Inter-Process Communication:
Message Passing

9/10-2003

Pal Halvorsen

(including slides from Kai Li,
Thomas Plagemann and Andrew S. Tanenbaum)

Big Picture

< »

Message Passing API

» Generic API
— send(dest, &nsg)
— recv(src, &msg)

e What should the “dest “and “sr c” be?
— pid

file: e.g. a (named) pipe

port: network address, pid, etc

no Src: receive any message

src combines both specific and any

e What should “nsg” be?
— Need both buffer and size for a variable sized message

Issues

Asynchronous vs. synchronous

Direct vs. indirect

How are links established?

Can a link be associated with more than two processes?
How many links can there be between any pair?

What is the capacity of a link?

What is the size of a message?

Is a link unidirectional or bidirectional?

Asynchronous vs. Synchronous

e Synchronous (blocking):

msg
msg operation,
operation unblock thread

block thread,
execute msg operation
in another thread/kernel

time

— thread is blocked until message primitive has been performed
— may be blocked for a very long time

Asynchronous vs. Synchronous

e Asynchronous (non-blocking):

msg operation,
resume immediately

execute msg operation
in another thread/kernel

time

thread gets control back immediately
thread can run in parallel other activities
thread cannot reuse buffer for message before message is received
how to know when to start if blocked on full/empty buffer?
e poll
« interrupts/signals

Asynchronous vs. Synchronous

¢ Send semantic:

— Synchronous
¢ Will not return until data is
out of its source memory

* Block on full buffer

¢ Receive semantic:

— Synchronous

e Return data if there is a
message

¢ Block on empty buffer

— Asynchronous — Asynchronous
¢ Return as soon as initiating e Return data if there is a
its hardware message
¢ Completion e Return null if there is no
— Require application to message
check status
— Notify or signal the
application
¢ Block on full buffer
Buffering

e No buffering
— synchronous

— Sender must wait until the receiver receives the message

— Rendezvous on each message

e Buffering
— asynchronous or synchronous

— Bounded buffer
¢ Finite size

¢ Sender blocks when the buffer is full
¢ Use mesa-monitor to solve the problem?

— Unbounded buffer
¢ “Infinite” size
¢ Sender never blocks

Direct Communication

¢ Must explicitly name the sender/receiver (“dest ” and “sr c”) processes

¢ A buffer at the receiver
— More than one process may send messages to the receiver

— To receive from a specific sender, it requires searching through the whole
buffer

¢ A buffer at each sender
— A sender may send messages to multiple receivers

Message Passing:
Producer-Consumers Problem

voi d producer (voi d) voi d consuner (voi d)

{
while (TRUE) { while (TRUE) {

recv(producer, item);
produce item
consune item

send(consuner, item);

Message Passing:
Producer-Consumers Problem with N messages

#define N 100 /* number of slots in the buffer */
void producer(void)

int item;
message m; /* message buffer */

while (TRUE) {

item = produce__item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build_message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */

}

void consumer(void)
int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract__item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume_item(item); /* do something with the item */

Indirect Communication

e “dest "and “sr c” are a shared (unique) mailbox

e Use a mailbox to allow many-to-many communication
— Requires open/close a mailbox before using it

¢ Where should the buffer be?
— A buffer and its mutex and conditions should be at the mailbox

Using Message-Passing

e What is message-passing for?
— Communication across address spaces
— Communication across protection domains
— Synchronization

¢ Use a mailbox to communicate between a process/thread
and an interrupt handler: fake a sender

Keyboard — Receive
mbox

Process Termination

e P waits for a message from Q, but Q has terminated
— Problem: P may be blocked forever
— Solution:
¢ P checks once a while
¢ Catch the exception and informs P
¢ Send ack message

e P sends a message to Q, but Q has terminated
— Problem: P has no buffer and will be blocked forever
— Solution:
¢ Check Qs state and cleanup
¢ Catch the exception and informs P

Message Loss & Corruption

¢ Unreliable service
— best effort, up to the user to

e Detection
— Acknowledge each message sent
— Timeout on the sender side

e Retransmission
— Sequence number for each message
— Retransmit a message on timeout
— Retransmit a message on out-of-sequence acknowledgement
— Remove duplication messages on the receiver side

Linux Mailboxes

Messages are stored as a sequence of bytes

System V IPC messages also have a type

Mailboxes are implemented as message queues sorting
messages according to FIFO

Can be both blocking and non-blocking (I PC_NOWAI T)

The next slides have some simplified (pseudo) code
Linux 2.4.18

several parts missing

the shown code may block holding the queue lock

waiting queues are more complex

Linux Mailboxes

e Example:

msgsnd(A, Q.)

O|lO|w| >

OS-kernel

Linux Mailboxes

¢ One nsq_queue structure for each present queue:

struct msg_queue {
struct kern_i pc_permg_perm
tine_t q_stine;
tine_t q_rtine;
tine_t q_ctine;
unsi gned | ong q_cbytes;
unsi gned | ong q_gqnum
unsi gned | ong q_qgbytes;
pid_t g_lspid;
pid_t qg_lrpid;

struct |ist_head g_nessages;
struct |ist_head g_receivers;
struct |ist_head g_senders;

1

struct msg_nsg {

struct list_head mlist;
long mtype;
int mts;

struct msg_nsgseg* next;

I

| *
| *
| *
| *
| *
| *
| *
| *
| *

access pernmssions */

last nsgsnd tine */

last nsgrcv tine */

| ast change tine */

current nunber of bytes on queue */
nunber of nessages in queue */

max nunber of bytes on queue */
pid of last nsgsnd */

| ast receive pid */

Messages are stored in the kernel using the nsg_nsg structure:

/* message type */
/* message text size */
/* next pointer */

NOTE: the message is stored immediately after this structure - no pointer is necessary

Linux Mailboxes

¢ Create a message queue using the sys_nsgget system call:
long sys_nsgget (key_t key, int msgflg)
{

create new message queue and set access permissions

¢ To manipulate a queue, one uses the sys_nsgct | system call:

long sys_nsgctl (int nsqgid, int cnd, struct nsqi d_ds *buf)
{

switch (cmd) {
case | PC_| NFO.
return info about the queue, e.g., length, etc.
case | PC set:
modify info about the queue, e.g., length, etc.
case | PC_ RM D
remove the queue

Linux Mailboxes

¢ Send a message to the queue using the sys_nsgsnd system call:

long sys_nsgsnd (int nsqid, struct nmsgbuf *nsgp, size_t nsgsz, int msgflg)
nmsq = nsg_Il ock(nsqid);
if ((nsgsz + nsq->q_cbytes) > msqg->q_gbytes)
insert message the tail of nmsq->q_nessages *nsgp, update nsq
el se

put sender in waiting senders queue (nsqg- >q_sender s)

nmsg_unl ock(nsqi d);

Linux Mailboxes

¢ Receive a message from the queue using the sys_nsgr cv system call:

long sys_nsgrcv (int nsqid, struct msgbuf *msgp, size_t nsgsz,
long negtyp, int nsgflg)
{

nmsq = nsg_| ock(nsqid);

search nsq- >q_nessages for first message matching nsgt ype
if (msg)

store message in nsgbuf *nsgp, remove message from nsgbuf *nsgp, update nsq
el se

put receiver in waiting receivers queue (nsq- >q_r ecei vers)

nmsg_unl ock(nsqi d);

— the nmsgt yp parameter and nsgf | g flag determine which messages to retrieve:
o = 0: return first message
e > 0: first message in queue with nsg_nsg. m type = nmsgtyp
e > 0 & MSG_EXCEPT: first message in queue with nsg_nsg. m type != nsgtyp

Linux Pipes

e Classic IPC method under UNIX:
>1s -1 | nore
— shell runs two processes | s and nor e which are linked via a pipe

— the first process (I s) writes data (e.g., using wri t) to the pipe and
the second (nor e) reads data (e.g., using r ead) from the pipe

o the system call pipe(fd[2]) Struct pipe i node i nfo |

wai t _queue_head_t wait; 2

creates one file descriptor for reading o et Lem —

unsi gned int

(f d[0]) and one for writing (f d[1]) unsigned int start;

unsigned int readers, witers;

- a”ocates a temporary |n0de and a unsigned int waiting_readers, waiting witers;

unsigned int r_counter, w counter;

memory page to hold data }

000600

Linux: Mailboxes vs. Pipes

¢ Are there any differences between a mailbox and a pipe?

Message types
+ mailboxes may have messages of different types
¢ pipes do not have different types

Buffer
¢ pipes — one or more pages storing messages contiguously
* mailboxes — linked list of messages of different types

Termination
¢ pipes exists only as long as some have open the file descriptors
+ mailboxes must often be closed

More than two processes
¢ a pipe often (not in Linux) implies one sender and one receiver
e many can use a mailbox

Performance

e Performance is an important issue
(at least when sender and receiver is on one machine), e.g.:

— shared memory and using semaphores

— mailboxes copying data from source to mailbox and
from mailbox to receiver

e Can one somehow optimize the message passing?

Remote Procedure Call

e Message passing uses I/0
¢ Idea of RPC is to make function calls
o Small libraries (stubs) and OS take care of communication

Client CPU Server CPU
Cﬁi‘iﬁﬁ‘ Stb\GD
Cligrit A |Server,
7 Y
Operating system J A Operating system
_ s Y

Remote Procedure Call

Implementation Issues:

Cannot pass pointers - call by reference becomes copy-restore
Marshaling - packing parameters

Weakly typed languages - client stub cannot determine size
Not always possible to determine parameter types

Cannot use global variables - may get moved to remote
machine/protection domain

e Many ways to perform IPC on a machine

Summary

¢ Direct message passing or
message passing using mailboxes

e Next: INF[34]160

