	b	b	b	b			${ }_{\mathbf{Y}}^{\text {h }}$	b
		b	b	b	b	b			勒	b
		b	b	b	b	b	b	$\begin{gathered} q_{2} \\ 0 \end{gathered}$	b	b
		b	b	b	b	$\begin{gathered} \mathrm{q}_{1} \\ 1 \end{gathered}$	${ }_{1}$	0	b	b
		b	b	b	S	1		0	b	b

Computation matrix A is polynomial-sized (in length of input) because a TM moves only one square per time step and k is given in unary.

tape squares \longmapsto boolean variables

Ex. Square $A(2,6)$ gives variables $B(2,6,0)$, $B(2,6, b), B\left(2,6, \begin{array}{c}q_{0} \\ 0\end{array}\right)$, etc. - but only polynomially many.

input symbols \longmapsto single-variable clauses

Ex. $A(1,5)={ }_{0}^{S}$ gives clause $(B(1,5, \stackrel{S}{0})) \in C$.
Note that any satisfying truth assignment must map $B\left(1,5,{ }_{0}^{S}\right)$ to TRUE.
rules/templates \longmapsto "if-then clauses"

Ex. | a | d |
| :--- | :--- |
| | b | gives $((B(i-1, j, a) \wedge B(i, j, b)$

$\wedge B(i+1, j, c)) \Rightarrow B(i, j+1, d)) \in C$.
Note: $(u \wedge v \wedge w) \Rightarrow z \equiv \neg u \vee \neg v \vee \neg w \vee z$
Since the tile can be anywhere in the matrix, we must create clauses for all $2 \leq i \leq 2 k$ and $1 \leq j \leq k$, but only polynomially many.

non-determinism \longmapsto "choice" variables

Ex.

$G(t)$ tells us what non-deterministic choice was taken by the machine at step t. We extend the "if-then clauses" with k choice variables:

$$
(G(t) \wedge " \mathrm{a} " \wedge \mathrm{cb} " \wedge " \mathrm{c} " \Rightarrow \mathrm{~d} ") \vee(\neg G(t) \wedge \cdots)
$$

Note: We assume a canonical NTM which

- has exactly 2 choices for each (state,scanned symbol)-pair.
- halts (if it does) after exactly k steps.

INF3130 * Undecidability and Complexity * Le ture 2

Further (basic) reductions

BOUNDED HALTING
\downarrow
SATISFIABILITY (SAT)
\downarrow

3-DIMENSIONAL VERTEX COVER (VC) MATCHING (3DM)

HAMILTONICITY CLIQUE PARTITION

Polynomial-time reductions (review)

$L_{1} \propto L_{2}$ means that

- $R: \sum^{*} \rightarrow \sum^{*}$ such that
$x \in L_{1} \Rightarrow f_{R}(x) \in L_{2}$ and
$x \notin L_{1} \Rightarrow f_{R}(x) \notin L_{2}$

- $R \in P_{f}$, i.e. $R(x)$ is polynomial computable

SATISFIABILITY \propto 3-SATISFIABILITY

SAT

Clauses with any number of literals
 Clauses with exactly 3 literals
 \section*{3SAT}

- C_{j} is the j^{\prime} th SAT-clause, and C_{j}^{\prime} is the corresponding 3SAT-clauses.
- y_{j} are new, fresh variables, only used in $C_{j}{ }^{\prime}$.

$$
\left.\begin{array}{rlc}
C_{j} & \boldsymbol{C}_{j}^{\prime} \\
\left(x_{1} \vee x_{2} \vee x_{3}\right) & \longmapsto & \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
\left(x_{1} \vee x_{2}\right) & \longmapsto & \left(x_{1} \vee x_{2} \vee y_{j}\right),\left(x_{1} \vee x_{2} \vee \neg y_{j}\right) \\
\left(x_{1}\right) & \longmapsto & \left(x_{1} \vee y_{j}^{1} \vee y_{j}^{2}\right),\left(x_{1} \vee \neg y_{j}^{1} \vee y_{j}^{2}\right), \\
& \left(x_{1} \vee y_{j}^{1} \vee \neg y_{j}^{2}\right),\left(x_{1} \vee \neg y_{j}^{1} \vee \neg y_{j}^{2}\right) \\
\left(x_{1} \vee \cdots \vee x_{8}\right) & \longmapsto & \left(x_{1} \vee x_{2} \vee y_{j}^{1}\right),\left(\neg y_{j}^{1} \vee x_{3} \vee y_{j}^{2}\right), \\
& \left(\neg y_{j}^{2} \vee x_{4} \vee y_{j}^{3}\right),\left(\neg y_{j}^{3} \vee x_{5} \vee y_{j}^{4}\right), \\
& \left(\neg y_{j}^{4} \vee x_{6} \vee y_{j}^{5}\right),\left(\neg y_{j}^{5} \vee x_{7} \vee x_{8}\right)
\end{array}\right)
$$

Question: Why is this a proper reduction?

