INF3130 * Undecidability and Complexity * Ledture 2

Review of unsolvability

To prove unsolvability: show a reduction.
To prove solvability: show an algorithm.

Unsolvable problems (main insight)

e Turing machine (algorithm) properties

e Pattern matching and replacement (tiles,
formal systems, proofs etc.)

Autumn 2005 1 of 24

INF3130 * Undecidability and Complexity * Ledture 2

Complexity

> Unsolvable

Horrible (intractable)
Nice (tractable)

e Horrible problems are solvable by
algorithms that take billions of years to
produce a solution.

)

e Nice problems are solvable by “proper’
algorithms.

e We want techniques and insights

Complexity «—— resources: time, space
|

complexity classes:

P(olynomial time), NP-complete,

Co-NP-complete, Exponential time,

PSPACE, ...

Autumn 2005 2 0of 24

INF3130 * Undecidability and Complexity * Ledture 2

EXPTIME

PSPACE

Map of classes

= complete or "hardest"
problemsin aclass

Autumn 2005 30f24

INF3130 * Undecidability and Complexity * Ledture 2

Complexity: techniques

> Impossible

Horrible (intractable)
Nice (tractable)

Intractable , best algorithms are infeasible
Tractable , solved by feasible algorithms

Problems Complexity classes
Horrible ~~ NP-complete, N'P-hard,
PSPACE-complete,
EXP-complete, ...

Nice ~~ P (Polynomial time)

Organize problems into complexity classes.

e Put problems of a similiar complexity into
the same class.

e Complexity reveals what approaches to
solution should be taken.

Complexity theory will give us an organized
view of both problems and algorithms.

Autumn 2005 4 of 24

INF3130 * Undecidability and Complexity * Lelture 2

We say that Turing machine M recognizes
language L in time ¢(n) if given any z € Y "
as input M halts after at most ¢(|x|) steps
scanning 'Y’ or ‘N’ on its tape, scanning 'Y’ if
and only if = €L.

(|z| is the input length — the number of TM
tape squares containing the characters of x)

Note: We are measuring worst-case behavior
of M, i.e. the number of steps used for the
most “difficult” input.

We say that language L has time complexity
t(n) and write L € TIME(¢(n)) if thereis a
Turing machine M which recognizes L in
time O (t(n)).

Polynomial time P= | TIME (n*)
k

Note: P (as well as every other complexity
class) is a class (a set) of formal languages.

Autumn 2005 50f 24

INF3130 * Undecidability and Complexity * Ledture 2

/\,}

Real time on s Turing machine time

a PC/Mac/Cray/ (number of steps)
Hypercube/...

All reasonable computer models are
polynomial-time equivalent (i.e. they can
simulate each other in polynomial time).

Consequence: P is robust (i.e. machine
independent).

Worst-case s Real-world
complexity difficulty

Feasible s Polynomial-time
solution algorithm

o t(n) >0 (t(n))
Argument: “for large-enough n...”

o n!%0 < ploen Yes, but only for n > 210,
Argument: Functions like n'" or n'°¢” don’t
tend to arrise in practice.

n
n? < 2" already for small 2 ,
or medium-sized inputs: 4

Autumn 2005 6 of 24

INF3130 * Undecidability and Complexity * Lelture 2

We say that Turing machine M computes
function f(x) in time t(n) if, when given z as
input, M halts after ¢(|z|) = t(n) steps with
f(x) as output on its tape.

Function f(x) is computable in time t(n) if
there is a TM that computes f(z) in time
O (t(n)).

For constructing the complexity theory we
need a suitable notion of an efficient
reduction’:

— | My

A4

<
—

\ 4

ML

1

We say that L, is polynomial-time reducible
to L, and write L o< L- if thereis a

polynomial-time computable reduction from
L1 to LQ.

Autumn 2005 7 of 24

INF3130 * Undecidability and Complexity * Lelture 2

For arguments of the type
Ly is hard/complex = L, is hard/complex

we need the following lemma:

Lemma 1 A composition of polynomial-time
computable functions is polynomial-time

computable.
Proof:
X f1(x) fo(f1(x))
—>| My . >] M; , >
i1 o

o | fi(x)| < ti(|x|) because a Turing machine
can only write one symbol in each step.

e “polynomial Polyromial — 551vnomial” or
z
(nh) = i

e {2(|f1(z)|) is a polynomial.

e TIME (¢) = t1(|z|) + t2(| fi(z)|) is a
polynomial because the sum of two
polynomials is a polynomial.

Autumn 2005 8 of 24

INF3130 * Undecidability and Complexity * Ledture 2

(computationally)
hard

«——\Wewant to make a cut!

easy

all solvable
problems

It is the same as before (in uncomputability):

e Prove that a problem L is easy by showing
an efficient (polynomial-time) algorithm
for L.

e Prove that a problem L is hard by showing
an efficient (polynomial-time) reduction
(L1 o< L) from a known hard problem L; to
L.

Finding the first truly/provably “hard”
problem.

Completeness & Hardness

Autumn 2005

9 of 24

INF3130 * Undecidability and Complexity * L?ure 2

N P-completeness

How to prove that
a problem is hard?

a

We say that language L is hard for class C
with respect to polynomial-time reductions!,
or C-hard, if every language in C is
polynomial-time reducible to L.

We say that language L is complete for class
C with respect to polynomial-time

reductions’, or C-complete, if L €C and L is
C-hard.

T Other kinds of reductions may be used

A Note:

o If L is C-complete/C-hard and L is easy
(L € P) then every language in C is easy.

e [is C-complete means that L is “hardest
in” C or that L “characterizes” C.

Autumn 2005 10 of 24

INF3130 * Undecidability and Complexity * Lelture 2

A non-deterministic Turing machine (NTM)
is defined as deterministic TM with the
following modifications:

e NTM has a transition relation A instead
of transition function ¢

A - {(<s,o>, (0,5, R)), ((5,0), (2.1, L)), .. }

e NTM says ‘Yes’ (accepts) by halting

Note: A NTM has many possible

computations for a given input. That is why it
is non-deterministic.

e Mathematician doing a proof ~~NTM

e The original TM was a NTM

Autumn 2005 11 of 24

INF3130 * Undecidability and Complexity * Lelture 2

We say that a non-deterministic Turing
machine M accepts language L if there exists
a halting computation of M on input zx if and
onlyifz € L.

Note: This implies that NTM M never stops if
x ¢ L (all paths in the tree of computations
have infinite lengths).

We say that a NTM M accepts language L in
(non-deterministic) time ¢(n) if M accepts L
and for every x € L there is at least one
accepting computation of M on x that has
t(|z|) or fewer steps.

We say that L € NTIME (¢(n)) if L is
accepted by some non-deterministic Turing
machine M in time O (t(n)).

NP = |JNTIME (n")
k

Note: All problems in NP are decision
problems since a NTM can answer only "Yes’
(there exists a halting computation) or 'No’
(all computations “run” forever).

Autumn 2005 12 of 24

INF3130 * Undecidability and Complexity * Ledture 2

Many people have tried to solve
NP-complete problems efficiently without
succeeding, so most people believe N'P#£P,
but nobody has proven yet that
NPCproblems need exponential time to be
solved.

L is computationally hard (L €
N'P-complete):

LeP=NP=P

Checking if x € L is easy, given a certificate.

Autumn 2005 13 of 24

INF3130 * Undecidability and Complexity * Lelture 2

e A deterministic algorithm “must” do
exhaustive search:
v; — v — V3 — v — backtrack

Ny,

n! possibilities (exponentially many!)

e A non-deterministic algorithm can guess
the solution/certificate and verify it in
polynomial time.

V
e
Voo Vs

V3 2 A V3

1
Va Vo _

1 <— bactracking
V5 Vi tovyg

7 \o

Certificate: (1,1,1,1,1)
Note: A certificate is like a ticket or an ID.

Autumn 2005 14 of 24

INF3130 * Undecidability and Complexity * Ledture 2

Proving N/ P-completeness

1.LeNP
Prove that L has a “short certificate of
membership”.

Ex.: HAMILTONICITY certificate =
Hamiltonian path itself.

2. L € N'P-hard
Show that a known A/P-complete language
(problem) is polynomial-time reducible to
L, the language we want to show N"P-hard.

First NP-complete
language

’__——\

Bl

Autumn 2005 15 of 24

INF3130 * Undecidability and Complexity * Ledture 2

e Transforming problems into each other.

e Seeing unity in the midst of diversity: A
variety of graph-theoretical, numerical, set
& other problems are just variants of one
another.

But before we can use reductions we need the
first A"P-hard problem.

As before:

e 'Cook up’ a complete Turing machine
problem

e Turn it into / reduce it to a natural/known
real-world problem (by using the familiar
techniques).

Autumn 2005 16 of 24

INF3130 * Undecidability and Complexity * Lelture 2

Lpy = {(M,z,1")|NTM M accepts string x
in % steps or less }

Note: 1¥ means k written in unary, i.e. as a
sequence of £ 1’s.

Theorem 1 Ly is N'P-complete.
Proof:

o gy € NP
Co (initial config.)

Certificate: (4,2, 1,2). The certificate, which
consists of £ numbers, is “short enough”
(polynomial) compared to the length of
the input because £ is given in unary in the
input!

Autumn 2005 17 of 24

INF3130 * Undecidability and Complexity * Lelture 2

o Lpy € NP-hard

(M x,1Pm (X) 5

—)MR

— For every L € N'P there exists by
definition a pair (M, P),) such that NTM
M accepts every string x that is in L (and
only those strings) in Py,(|z|) steps or
less.

— Given an instance x of L the reduction
module My computes (M, x, 17(#)) and
feeds it to M. This can be done in
time polynomial in the length of .

— If My says 'YES', M answers 'YES'. If
Mpy says 'NO’, M answers 'NO’.

Autumn 2005 18 of 24

INF3130 * Undecidability and Complexity * Lelture 2

The first real-world problem shown to be
N'P-complete.

Instance: Aset C = {C,...,C,,} of clauses. A
clause consists of a number of literals over a
finite set U of Boolean variables. (If v is a

variable in U, then v and —u are literals over
U.)

Question: A clause is satisfied if at least one
of its literals is TRUE. Is there a truth
assignment T, 7" : U — {TRUE, FALSE}, which
satisfies all the clauses?

I=CulU
C = {(xl V o), (mx1 V 1xg), (21 V x2>}
U= {xbng}

T = x1 — TRUE, x5 — FALSE is a satisfying
truth assignment. Hence the given instance /
is satisfiable, i.e. / € SAT.

" {c’ = {(21 V@), (21 V ~22), (1) }
U/ = {5131, ZEQ}

is not satisfiable.

Autumn 2005 19 of 24

INF3130 * Undecidability and Complexity * Lelture 2

Theorem 2 (Cook 1971) SATISFIABILITY is
NP -complete.

Proof - main ideas:

BOUNDED HALTING SATISFIABILITY
There is a There is a
computation” truth assignment”

computation ™ (computation) matrix

Example: input (M, 010, 1%)

blb|blb|blb|b|¥]|b
b|b|b|b|b|b|b|E|b
b|b|b|b|b|b|2|b|b
bbbbbqfObb
b|b|b|blo|1]0]b|b

Computation matrix A is polynomial-sized
(in length of input) because a TM moves only
one square per time step and k is given in
unary.

Autumn 2005 20 of 24

INF3130 * Undecidability and Complexity * Lelture 2

Ex. Square A(2, 6) gives variables B(2, 6, 0),

B(2,6,b), B(2,6, %O), etc. — but only
polynomially many.

Ex. A(1,5) = Sgives clause (B(1,5, 8)) c C.

Note that any satisfying truth assignment
must map B(1, 5, 8) to TRUE.

d
Ex. gives ((B(z' ~1,4,a) A B(i, j,b)

alb|c

AB(i+1,j.¢)) = B(i,j + 1,d>) cC.
Note: (uANvVAWw)=2z=-uV-wV-wVz

Since the tile can be anywhere in the matrix,
we must create clauses for all 2 < 7 < 2k and
1 < j <k, but only polynomially many.

Autumn 2005 21 of 24

INF3130 * Undecidability and Complexity * Lelture 2

Ex.

G(2) F T
G(2) F T F T

G (t) tells us what non-deterministic choice
was taken by the machine at step . We extend
the “if-then clauses” with k choice variables:

(G(t) A“D A DAY = ad?’) \/ (—|G(t) A - -)

Note: We assume a canonical NTM which

e has exactly 2 choices for each
(state,scanned symbol)-pair.

e halts (if it does) after exactly k steps.

Autumn 2005 22 of 24

INF3130 * Undecidability and Complexity * Ledture 2

Further (basic) reductions

BOUNDED HALTING

l

SATISFIABILITY (SAT)

l

3SAT

7N

3-DIMENSIONAL VERTEX COVER (VC)

MATCHING (3DM)
; /N

HAMILTONICITY CLIQUE
PARTITION

L{ < L, means that

e R:Y " — Y " such that
r €L = fR<ZC> e Lo and
v & L= frlx) & Lo

o

Lq

o

> >

e R € Py, i.e. R(z)is polynomial computable

Autumn 2005 23 of 24

INF3130 * Undecidability and Complexity * Lelture 2

SAT 3SAT
Clauses withany . Clauses with
number of literals exactly 3 literals

e C; is the j'th SAT-clause, and Cj/ is the
corresponding 3SAT-clauses.

3 3 /
e y, are new, fresh variables, only used in C; .

/

C; C;
(561 V 19V 5133) — (561 V 19 V 5133)

(w1 Vo) (21 Vs V), (x1 VeV -y;)

(1) — (x1Vy; Vi), (21 V oy Vi),
(21 Vy; V=), (21 V —y) Vo)

(#1 V- Vag) — (Vo Vy)), (-y) Ve Vs,
(g5 Vg V), (myl Vs V),

(=y; Ve Vy)), (my) Var V)

Question: Why is this a proper reduction?

Autumn 2005 24 of 24

