Monitors, ...

P&l Halvorsen

(including slides from Otto J. Anshus, University of Tromsg,
and Ka/ Li, Princeton University)

Barriers
@ @
Process ST § E E
o |& | B 2|
@ @ @
Time — Time ——= Time —=
(@) (b) (c)

e Use of a barrier
— useful for phase-based, cooperative computing

processes approaching a barrier
. all processes but one blocked at barrier
C. last process arrives, all are let through

o o

IPC is easy using semaphores!!??

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

e The producer-
consumer problem
using semaphores: S T —

[NBIP=DOWNandV=UP |* \\m

while (TRUE) {
item = produce_item();

Can we switch down order? down(&empty);
_.-~ down(&mutex);
IPtaas insert_item(item);
-7 up(&mutex);
_ up(&full);

If full buffer, .-~~~
producer blocks
holding the mutex

void consumer(void)
int item;

while (TRUE) {

down(&full);
mmmm=mmm down(&mutex);
If empty buffer, ¢ ----------~ item = remove_item();
up(&mutex);
consumer blocks SR e

holding the mutex consume__item(item);

Can we switch
full and enpty --» andful |/ enpty may
{ operations?

/* number of slots in the buffer */

/* semaphores are a special kind of int */
/* controls access to critical region */

/* counts empty buffer slots */

/* counts full buffer slots */

/* TRUE is the constant 1 */

/* generate something to put in buffer */
/* decrement empty count */

/* enter critical region */

/* put new item in buffer */

/* leave critical region */

/* increment count of full slots */

NO, only down is blocking,
reach values above N

/* infinite loop */

/* decrement full count */

/* enter critical region */

/* take item from buffer */

/* leave critical region */

/* increment count of empty slots */
/* do something with the item */

Monitors (Hoare 1974)

e Idea by Brinch-Hansen 1973 in the textbook “Operating
System Principles”
e Structure an OS into a set of modules each implementing a
resource scheduler
e Combine together in each module
o Mutex
e Shared data
¢ Access methods to shared data
¢ Condition synchronization
e Local code and data

e Processes can call monitor functions, but not access
internal data directly — only through functions

e Only one process can be active in a monitor at a time

MUTEX

So only ONE
monitor
procedure
executes at a
time

Threads calling a
monitor
procedure

et

The Structure of a Monitor

«After calling, threads get

to get in and start

O_>O+ —>O'\, blocked and are waiting
The Monitor ﬁ

Main Queue\J

Condition Queue 14{)" _’O'_\
[]
Condition Queue n —>O_’ _'O’\

executing the called
monitor procedure

«Threads waiting on a condition
variable for a condition to be
true (waiting for a signal on the
condition variable)

System implementation

<More to come>
Signal(Q: {...1 Wait(): {...1
Local variables E= | sharedvariables
Local procedure 1 — — —

[]
Local procedure m

Monitor procedure 1: {...wait(condvar); ...}

Monitor procedure k: {... signal(condvar); ...}

Initialization executed first time the monitor starts

User implementation

+The only way to access shared
resources is by calling a
monitor procedure

eInitialization of state
variables, executed ONCE at
startup of monitor

e Wait (cond) .
— Insert(caller, cond_queue)

— Block this instance of the
monitor procedure

— open “mutex” by getting

Signal and Wait

next call from Main_Queue

Signal (cond)

— Stop monitor procedure
calling signal

— Start first in cond_queue, or
just return if empty

Single Resource Monitor

All threads must follow the pattern:

Acquire;

<use shared resour ce>

Rd%m“\\\\\\\\\\“___—__——ﬂ)

Observe

sthe shared variable

the naming of the condition variable
«the wait and signal calls

simplements a binary semaphore (s=0,1)

/*Loca functions, variables*/
<none needed>

/* Shared variable*/

Boolean busy;

/*Condition variable*/
Condition nonbusy;

/ Acquire:
{

if (busy) wait (nonbusy);
busy:=TRUE;

Release:

busy:=FALSE;
signal (nonbusy);
}

/* Initialization code*/
busy:=FALSE;
nonbusy:=EMPTY;

What is a Condition Variable?

()—} —>
The Monitor K" O @
Main Queue\J

Condition Queue 1 —>@ _’O'\
L]
Condition Queuen —’@ _’O’\

<More to come>

Signa]‘”i Wait(): {...}

Local variables == | snared variables
Local procedure 1

— e/ =3

L]
Local procedure m

Monitor procedure 1: {...wait(condvar); ...}

Monitor procedure 1: {... signal(condvar); ...}

Initialization executed first time the monitor starts

No “value”, no counting

Used to represent a
condition we need to wait
for to be TRUE

Unused signals are lost

Waiting queue

Initial “non-value” is
EMPTY :-)

Semaphore vs. Monitor

Semaphore

P(s) (or down) means WAIT if s=0
And s--

V(s) (or up) means start a
waiting thread and REMEMBER
that aV call was made: s++

Assume s=0 when V(s) is
called: If thereis no thread to
start thistime, the next thread to
call P(s) will get through P(s)

Monitor

Wait(cond) means unconditional WAIT

Signal(cond) means start a
waiting thread. But no memory!

Assume that the condition
queueis empty when signal() is
called. The next thread to call
Wait(cond) (by executing a
monitor procedure!) will block
because the signal() operation
did not leave any trace of the
fact that it was executed on an
empty condition waiting queue.

Bounded Buffer Monitor

I
KX

Capacity: N

Rulesfor the buffer B:

Do we need
these IFs?

r:=GET:
PUT (m):

One condition variable

«No Get when empty for each condition:

*No Put when full

*B shared, so must have
mutex between Put and ——>+*MUTEX is aready
Get provided by the monitor

snonempty

enonfull

Waiting producers?

/*Local functions, variables*/
intin, out;

/* Shared variable*/

int B(0..n-1), count;
/*Condition variable*/
Condition nonfull, nonempty;

Put (int m): _-Buffer has N slots - full

{ if (count=n)wait (nonfull);
B(in):=m; >
in:=in+1%n;
count++; _Waiting consumers?
if (count = 1) signal (nonempty); }

int Get: Nothing i buffer
{ if (count = 0) wait (nonempty);
Get:=B(out);
out:=out+1 % n;
count--;
if (count = N-1) signal (nonfull); }
-

/* Initialization code*/
in:=out:=count:=0;
nonfull, nonempty:=EMPTY;

Readers and Writers Monitor

monitor ReaderWriter

condition ok2read, OK2write Rules (strong):
'g‘;c;e;‘f ercount e Many readers, no writers
Sy « One writer, no others
procedure startwrite { * No writer starvation
if (readercount != 0 OR busy) OK2write.wait; * No reader starvation

busy := TRUE; }

procedure endwrite {
busy := FALSE;
if (OK2read.queue) OK2read.signal;
else OK2write.signal; }
Prevents writer starvation
procedure startread {
if (busy OR OK2write.queue) OK2read.wait;
readercount ++;
OK2read.signal; }
Where is critical region “executed”?
procedure endread {
readercount --;
if (readercount == 0) OK2write.signal; }

readercount := 0; . i . i
busy := FALSE; «—— Busy indicates a writer is active

OK2write := OK2read := NONE;

end monitor
Dining-Philosopher Monitor
monitor DP
condition self[5]; If hungry and
enum {thinking, hungry, eating} state[5]; neighbors not eating

procedure test(int i) {
if (state((i+1) % 5) != eating && state((i-1) % 5) != eating && state(i) = hungry) {
state[i] = eating;
selffi].signal; }
}

procedure pickup(int i) {
state[i] = hungry;

Prevents writer starvation

test(i); philosopher(i)

if (state[i] != eating) self[i].wait; while (1) {
think();
dp.pickup(i

procedure putdown(int i) { “!)eaptmup()

state[i] = thinking; dp.putdown(i)

test((i+1) % 5); See if neighbors are hungry

test((i-1) % 5); and can start eating }

for (i=0;i<5;i++) state[i] = thinking;
end monitor

Everyone are What about starving to death?
thinking at first

What will happen when a signal() is executed?

e Assume we have threads in Main_Queue and in a
condition queue

e Main_Queue has lower “priority” than the signaled
condition queue:

e signal() => Take first from condition queue one and start it
from its next instruction after the wait() which blocked it

¢ The signaled thread now executes

— ... until a wait(): block it, and take new from Main_Queue
— ... until a signal():
— ... until finished: take new from Main_Queue

Options of the Signaler

e Relinquishes control to the woken process (Hoare)
— Complex if the signaler has other work to to

— To make sure there is no work to do is difficult because the
signal implementation is not aware how it is used

— It is easy to prove things

¢ Continues its execution (Mesa)
— Easy to implement

— But, the condition may not be true when the woken process
actually gets a chance to run

Where t‘? allow a Look at the two monitors we have
call to signal()? analyzed! Where is the signal()
operation?

e What if we called signal
mevonin OO O™ somewhere else?

Main Quae——’ » The calling function instance must
condition Queve 1 ——(” (O be blocked, awaiting return from
Condition Queue n Signal()
URGENT Quase ——() (N - Need a queue for the
m% —Xtemporary halted thread
Loce procedure 1 — e o URGENT QUEUE
Lot proveae n e In Hoare’s monitors the signal
Montorprocsture L wareonden:) operation must IMMEDIATELY
. start the signaled thread in order
Monitor procedure 1: {.. Sgnal(condvar); ..} for the condition that it signals
A S USRS about still to be guaranteed true

when the thread starts

Performance problems of Monitors?

e Getting in through Main_Queue

e Many can be in Main_Queue and in a condition queue waiting
for a thread to execute a monitor procedure calling a signal.

— Can take a long time before the signaler gets in

e The monitor is a potential bottleneck (“Bottleneck OS"??)
¢ Use several to avoid hot spots

¢ Signal must start the signaled thread immediately, so must
switch thread context and save our own
e Can have nested calls
e Even worse for process context switches
— Solution?
¢ Avoid starting the signaled thread immediately
e But then race conditions can happen

Mesa Style “Monitor” (Birrell’'s Paper)

Mesa monitor is similar to condition variable + mutex

(]
e Acquire and Release (lock and unlock)
e Wait(lock, condition)
— Atomically unlock the mutex and enqueue on the condition
variable (block the thread)
— Re-lock the lock when it is awaken
e Signal(condition)
— Noop if there is no thread blocked on the condition variable
— Wake up at some convenient time at least one (if there
are threads blocked)
e Broadcast(condition) — signal to all

— Wake up all threads waiting on the condition

Bounded Buffer Mesa
Monitors

Spinsto
reevaluate
N
\I
PUT (m): 1
Producer |
producer consumer
while (1) { while (1) {
produce(); GET(i); |\
PUT(i); consume; |
} \
} } v

Rulesfor the buffer B:

No Get when empty condition:
No Put when full snonempty
enonfull

*B shared, so must have

mutex between Put and ——>+MUTEX islocked by

Get LOCK and unlocked by
Wait

/*Local functions, variables*/
int in, out, count;

/*Shared variable*/

int B(0..n-1);

/* Mutex */

mutex_t bb_mutex;
/*Condition variable*/
Condition nonfull, nonempty;

Wait will
UNLOCK

Put (int m):
LOCK bb_mutex {
A while (count=n) wait (bb_mutex, nonfull);
© B(in)=m;
in:=int1 MOD n;
count++;
signal (nonempty); }
H

One condition for each

int Get:
LOCK bb_mutex {
<{ while (count=0) wait (bb_mutex, nonempty);
/S Get:=B(out);
out:=out+1 MOD n;
count--;
signal (nonfull); }
}

/* Initialization code*/
in:=out:=count:=0;
nonfull, nonempty:=EMPTY;

Implement Semaphores with Mesa-Monitors

P(s) V(s)
{ {
Acquire(s.mutex); Acquire(s.mutex);
--s.value; ++s.value;
if (s.value<0) if (s.value<=0)
Wait(s.mutex, s.cond); Signal(s.cond);
Release(s.mutex); Release(s.mutex);
} }

Assume that Signal() wakes up exactly one awaiting thread.

Mesa-Style vs. Hoare-Style Monitor

e Mesa-style
— Used in many operating systems
— Signaler keeps lock and CPU
— Waiter simply put on ready queue, with no special priority
o Must then spin and reevaluate! (replace IF with WHILE)
— No costly context switches immediately
— No constraints on when the waiting thread/process must run after a “signal”
— Simple to introduce a broadcast: wake up all

* Good when one thread frees resources, but does not know which other thread can use them
(“who can use j bytes of memory?”)

— Can easily introduce a watch dog timer: if timeout then insert waiter in Ready_Queue
and let waiter reevaluate

* Will guard a little against bugs in other signaling processes/threads causing starvation
because of a “lost” signal

e Hoare-style
— Described in most textbooks
— Signaler gives up lock and waiter runs immediately
(more context switches, but guaranteed condition)
— Waiter (now executing) gives lock and CPU back to signaler when it exits critical
section or if it waits again

Equivalence

e Semaphores
— Good for signaling
— Can do everything, but easy to introduce a bug
— Does not loose “counts” - memory

e Monitors
— Good for scheduling and mutex
— Too costly for a simple signaling
— No memory - lost signals

Why manage critical sections?

e Often, in common case, everything goes just fine...

e But, what if it doesn't....

— Mars Pathfinder:
priority inversion — introduced priority inheritance when holding a mutex

— INSTANCE-I:
lost wake-up call — introduced time-out

— I guess you'll find out the hard way yourself!!!! (P3)

Summary

Parallel programming easier with monitors than semaphores (mutual
exclusion is automatic)

Most programming languages does not have Hoare monitors (or
semaphores)

Mesa-style monitors are often used in OS’es

Something else in needed in a distributed environment without shared
memory (later...)

SMP and monitors might be inefficient (blocks much)

e Managing critical sections is important!!!

Some further reading...

¢ C.A.R Hoare: “Monitors: An Operating System Structuring Concept”,
Communications of the ACM, Vol. 17, No. 10. October 1974, pp. 549-557

e A.D. Birrell.: “An Introduction to Programming with Threads”, Digital
Equipment Corp. (DEC), 1989

