NP-completeness (review)

have no feasible solutions have feasible solutions problems

complete

$$L \in \mathcal{NPC} \Leftrightarrow \begin{array}{l} L \in \mathcal{NP} \text{and} \\ L \in \mathcal{NP} \text{-hard} \end{array}$$

Today: Proving \mathcal{NP} -completeness

- $L \in \mathcal{NP}$: show that there is a "short" certificate of membership in L ("id card").
- $L \in \mathcal{NP}$ -hard: show that there is an "efficient" reduction from a known \mathcal{NP} -hard problem L_{np} to L. † polynomial (length, time . . .)

Autumn 2006 1 of 23

INF3130 * Undecidability and Complexity * Leture 3

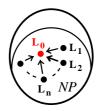
Skills to learn

• Transforming problems into each other.

Insight to gain

Seeing unity in the midst of diversity: A
 variety of graph-theoretical, numerical, set
 & other problems are just variants of one
 another.

But before we can use reductions we need **the first** \mathcal{NP} **-hard problem**.



SATISFIABILITY (SAT)

Example

$$\begin{array}{l} I = \overset{\frown}{C} \cup U \\ C = \left\{ (x_1 \vee \neg x_2), (\neg x_1 \vee \neg x_2), (x_1 \vee x_2) \right\} \\ U = \left\{ x_1, x_2 \right\} \end{array}$$

 $T = x_1 \mapsto \text{TRUE}, x_2 \mapsto \text{FALSE}$ is a satisfying truth assignment. Hence the given instance I is **satisfiable**, i.e. $I \in \text{SAT}$.

Autumn 2006 2 of 23

INF3130 * Undecidability and Complexity * Leture 3

Further (basic) reductions

BOUNDED HALTING

SATISFIABILITY (SAT)

3SAT

3-DIMENSIONAL VERTEX COVER (VC)

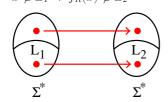
MATCHING (3DM)

HAMILTONICITY CLIQUE

PARTITION

Polynomial-time reductions (review) $L_1 \propto L_2$ means that

• $R: \sum^* \to \sum^*$ such that $x \in L_1 \Rightarrow f_R(x) \in L_2$ and $x \notin L_1 \Rightarrow f_R(x) \notin L_2$



• $R \in P_f$, i.e. R(x) is polynomial computable

Autumn 2006 3 of

INF3130 * Undecidability and Complexity * Lecture 3

SATISFIABILITY 3-SATISFIABILITY

SAT

3SAT

Clauses with any number of literals \longrightarrow Clauses with exactly 3 literals

- C_j is the j'th SAT-clause, and C_j ' is the corresponding 3SAT-clauses.
- ullet y_{i} are new, fresh variables, only used in $C_{j}^{'}$.

$$\begin{array}{ccc} \boldsymbol{C_j} & \boldsymbol{C_j'} \\ (x_1 \vee x_2 \vee x_3) & \longmapsto & (x_1 \vee x_2 \vee x_3) \end{array}$$

$$(x_1 \vee x_2) \quad \longmapsto \quad (x_1 \vee x_2 \vee y_j), (x_1 \vee x_2 \vee \neg y_j)$$

$$\begin{array}{ccc} (x_1) & \longmapsto & (x_1 \vee y_j^1 \vee y_j^2), (x_1 \vee \neg y_j^1 \vee y_j^2), \\ & & (x_1 \vee y_j^1 \vee \neg y_j^2), (x_1 \vee \neg y_j^1 \vee \neg y_j^2) \end{array}$$

$$(x_1 \vee \dots \vee x_8) \longmapsto (x_1 \vee x_2 \vee y_j^1), (\neg y_j^1 \vee x_3 \vee y_j^2), \\ (\neg y_j^2 \vee x_4 \vee y_j^3), (\neg y_j^3 \vee x_5 \vee y_j^4), \\ (\neg y_j^4 \vee x_6 \vee y_j^5), (\neg y_j^5 \vee x_7 \vee x_8)$$

Question: Why is this a proper reduction?

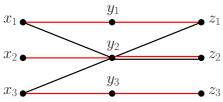
Autumn 2006 4 of 23

3-DIMENSIONAL MATCHING (3DM)

Instance: A set M of triples (a, b, c) such that $a \in A$, $b \in B$, $c \in C$. All 3 sets have the same size q(|A| = |B| = |C| = q).

Question: Is there a **matching in** M, i.e. a subset $M' \subseteq M$ such that every element of A, B and C is part of exactly 1 triple in M'?

Example



$$M = \{(x_1, y_1, z_1), (x_1, y_2, z_2), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_3, y_2, z_1)\}$$

We will use sets with 3 elements to visualize triples:

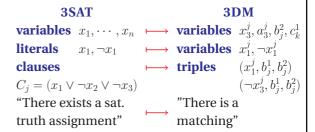
5 of 23

Autumn 2006

INF3130 * Undecidability and Complexity * Lecture 3

Reductions are like translations from one language to another. The same properties must be expressed.

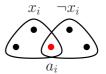
$3SAT \propto 3DM$



"There is a truth assignment T"

- $\exists T : \{x_1, \cdots, x_n\} \rightarrow \{\mathsf{TRUE}, \mathsf{FALSE}\}$
- $T(x_i) = \text{TRUE} \Leftrightarrow T(\neg x_i) = \text{FALSE}$

The second property is easily translated to the 3DM-world:

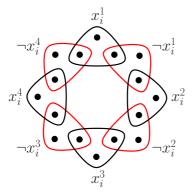


 $T(X_i) = \text{TRUE} \quad \longmapsto \quad x_i \text{is not "married"}$

Autumn 2006 6 of 23

INF3130 * Undecidability and Complexity * Lecture 3

A literal x_i can be used in many clauses. In 3DM we must have as many copies of x_i as there are clauses:

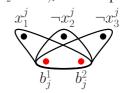


- Either all the black triples must be chosen ("married") or all the red ones!
- If $T(x_i) = \text{TRUE}$ then we choose all the red triples, and the black copies of x_i are free to be used later in the reduction. And vice versa.
- We make one such **truth setting component** for each variable x_i in 3SAT.

INF3130 * Undecidability and Complexity * Lecture 3

"T is satisfying"

We translate each clause (example: $C_i = (x_1 \lor \neg x_2 \lor \neg x_3)$) into 3 triples:

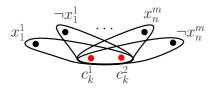


- b_j^1 and b_j^2 can be married if and only if at least one of the literals in C_j is not married in the truth setting component.
- If we have a satisifiable 3SAT-instance , then all b^1_j and b^2_j -variables $(1 \le j \le m)$ can be married.
- If we have a negative 3SAT-instance , then some b_j^1 and b_j^2 -variables will not be married.

Autumn 2006 7 of 23 Autumn 2006 8 of 23

Cleaning up ("Garbage collection")

There are many x_i^j who are neither married in the truth settting components nor in the "clause-satisfying" part. We introduce a number of fresh c-variables who can marry "everybody":



- There are $m \times n$ unmarried x-variables after the truth setting part.
- ullet If all m clauses are satisfiable then there will remain $(m \times n) m = m(n-1)$ unmarried x-variables.
- So we let $1 \le k \le m(n-1)$.

Autumn 2006 9 of 23

INF3130 * Undecidability and Complexity * Lecture 3

PARTITION

Instance: A finite set A and sizes $s(a) \in \mathbb{Z}^+$ for each $a \in A$.

Question: Can we **partition** the set into two sets that have equal size, i.e. is there a subset $A' \subseteq A$ such that

$$\sum_{a \in A'} s(a) = \sum_{a \in A \backslash A'} s(a)$$

3DM ∝ PARTITION

We first reduce 3DM to Subset Sum where we are given A, as in Partition, but also a number B, and where we are asked if it is possible to choose a subset of A with sizes that add up to B.

3DM SUBSET SUM sets and triples (subsets) → numbers "There is "There is

a matching $M''' \longmapsto$ a subset with total size B''

Autumn 2006 10 of 23

INF3130 * Undecidability and Complexity * Lecture 3

Difficulty: We need to translate from subsets with 3 elements (triples) to numbers.

Solution: Use the **characteristic function** of a set!

Example

Given set $U = \{x_1, x_2, \dots, x_n\}$ and subset $S = \{x_1, x_3, x_4\}$. The characteristic function of S is a binary number with n digits and bit 1, 3 and 4 set to 1: $101100\cdots0$.

There is a matching $M' \longleftrightarrow \frac{\text{There is a subset } M'}{\sum_{M'} \text{sizes} = B}$

It is natural to set $B = \overbrace{111\cdots 11}$, since each element in the universe is used in exactly one of the triples in the matching.

Technicality: Carry bits!

 $01_b + 10_b = 11_b$, but also $01_b + 01_b + 01_b = 11_b$.

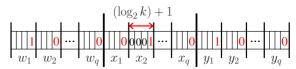
Autumn 2006 11 of 2

INF3130 * Undecidability and Complexity * Lecture 3

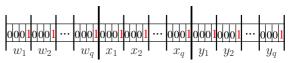
3DM-instance:

$$M \subseteq W \times X \times Y W = \{w_1, w_2, \cdots, w_q\} Y = \{y_1, y_2, \cdots, y_q\} Z = \{z_1, z_2, \cdots, z_q\} M = \{m_1, m_2, \cdots, m_k\}$$

• For each triple $m_i \in M$ we construct a binary number:



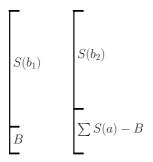
- This Partition/Subset Sum number corresponds to the triple (w_1, x_2, y_1) .
- ullet By adding $\log_2 k$ zeros between every "characteristic digit", we eliminate potential summation problems due to overflow / carry bits.
- We make *B* as follows:



Autumn 2006 12 of 23

SUBSET SUM ∝ **PARTITION**

- We introduce two new elements b_1 and b_2 .
- We choose $s(b_1)$ and $s(b_2)$ so big that every partition into to equal halves must have $s(b_1)$ in one half and $s(b_2)$ in the other.



- We let $s(b_1) + B = s(b_2) + (\sum s(a) B)$.
- We can pick a subset of A which adds up to B if and only if we can split $A \cup \{b_1, b_2\}$ into two equal halves.

Autumn 2006 13 of 23

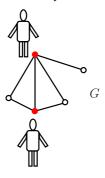
VERTEX COVER (VC)

Instance: A graph G with a set of vertices V and a set of edges E, and an integer $K \leq |V|$.

INF3130 * Undecidability and Complexity * Lecture 3

Question: Is there a **vertex cover** of G of size $\langle K \rangle$

"Can we place guards on at most *K* of the intersections (vertices) such that all the streets (edges) are surveyed?"



Autumn 2006 14 of 23

INF3130 * Undecidability and Complexity * Lecture 3

$3SAT \propto VC$

3SAT

VERTEX COVER
vertices

literals clauses

vertices subgraphs

"There exists a sat. truth assignment" "There is a VC of size K"

literals → vertices

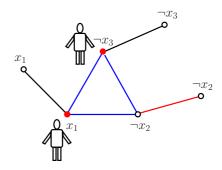
- A guard must be placed in either u_i or $\neg u_i$ for the street between u_i and $\neg u_i$ to be surveyed.
- ullet If we only allow |V| guards to be used for all |V| streets of this kind, then we cannot place guards at both ends.
- Placing a guard on u_i corresponds to the 3SAT-literal u_i being TRUE.
- Placing a guard on $\neg u_i$ corresponds to the 3SAT-literal $\neg u_i$ being TRUE (and the u_i -variable being assigned to FALSE).

Autumn 2006 15 of 23

INF3130 * Undecidability and Complexity * Lecture 3

clause → subgraph

For clause $C_j = (x_1 \lor \neg x_2 \lor \neg x_3)$ we make the following subgraph:



- We need guards on two of three nodes in the triangle to cover all three (blue) edges.
- If we are allowed to place only two guards per triangle, then we cannot cover all three outgoing edges.
- All 6 edges can be covered if and only if at least one edge (red) is covered from the outside vertex.
- By connecting the subgraph to the "truth-setting" components, this translates to one of the literals being TRUE (guarded)!

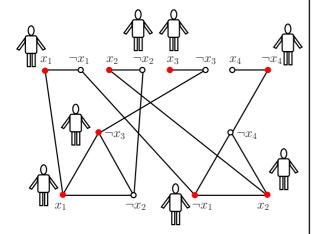
Autumn 2006 16 of 23

Example

3SAT-instance:

$$U = \{x_1, x_2, x_3, x_4\} \quad (n = 4)$$

$$C = \{\{x_1, \neg x_2, \neg x_3\}, \{\neg x_1, x_2, \neg x_4\}\} \quad (m = 2)$$



- Total number of guards K = n + 2m = 8.
- Should check that the reduction can be computed in time polynomial in the length of the 3SAT-instance ...

Autumn 2006 17 of 23

INF3130 * Undecidability and Complexity * Lecture 3

VERTEX COVER, CLIQUE AND INDEPENDENT SET

For G = (V, E) and subset $V_1 \subset V$, the following statements are equivalent:

- (a) V_1 is a vertex cover of G
- (b) $V V_1$ is an independent set in G
- (c) $V V_1$ is a clique in G^c .

Corollary:

CLIQUE and INDEPENDENT SET are NP-complete.

Autumn 2006 18 of 23

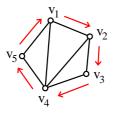
INF3130 * Undecidability and Complexity * Lecture 3

HAMILTONICITY

Instance: Graph G = (V, E).

Question: Is there a **Hamiltonian cycle/path** in G?

Is there a "tour" along the edges such that all vertices are visited exactly once? (a Hamiltonian *cycle* requires that we can go back from the last node to the first node)



Autumn 2006 19 of 23

INF3130 * Undecidability and Complexity * Lecture 3

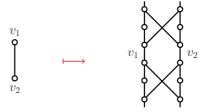
VC ∝ HAMILTONICITY

VC HAMILTONICITY

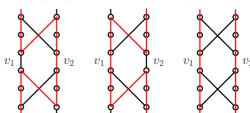
vertices → how gadgets are connected

K guards \longrightarrow K selector nodes

edges → edge gadgets



A Hamiltonian path can visit the vertices in the edge gadget in one of three ways:



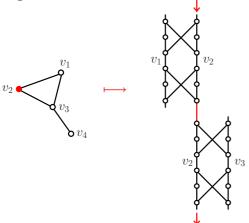
We want this to correspond to guards being placed on v_1 or v_2 or both v_1 and v_2 , respectively.

Autumn 2006 20 of 23

vertices → how gadgets are connected

For each vertex v_2 , we connect together in serial all edge gadgets corresponding to edges from v_2 :

INF3130 * Undecidability and Complexity * Lecture 3



- ullet Any Hamiltonian path entering at the v_2 -side (red arrow) can visit (if necessary) all vertices in the serially-connected gadgets and will eventually exit at bottom on the v_2 -side.
- This corresponds to the VC-property that a guard on v_2 covers all outgoing edges from v_2 .

Autumn 2006 21 of 23

