Alternative approaches to algorithm design and analysis

- Problem: Exhaustive search gives typically $\mathcal{O}(n!) \approx \mathcal{O}\left(n^{n}\right)$-algorithms for $\mathcal{N} \mathcal{P}$-complete problems.
- So we need to get around the worst case / best solution paradigm:
- worst-case \rightarrow average-case analysis
- best solution \rightarrow approximation
- best solution \rightarrow randomized algorithms

Approximation

Def. 1 Let L be an optimization problem. We say that algorithm M is a polynomial-time ϵ-approximation algorithm for L if M runs in polynomial time and there is a constant $\epsilon \geq 0$ such that M is guaranteed to produce, for all instances of L, a solution whose cost is within an ϵ-neighborhood from the optimum.
Note 1: Formally this means that the relative error $\frac{t_{M}(n)-\text { OPT } \mid}{\text { OPT }}$ must be less than or equal to the constant ϵ.

Note 2: We are still looking at the worst case, but we don't require the very best solution any more.

Example: TSP with triangle inequality has a polynomial-time approximation algorithm.

INF3130 * Undecidability and Complexity * Ledture 4

Algorithm TSP- \triangle :

Phase I: Find a minimum spanning tree.
Phase II: Use the tree to create a tour.

The cost of the produced solution can not be more than 2.OPT, otherweise the OPT tour (minus one edge) would be a more minimal spanning tree itself. Hence $\epsilon=1$.

Opt. tour

INF3130 * Undecidability and Complexity * Lecture 4

Theorem 1 TSP has no polynomial-time ϵ-approximation algorithm for any ϵ unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.

Proof:

Idea: Given ϵ, make a reduction from HAMILTONICITY which has only one solution within the ϵ-neighborhood from OPT, namely the optimal solution itself.

$$
K=n(=4)
$$

The error resulting from picking a non-edge is: Approx.solutin - OPT =
$(n-1+2+\epsilon n)-n=(1+\epsilon) n>\epsilon n$
Hence a polynomial-time ϵ-approximation algorithm for TSP combined with the above reduction would solve HAMILTONICITY in polynomial time.

Example: Vertex Cover

- Heuristics are a common way of dealing with intractable (optimization) problems in practice.
- Heuristics differ from algorithms in that they have no performance guarantees, i.e. they don't always find the (best) solution.

A greedy heuristic for Vertex Cover-opt.:

Heuristic VC-H1:

Repeat until all edges are covered:
1.Cover highest-degree vertex v;
2.Remove v (with edges) from graph;

Theorem 2 The heuristic VC-H1 is not an ϵ-approximation algorithm for VERTEX Cover-opt. for any fixed ϵ.

Autumn 2006

Proof:

今Show a counterexample, i.e. cook up an instance where the heuristic performs badly.

Counterexample:

- A graph with nodes a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}.
- Node b_{i} is only connected to node a_{i}.
- A bunch of c-nodes connected to a-nodes in the following way:
— Node c_{1} is connected to a_{1} and a_{2}. Node c_{2} is connected to a_{3} and a_{4}, etc.
- Node $c_{n / 2+1}$ is connected to a_{1}, a_{2} and a_{3}. Node $c_{n / 2+2}$ is connected to a_{4}, a_{5} and a_{6}, etc.
-..
- Node c_{m-1} is connected to $a_{1}, a_{2}, \ldots a_{n-1}$.
- Node c_{m} is connected to all a-nodes.

INF3130 * Undecidability and Complexity * Ledture 4

- The optimal solution OPT requires n guards (on all a-nodes).
- VC-H1 first covers all the c-nodes (starting with c_{m}) before covering the a-nodes.
- The number of c-nodes are of order $n \log n$.
- Relative error for VC-H1 on this instance:

$$
\begin{aligned}
\frac{|\mathrm{VC}-\mathrm{H} 1|-|\mathrm{OPT}|}{|\mathrm{OPT}|} & =\frac{(n \log n+n)-n}{n} \\
& =\frac{n \log n}{n}=\log n \neq \epsilon
\end{aligned}
$$

- The relative error grows as a function of n.

Heuristic VC-H2:

Repeat until all edges are covered:

1. Pick an edge e;
2. Cover and remove both endpoints of e.

- Since at least one endpoint of every edge must be covered, $|\mathrm{VC}-\mathrm{H} 2| \leq 2 \cdot|\mathrm{OPT}|$.
- So VC-H2 is a polynomial-time ϵ-approximation algorithm for VC with $\epsilon=1$.
- Surpisingly, this "stupid-looking" algorithm is the best (worst case) approximation algorithm known for Vertex Cover-opt.

INF3130 * Undecidability and Complexity * Le ture 4

Average-case analysis \& algorithms

w) (st case

- Problem $=\left(\boldsymbol{L}, \boldsymbol{P}_{r}\right)$ where P_{r} is a probability function over the input strings:
$P_{r}: \sum^{*} \rightarrow[0,1]$.
- $\sum_{x \in \sum^{*}} P_{r}(x)=1$ (the probabilities must sum up to 1).
- Average time of an algorithm:

$$
T_{A}(n)=\sum_{\left\{x \in \sum^{*}| | x \mid=n\right\}} T_{A}(x) P_{r}(x)
$$

- Key issue: How to choose P_{r} so that it is a realistic model of reality.
- Natural solution: Assume that all instances of length n are equally probable (uniform distribution).

INF3130 * Undecidability and Complexity * Ledture 4

Example: 3-colorability

In 3-COLORABILITY we are given a graph as input and we are asked to decide whether it is possible to color the nodes using 3 different colors in such a way that any two nodes have different colors if there is an edge between them.

Theorem 3 3-cOLORABILITY, which is an $\mathcal{N} \mathcal{P}$-complete problem, is solvable in constant average (expected) time on the IEPM with $p=1 / 2$ by a branch-and-bound algorithm (with exponential worst-case complexity).
Proof:
Strategy (for a rough estimate): Use the indep. edge prob. model. Estimate expected time for finding a proof of non-3-colorability.

K_{4} (a clique of size 4) is a proof of non-3-colorability.

INF3130 * Undecidability and Complexity * Lecture 4

- The probability of 4 nodes being a K_{4} :

$$
P_{r}\left(K_{4}\right)=2^{-\binom{4}{2}}=2^{-6}=\frac{1}{128}
$$

- Expected no. of 4-vertex sets examined before a K_{4} is found:

$$
\begin{aligned}
\sum_{i=1}^{\infty} i\left(1-2^{-6}\right)^{i-1} 2^{-6} & =2^{-6} \sum_{i=1}^{\infty} i\left(1-2^{-6}\right)^{i-1} \\
& \stackrel{*}{=} 2^{-6} \frac{1}{\left(1-\left(1-2^{-6}\right)\right)^{2}} \\
& =2^{-6} \frac{1}{\left(2^{-6}\right)^{2}}=\frac{2^{12}}{2^{6}}=2^{6}=128
\end{aligned}
$$

- $\left(1-2^{-6}\right)^{i-1} 2^{-6}$ is the probability that the first K_{4} is found after examining exactly i 4 -vertex sets.
- (*) is correct due to the following formula ($q=1-2^{-6}$) from mathematics (MA100):

$$
\begin{aligned}
\sum_{i=1}^{\infty} i q^{i-1} & =\frac{\delta}{\delta q}\left(\sum_{i=1}^{\infty} q^{i}\right)=\frac{\delta}{\delta q}\left(\frac{q}{1-q}\right) \\
& =\frac{1}{(1-q)^{2}}
\end{aligned}
$$

Conlusion: Using IEPM with $p=\frac{1}{2}$ we need to check 128 four-vertex sets on average before we find a K_{4}.

Note: Random graphs with constant edge probability are very dense (have lots of edges). More realistic models has p as a function of n (the number of vertices), i.e. $p=1 / \sqrt{n}$ or $p=5 / n$.

0-1 Laws
as a link between probabilistic and deterministic thinking.

Example: "Almost all" graphs are

- not 3-colorable
- Hamiltonian
- connected
-...
Def. 2 A property of graphs or strings or other kind of problem instances is said to have a zero-one law if the limit of the probability that a graph/string/problem instance has that property is either 0 or 1 when n tends to infinity ($\lim _{n \rightarrow \infty}$).

INF3130 * Undecidability and Complexity * Ledture 4

Example: Hamiltonicity

a linear expected-time algorithm for random graphs with $p=1 / 2$.

- Difficulty: The probability of non-Hamiltonicity is too large to be ignored,
e.g. $P_{r}(\exists$ at least 1 isolated vertex $)=2^{-n}$.
- The algorithm has 3 phases:
- Phase 1: Construct a Hamiltonian path in linear time. Fails with probability $P_{1}(n)$.
- Phase 2: Find proof of non-Hamiltonicity or construct Hamiltonian path in time $\mathcal{O}\left(n^{2}\right)$. Unsuccessful with probability $P_{2}(n)$.
- Phase 3: Exhaustive search (dynamic programming) in time $\mathcal{O}\left(2^{2 n}\right)$.
- Expected running time is
$\leq \mathcal{O}(n)+\mathcal{O}\left(n^{2}\right) P_{1}(n)+\mathcal{O}\left(2^{2 n}\right) P_{1}(n) P_{2}(n)$
$=\mathcal{O}(n)$ if $P_{1}(n) \cdot \mathcal{O}\left(n^{2}\right)=\mathcal{O}(n)$

$$
\text { and } P_{1}(n) P_{2}(n) \cdot \mathcal{O}\left(2^{2 n}\right)=\mathcal{O}(n)
$$

- Phase 2 is necessary because
$\mathcal{O}\left(2^{-n}\right) \cdot \mathcal{O}\left(2^{2 n}\right)=\mathcal{O}\left(2^{n}\right)$.
- After failing to construct a Hamiltonian path fast in phase 1, we first reduce the probability of the instance being non-Hamiltonian (phase 2), before doing exhaustive search in phase 3.

INF3130 * Undecidability and Complexity * Le ture 4

Randomized computing

Machines that can toss coins (generate random bits/numbers)

- Worst case paradigm
- Alváays give the correct (best) solution

Randomized algorithms

今
Idea: Toss a coin \& simulate non-determinism

Example 1: Proving polynomial non-identities

$$
\begin{aligned}
(x+y)^{2} & \stackrel{?}{\neq} x^{2}+2 x y+y^{2} \\
& ? \\
& \neq x^{2}+y^{2}
\end{aligned}
$$

- What is the "classical" complexity of the problem?
- Fast, randomized algorithm:
- Guess values for x and y and compute left-hand side (LHS) and right-hand side (RHS) of equation.
- If LHS \neq RHS, then we know that the polynomials are different.
- If LHS $=$ RHS, then we suspect that the polynomials are identical, but we don't know for sure, so we repeat the experiment with other x and y values.
- Idea works if there are many witnesses.

- witnesses

Let $f(n)$ be a polynomial in n and let the probability of success after $f(n)$ steps/coin tosses be $\geq \frac{1}{2}$. After $f(n)$ steps the algorithm either

- finds a witness and says "Yes, the polynomials are different", or
- halts without success and says "No, maybe the polynomials are identical".
This sort of algorithm is called a Monte Carlo algorithm.

Note: The probability that the Monte Carlo algorithm succeeds after $f(n)$ steps is independent of input (and dependent only on the coin tosses).

- Therefore the algorithm can be repeated on the same data set.
- After 100 repeated trials, the probability of failure is $\leq 2^{-100}$ which is smaller then the probability that a meteorite hits the computer while the program is running!

INF3130 * Undecidability and Complexity * Le ture 4

Metaheuristics

Simulated Annealing

- Analogy with physical annealing
- 'Temperature' T , annealing schedule
- 'Bad moves' with probability $\exp (-\delta f / T)$

Genetic algorithms

- Analogy with Darwinian evolution
- 'individuals', 'fitness', 'cross breeding'

Neural Networks

- Analogy with human mind
- 'neurons', 'learning'

Taboo search

- Analogy with culture
- adaptive memory, responsive exploration

Parallel computing

- some problems can be efficiently parallelized
- some problems seems inherently sequential

Parallel machine models

- Alternating TMs
- Boolean Circuits

output

— Boolean Circuit complexity: "time" (length of longest directed path) and hardware (\# of gates)

- Parallell Random Access Machines (PRAMs)

m_{0}	m_{1}	m_{2}	m_{3}		

— Read/Write conflict resolution strategy
— PRAM complexity: time (\# of steps) and hardware (\# of processors)

Example: Parallel summation in time $\mathcal{O}(\log n)$

Result: Boolean Circuit complexity = PRAM complexity.

Autumn 2006

Limitations to parallel computing

 Good newsparallel time \leftrightarrow sequential space
Example: Hamiltonicity can easily be solved in parallel polynomial time:

- On a graph with n nodes there are at most n ! possible Hamiltonian paths.
- Use n ! processors and let each of them check 1 possible solution in polynomial time.
- Compute the the OR of the answers in parallel time $\mathcal{O}(\log (n!))=\mathcal{O}(n \log n)$.
Bad news
Theorem 4 With polynomial many processors parallel poly. time $=$ sequential poly. time

Proof:

- 1 processor can simulate one step of m processors in sequential time $t_{1}(m)=\mathcal{O}(m)$
- Let $t_{2}(n)$ be the polynomial parallel time of the computation. If m is polynomial then $t_{1}(m) \cdot t_{2}(n)=$ polynomial.

INF3130 * Undecidability and Complexity * Ledture 4

Parallel complexity classes

Def. 3 A language is said to be in class $\mathcal{N C}$ if it is recognized in polylogarithmic, $\mathcal{O}\left(\log ^{k}(n)\right)$, parallel time with uniform polynomial hardware.

- $\mathcal{P} \stackrel{?}{=} \mathcal{N C}$

