
INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 1 of 18

Undecidability and
Complexity in Four Lectures

Overview
• Lecture 1: Introduction. Uncomputability.

• Lecture 2: Intractability.

• Lecture 3: Proving Intractability.

• Lecture 4: Coping With Intractability.

Lecture 1 overview
• Our approach - modeling

• The subject matter - what is this all about

• Historical introduction

• How to model problems

• How to model solutions

• How to prove that some problems have no
solutions

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 2 of 18

Our approach

Modeling

models

abstraction interpretation

proof

practice

results

Perspective

In
fo

rm
at

io
n

H
ie

ra
rc

h
y

Proofs, techniques
Technical details

High-Level Information
Basic insights
Big picture

Low-Level Information

Lectures → Mainly high-level understanding

Group sessions → Practice skills: proofs,

problems

Studying strategy: Don’t memorize pensum –

try to understand the whole!

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 3 of 18

Subject matter
How to solve information-processing
problems efficiently.

formalisation
modeling

abstraction

Problems ; interesting, ; formal

natural languages

problems (F.L.s)

(Ex. MATCHING, SORTING, T.S.P.)

Solutions ; algorithms ; Turing

machines

Efficiency ; complexity ; complexity

classes

Unsolvable (impossible)

Nice

Problems,
F.L.s

Intractable (horrible)

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 4 of 18

Historical introduction
In mathematics (cooking, engineering, life)
solution = algorithm

Examples:

•
√

253 =

• ax2 + bx + c = 0

• Euclid’s g.c.d. algorithm — the earliest
non-trivial algorithm?

∃ algorithm? → metamathematics

• K. Gödel (1931): nonexistent theories

• A. Turing (1936): nonexistent algorithms
(article: “On computable Numbers . . . ”)

Unsolvable

techniques
Turing’s results &

Solvable

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 5 of 18

• Von Neumann (ca. 1948): first computer

• Edmonds (ca. 1965): an algorithm for
MAXIMUM MATCHING

Ann •
Mary •
Moe •

Billy•
Joe•
Bob•

hhhh
e
e
e
e
e,

,
,

,

hhhh

Edmonds’ article rejected based on existence
of trivial algorithm: Try all possibilities!

Complexity analysis of trivial algorithm
(using approximation)

• n = 100 boys

• n! = 100 × 99 × · · · × 1 ≥ 1090 possibilities

• assume ≤ 1012 possibilites tested per
second

• ≤ 1012+4+2+3+2 ≤ 1023 tested per century

• running time of trivial algorithm for
n = 100 is ≥ 1090−23 = 1067 centuries!

Compare: “only” ca. 1013 years since Big Bang!

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 6 of 18

Edmonds: My algorithm is a
polynomial-time algorithm, the trivial
algorithm is exponential-time!

• ∃ polynomial-time algorithm for a given
problem?

• Cook / Levin (1972): NP-completeness

P

Intractable

Cook/Levin results &
techniques

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 7 of 18

Problems, formal languages

All the world’s Ex. compute salaries,

information-processing control Lunar

problems module landing

numbers ...

graphs,

“Interesting”, MATCHING

“natural” TSP

problems SORTING

inp. outp.

Functions (sets of I/O pairs)

output=

YES/NO

Formal languages (sets of ’YES-strings’)

Problem = set of strings (over an alphabet).
Each string is (the encoding of) a
YES-instance.

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 8 of 18

Def. 1 Alphabet = finite set of symbols

Ex.
∑

= {0, 1} ; Σ = {A, . . . , Z}

Coding: binary ↔ ASCII

Def. 2
∑∗ = all finite strings over

∑

∑∗ = {ǫ, 0, 1, 00, 01, · · · } — in lexicographic
order

Def. 3 A formal language L over
∑

is a subset
of

∑∗

L is the set of all “YES-instances”.

problems
Set of all L

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 9 of 18

Algorithm

397 + 46 =
397
 46 443

input output443

11

computation rules

Turing machine – intuitive description

(input/output)
tape

"processor" or
finite state control

computation
steps of

, bq
1

, R)
"loaded
program"
or rules

... b b b0 1 0

s

2q
1q

...

...

b

read/write head

states

δ
δ

...

2
, b , R)

(s,o) =(
,1)=(q(q

1

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 10 of 18

We say that Turing machine M decides
language L if (and only if) M computes the
function

f : Σ∗ → {Y, N} and for each x ∈ L : f(x) = Y

for each x /∈ L : f(x) = N

Language L is (Turing) decidable if (and only
if) there is a Turing machine which decides it.

We say that Turing machine M accepts
language L if M halts if and only if its input is
an string in L.

Language L is (Turing) acceptable if (and
only if) there is a Turing machine which
accepts it.

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 11 of 18

Example
A Turing machine M which decides
L = {010}.

... b b0 1 0 ...b

eq
3q 2q

1q

s

h

M = (Σ, Γ, Q, δ) Σ = {0, 1}
Γ = {0, 1, b, Y, N} Q = {s, h, q1, q2, q3, qe}

δ :

0 1 b

s (q1, b, R) (qe, b, R) (h, N,−)

q1 (qe, b, R) (q2, b, R) (h, N,−)

q2 (q3, b, R) (qe, b, R) (h, N,−)

q3 (qe, b, R) (qe, b, R) (h, Y,−)

qe (qe, b, R) (qe, b, R) (h, N,−)

(’−’ means “don’t move the read/write head”)

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 12 of 18

Church’s thesis

’Turing machine’ ∼= ’algorithm’
Turing machines can compute every function
that can be computed by some algorithm or
program or computer.

’Expressive power’ of PL’s
Turing complete programming languages.

’Universality’ of computer models
Neural networks are Turing complete (Mc
Cullok, Pitts).

Uncomputability
If a Turing machine cannot compute f , no
computer can!

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 13 of 18

Uncomputability
What algorithms can and cannot do.

Strategy
1. Show that HALTING (the Halting problem)

is unsolvable

L

Solvable

Unsolvable

H

2. Use reductions
R7−→ to show that other

problems are unsolvable

R1 R
2

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 14 of 18

Step 1: HALTING is unsolvable
Def. 4 (HALTING)

LH = {(M, x)|M halts on input x}
Theorem 1 The Halting Problem is
undecidable.

Proof (by diagonalization): Given a Turing
machine M ′ that decides LH we can construct
a Turing machine M ′′ as follows:

M’

NO

YES

halt

M"

input

QUESTION: What does M ′′ do when given
M ′′, M ′′ as input?

CONCLUSION: Since the assumption that M’
exists leads to a contradiction (i.e. an
impossible machine), it must be false.

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 15 of 18

Reductions

M

(M,x)

input
M R LM

YES

NO

H

Meaning of a reduction
Image: You meet an old friend with a brand
new ML-machine under his shoulder.
Without even looking at the machine you say:
“It is fake!”

How the reduction works
Image (an old riddle): You are standing at a
crossroad deep in the forest. One way leads to
the hungry crocodiles, the other way to the
castle with the huge piles of gold. In front of
you stands one of the two twin brothers. One
of them always lies, the other always tells the
truth. You can ask one question. What do you
say?

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 16 of 18

The universal Turing machine Mu

• Mu works like an ordinary computer: It
takes a code (program) M and a string x as
input and simulates (runs) M on input x.

• Mu exists by Church’s thesis.

• To prove existence of Mu we must
construct it. Here is a 3-tape Mu:

q1

M ’su ... rules of M

...

(s,0)

... 0 1 0 b ... tape of Mb

,b, R) ...

state=s ...counters

control
finite

b

(q1

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 17 of 18

A typical reduction

L$ = {M |M (eventually) writes a $ when

started with a blank tape}
Claim: L$ is undecidable

Proof:

M R M

M

(M,x)

H

NO

YES

NO

M’
$

YES

M’:
Sim ulate M on input x;

IF M halts T H E N w rite a $;

Important points:

• M ′ must not write a $ during the
simulation of M !

• ’Write a $’ is an arbitrarly chosen action!

INF3130 * Undecidability and Complexity * Lecture 1

Autumn 2006 18 of 18

MR:
Output the Mu code modified as follows:
Instead of reading its input M and x, the
modified Mu has them stored in its finite
control and it writes them on its tape. After
that the modified Mu proceeds as the
ordinary Mu untill the simulation is finished.
Then it writes a $.

Reduction as mathematical function
Given a reduction from L1 to L2. Then MR

computes a function

fR :
∑∗

→
∑∗

which is such that

x ∈ L1 ⇒ fR(x) ∈ L2

x 6∈ L1 ⇒ fR(x) 6∈ L2

L2L1

Σ* Σ*

