
1

Deadlocks

Carsten Griwodz
University of Oslo

(includes slides from T. Plagemann, Kai Li,
A. Tanenbaum and M. van Steen)

Resources

! Examples of computer resources
! CPU
! Memory
! Disk drive
! Tape drives
! Printers
! Plotter
! Loudspeaker

2

Resources
! Processes

! Need access to resources in reasonable order

! Typical way to use a resource
! Request
! Use
! Release

! Suppose a process holds resource A and requests
resource B
! At same time another process holds B and requests A
! Both are blocked and remain so

Resources
! Active resource

! Provides a service
! E.g. CPU, network adaptor

! Passive resource
! System capabilities that are required by active resources
! E.g. memory, network bandwidth

! Exclusive resource
! Only one process at a time can use it
! E.g. loudspeaker, processor

! Shared resource
! Can be used by multiple processes
! E.g. memory, bandwidth

3

Resources
! Single resource

! Exists only once in the system
! E.g. loudspeaker

! Multiple resource
! Exists several time in the system
! E.g. processor in a multiprocessor system

! Preemptable resource
! Resource that can be taken away from a process
! E.g. CPU can be taken away from processes in user space

! Non-preemptable resource
! Taking it away will cause processes to fail
! E.g. Disk, files

Resources
! Process must wait if

request is denied
! Requesting process may

be blocked
! May fail with error code

! Deadlocks
! Occur only when

processes are granted
exclusive access to
resources

blockacquire

use

acquire

use

4

Deadlocks
! Formal definition :

A set of processes is deadlocked
if each process in the set is waiting for an event
that only another process in the set can cause

! Usually the event is release of a currently held
resource

! None of the processes can …
! Run
! Release resources
! Be awakened

Four Conditions for Deadlock
1. Mutual exclusion condition

! Each resource assigned to 1 process or is available

2. Hold and wait condition
! Process holding resources can request additional

3. No preemption condition
! Previously granted resources cannot forcibly taken away

4. Circular wait condition
! Must be a circular chain of 2 or more processes
! Each is waiting for resource held by next member of the

chain

5

Deadlock Modeling
! Modeled with directed graphs

! Resource R assigned to process A
! Process B is requesting/waiting for resource S
! Process C and D are in deadlock over resources T and U

A

R B

S C

U D

T

Deadlock Example
! A utility program

! Copies a file from a tape
to disk

! Prints the file to a
printer

! Resources
! Tape
! Disk
! Printer

! A deadlock

tape disk printer

A

B

6

Deadlock Modeling
! How deadlock occurs

A
Requests R
Requests S
Releases S
Releases R

B
Requests S
Requests T
Releases T
Releases S

C
Requests T
Requests R
Releases R
Releases T

A requests R
B requests S
C requests T
A requests S
B requests T
C requests R

Resources

Processes A B C

R S T

Deadlock Modeling
! How deadlock can be avoided

A
Requests R
Requests S
Releases S
Releases R

B
Requests S
Requests T
Releases T
Releases S

C
Requests T
Requests R
Releases R
Releases T

A requests R
C requests T
A requests S
B requests S
B requests T
C requests R
A releases S
A releases R
C releases R
C releases T

Resources

Processes A B C

R S T

7

Deadlocks: Strategies

! Ignore the problem
! It is user’s fault

! Detection and recovery
! Fix the problem afterwards

! Dynamic avoidance
! Careful allocation

! Prevention
! Negate one of the four conditions

The Ostrich Algorithm

! Pretend there is no problem

! Reasonable if
! Deadlocks occur very rarely
! Cost of prevention is high

! UNIX and Windows take this approach
! It is a trade-off between

! Convenience
! Correctness

8

Deadlock Detection and Recovery
One Resource of Each Type

! A cycle can be found within the graph,
denoting deadlock

A B

C

R

S TD E

F

G

U V

W

Deadlock Detection and Recovery
Multiple Resources of Each Type



















nmnnn

m

m

CCCC

CCCC

CCCC

...

...............

...

...

321

2232221

1131211



















nmnnn

m

m

RRRR

RRRR

RRRR

...

...............

...

...

321

2232221

1131211

Data structures needed by deadlock
detection algorithm

Existing resources Available resources

()mEEEE ,...,,, 321 ()mAAAA ,...,,, 321

Current allocation matrix Request matrix

Process n has these resources Process 2 needs these resources

9

Deadlock Detection and Recovery
Multiple Resources of Each Type

An example for the deadlock
detection algorithm

4 2 3 1 2 1 0 0

0 0 1 0
2 0 0 1
0 1 2 0

2 0 0 1
1 0 1 0
2 1 0 0

E=(

Current allocation matrix Request matrix

Tap
e

dr
ive

rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

A=())
Tap

e
dr

ive
rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

R=C=

Deadlock Detection and Recovery
Multiple Resources of Each Type

An example for the deadlock
detection algorithm

4 2 3 1 2 0 0 0

0 0 1 0
2 0 0 1
0 1 2 0

2 0 0 1
1 0 1 0
2 1 0 0

E=(

Current allocation matrix Request matrix

Tap
e

dr
ive

rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

A=())
Tap

e
dr

ive
rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

R=C= 1

10

Deadlock Detection and Recovery
Recovery

! Recovery through preemption
! Take a resource from some other process
! Depends on nature of the resource

! Recovery through rollback
! Checkpoint a process periodically
! Use this saved state
! Restart the process if it is found deadlocked

! Recovery through killing processes
! Crudest but simplest way to break a deadlock
! Kill one of the processes in the deadlock cycle
! The other processes get its resources
! Choose process that can be rerun from the beginning

Deadlock Avoidance
Resource Trajectories

Unreachable

Unsafe

Safe Safe Safe

Safe

Safe

Safe

finished

request releaserequest release

Printer

Plotter

A

P
ri

nt
er

release

release

request

request

P
lo

tte
r

B

start

Two process
resource trajectories

11

Deadlock Avoidance
Safe and Unsafe States

state is safe

A

B

C

3

2

2

9

4

7

Free: 3

has max

A

B

C

3

4

2

9

4

7

Free: 1

has max

A

B

C

3

0

2

9

7

Free: 5

has max

A

B

C

3

0

7

9

7

Free: 0

has max

A

B

C

3

0

0

9

Free: 7

has max

Deadlock Avoidance
Safe and Unsafe States

state is safe

A

B

C

3

2

2

9

4

7

Free: 3

has max
A

B

C

4

2

2

9

4

7

Free: 2

has max

A

B

C

3

0

2

9

7

Free: 4

has max

A

B

C

4

4

2

9

4

7

Free: 0

has max

state is unsafe

12

Deadlock Avoidance
Banker’s Algorithm for a Single Resource

! Each process has a credit
! System knows how many resources a process

requests at most before releasing resources

! Total resources may not satisfy all credits
! Keep track of resources assigned and needed
! Check on each allocation whether it is safe

! Safe: there exists a sequence of other states that
all processes can terminate correctly

Deadlock Avoidance
Banker's Algorithm for a Single Resource

Free: 10

has max

0

0

0

0

6

5

4

7

Free: 2

has max

1

1

2

4

6

5

4

7

Free: 1

has max

1

2

2

4

6

5

4

7

safe safe unsafe

6

50 -

0 -

40 -

70 -

40 -

A

B

C

D

3

3

5

50 -

60 -

70 -

A

B

C

D

2

3

3

5

A

B

C

D

Free: 4Free: 5Free: 6Free: 10

Resource allocation state

13

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 3 0 1
B 0 1 0
C 1 1 1

Assigned resources Resources still needed

6 3 4 2

5 3 2 2

E=(
Tap

e
dr

ive
rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

P=(

)

)

1 0 2 0A=()
1
0
0

D 1 1 0 1
E 0 0 0 0

A 1 1 0
B 0 1 1
C 3 1 0

0
2
0

D 0 0 1 0
E 2 1 1 0

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 3 0 1
B 0 1 0
C 1 1 1

6 3 4 2

4 2 2 1

E=(
Tap

e
dr

ive
rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

P=(

)

)

2 1 2 1A=()
1
0
0

D 0 0 0 0
E 0 0 0 0

A 1 1 0
B 0 1 1
C 3 1 0

0
2
0

D - - - -
E 2 1 1 0

Assigned resources Resources still needed

14

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 0 0 0
B 0 1 0
C 1 1 1

6 3 4 2

1 2 1 0

E=(
Tap

e
dr

ive
rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

P=(

)

)

5 1 3 2A=()
0
0
0

D 0 0 0 0
E 0 0 0 0

A - - -
B 0 1 1
C 3 1 0

-
2
0

D - - - -
E 2 1 1 0

Assigned resources Resources still needed

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 0 0 0
B 0 0 0
C 1 1 1

6 3 4 2

1 1 1 0

E=(
Tap

e
dr

ive
rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

P=(

)

)

5 2 3 2A=()
0
0
0

D 0 0 0 0
E 0 0 0 0

A - - -
B - - -
C 3 1 0

-
-
0

D - - - -
E 2 1 1 0

Assigned resources Resources still needed

15

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 0 0 0
B 0 0 0
C 0 0 0

6 3 4 2

0 0 0 0

E=(
Tap

e
dr

ive
rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

P=(

)

)

6 3 4 2A=()
0
0
0

D 0 0 0 0
E 0 0 0 0

A - - -
B - - -
C - - -

-
-
-

D - - - -
E 2 1 1 0

Assigned resources Resources still needed

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 3 0 1
B 0 1 0
C 1 1 1

6 3 4 2

5 3 2 2

E=(
Tap

e
dr

ive
rs

Plo
tte

rs

CD-R
om

s

Sca
nn

er
s

P=(

)

)

1 0 2 0A=()
1
0
0

D 1 1 0 1
E 0 0 0 0

A 1 1 0
B 0 1 1
C 3 1 0

0
2
0

D 0 0 1 0
E 2 1 1 0

SAFE

Assigned resources Resources still needed

16

Deadlock Avoidance
Practical Avoidance

! Two Phase Locking
! Phase I

! Process tries to lock all resources it needs, one at a time
! If needed resources found locked, start over
! (no real work done in phase one)

! Phase II
! Run
! Releasing locks

! Note similarity to requesting all resources at once
! Algorithm works where programmer can arrange

Deadlock Prevention
R: Conditions for Deadlock

1. Mutual exclusion condition
! Each resource assigned to 1 process or is available

2. Hold and wait condition
! Process holding resources can request additional

3. No preemption condition
! Previously granted resources cannot forcibly taken away

4. Circular wait condition
! Must be a circular chain of 2 or more processes
! Each is waiting for resource held by next member of the

chain

17

Deadlock Prevention
Mutual Exclusion Condition

! Some resources are not sharable
! Printer, tape, etc

! Some resources can be made sharable
! Some resources can be made virtual

! Spooling - Printer
! Does spooling apply to all non-sharable resources?

! Mixing - Soundcard

! Principle:
! Avoid assigning resource when not absolutely necessary
! A few processes as possible actually claim the resource

Deadlock Prevention
Hold and Wait Condition

! Require processes to request resources before
starting
! A process never has to wait for what it needs
! Telephone companies do this

! Problems
! May not know required resources at start of run
! Also ties up resources other processes could be using

! Variation:
! Process must give up all resources
! Then request all immediately needed

18

Deadlock Prevention
No Preemption Condition

! This is not a viable option
! Consider a process given the printer

! Halfway through its job
! No forcibly take away printer
! !!??

Deadlock Prevention
Circular Wait Condition

A

1 5432

! Normally ordered resources
! A resource graph

1. CD Rom drive
2. Tape drive
3. Plotter
4. Scanner
5. Imagesetter

19

Deadlock Prevention
Circular Wait Condition

! Impose an order of requests for all resources
! Method

! Assign a unique id to each resource
! All resource requests must be in an ascending

order of the ids
! Release resources in a descending order

! Can you prove this method has no circular
wait?

! Is this generally feasible?

Deadlock Prevention
Overview

Order resources numericallyCircular wait
Take resources awayNo preemption
Request all resource initiallyHold and wait
Spool everythingMutual exclusion

ApproachCondition

20

Non-resource Deadlocks

! Possible for two processes to deadlock
! Each is waiting for the other to do some task

! Can happen with semaphores
! Each process required to do a down() on two

semaphores (mutex and another)
! If done in wrong order, deadlock results

Summary

! Resource
! Introduction to deadlocks
! Strategies

! Ostrich algorithm
! Deadlock detection and recovery
! Deadlock avoidance
! Deadlock prevention

! Non-resource deadlocks

