
1

28.08.03 1

Processes and
Non-Preemptive Scheduling

Otto J. Anshus
University of Tromsø, University of Oslo

Tore Larsen
University of Tromsø

Kai Li
Princeton University

28.08.03 2

An aside on concurrency

• Timing and sequence of events are key concurrency issues
• We will study classical OS concurrency issues, including

implementation and use of classic OS mechanisms to support
concurrency

• In a later course on parallel programming may revisit this
material

• Later course on distributed systems you may want to use formal
tools to understand and model timing and sequencing better

• Single CPU computers are designed to uphold a simple and
rigid model of sequencing and timing. ”Under the hood,” even
single CPU systems are distributed in nature, and are carefully
organized to uphold strict external requirements

28.08.03 3

Process

• An instance of a program under execution
– Program specifying (logical) control-flow (thread)
– Data
– Private address space
– Open files
– Running environment

• The most important operating system concept
• Used for supporting the concurrent execution of independent or

cooperating program instances
• Used to structure applications and systems

28.08.03 4

Supporting and Using Processes

• Multiprogramming
– Supporting concurrent execution (parallel or transparently interleaved)

of multiple processes (or threads).
– Achieved by process- or context switching, switching the CPU(s) back

and forth among the individual processes, keeping track of each process’
progress

• Concurrent programs
– Programs (or threads) that exploit multiprogramming for some purpose

(e.g. performance, structure)
– Independent or cooperating
– Operating systems is important application area for concurrent

programming. Many others (event driven programs, servers, ++)

2

28.08.03 5

Implementing processes

• Os needs to keep track of all processes
– Keep track of it’s progress
– Parent process
– Metadata (priorities etc.) used by OS
– Memory management
– File management

• Process table with one entry (Process Control Block)
per process

• Will also align processes in queues

28.08.03 6

Primitives of Processes

• Creation and termination
– fork, exec, wait, kill

• Signals
– Action, Return, Handler

• Operations
– block, yield

• Synchronization
– We will talk about this later

28.08.03 7

fork (UNIX)

• Spawns a new process (with new PID)
• Called in parent process
• Returns in parent and child process
• Return value in parent is child’s PID
• Return value in child is ’0’
• Child gets duplicate, but separate, copy of parent’s

user-level virtual address space
• Child gets identical copy of parent’s open file

descriptors
28.08.03 8

fork, exec, wait, kill

• Return value tested for error, zero, or positive
• Zero, this is the child process

– Typically redirect standard files, and
– Call Exec to load a new program instead of the old

• Positive, this is the parent process
• Wait, parent waits for child’s termination

– Wait before corresponding exit, parent blocks until exit
– Exit before corresponding wait, child becomes zombie (un-dead) until

wait

• Kill, specified process terminates

3

28.08.03 9

When may OS switch contexts?

• Only when OS runs
• Events potentially causing a context switch:

– Process created (fork)
– Process exits (exit)
– Process blocks implicitly (I/O, IPC)
– Process blocks explicitly (yield)
– User or System Level Trap

• HW
• SW: User level System Call
• Exception

– Kernel preempts current process
• Potential scheduling decision at “any of above”
• +“Timer” to be able to limit running time of processes

Preemptive
scheduling

Non-Preemptive
scheduling

28.08.03 10

Context Switching Issues
• Performance

– Should be no more than a few microseconds
– Most time is spent SAVING and RESTORING the context of processes

• Less processor state to save, the better
– Pentium has a multitasking mechanism, but SW can be faster if it saves

less of the state
• How to save time on the copying of context state?

– Re-map (address) instead of copy (data)

• Where to store Kernel data structures “shared” by all processes
• Memory

• How to give processes a fair share of CPU time
• Preemptive scheduling, time-slice defines maximum time interval

between scheduling decisions

28.08.03 11

Example Process State Transitions

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true
paralellism”)

PC

PCB’s

Memory resident part

Running

BlockedReady

Resource becomes available
(move to ready queue)

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

28.08.03 12

Process State Transition of
Non-Preemptive Scheduling

Running

BlockedReady

Resource becomes available
(move to ready queue)

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

4

28.08.03 13

Scheduler

• Non-preemptive scheduler invoked by explicit block or
yield calls, possibly also fork and exit

• The simplest form
Scheduler:

save current process state (store to PCB)
choose next process to run
dispatch (load PCB and run)

• Does this work?
• PCB (something) must be resident in memory
• Remember the stacks

28.08.03 14

Stacks
• Remember: We have only one copy of the Kernel in memory

=> all processes “execute” the same kernel code
=> Must have a kernel stack for each process

• Used for storing parameters, return address, locally created
variables in frames or activation records

• Each process
– user stack
– kernel stack

• always empty when process is in user mode executing
instructions

• Does the Kernel need its own stack(s)?

28.08.03 15

More on Scheduler
• Should the scheduler use a special stack?

– Yes,
• because a user process can overflow and it would require another

stack to deal with stack overflow
• because it makes it simpler to pop and push to rebuild a process’s

context
• Must have a stack when booting...

• Should the scheduler simply be a “kernel process”?
– You can view it that way because it has a stack, code and its data

structure
– This process always runs when there is no user process

• “Idle” process
– In kernel or at user level?

28.08.03 16

Win NT Idle

• No runable thread exists on the processor
– Dispatch Idle Process (really a thread)

• Idle is really a dispatcher in the kernel
– Enable interrupt; Receive pending interrupts; Disable interrupts;
– Analyze interrupts; Dispatch a thread if so needed;
– Check for deferred work; Dispatch thread if so needed;
– Perform power management;

5

28.08.03 17

Threads and Processes

Process

Threads

Kernel threads

Kernel
Address
Space

Kernel Level

User Level

Project OpSysTrad. Threads
Processes in individual address spaces

28.08.03 18

28.08.03 19

Where Should PCB Be Saved?

• Save the PCB on user stack
– Many processors have a special instruction to do it

efficiently
– But, need to deal with the overflow problem
– When the process terminates, the PCB vanishes

• Save the PCB on the kernel heap data structure
– May not be as efficient as saving it on stack
– But, it is very flexible and no other problems

28.08.03 20

Job swapping

• The processes competing for resources may have combined
demands that results in poor system performance

• Reducing the degree of multiprogramming by moving some
processes to disk, and temporarily not consider them for
execution may be a strategy to enhance overall system
performance
– From which states(s), to which state(s)? Try extending the following

examples using two suspended states.

• The term is also used in a slightly different setting, see MOS
Ch. 4.2 pp. 196-197

6

28.08.03 21

Job Swapping, ii

Partially executed
swapped-out processes

Ready Queue CPU

I/O Waiting
queues

I/O

Terminate

Swap outSwap in

28.08.03 22

Add Job Swapping to
State Transition Diagram

Running

BlockedReady

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Resource becomes available
(move to ready queue) Swap out

Swap in
Swapped

28.08.03 23

Concurrent Programming w/ Processes

• Clean programming model
– File tables are shared
– User address space is private

• Processes are protected from each other
• Sharing requires some sort of IPC (InterProcess

Communication)
• Slower execution

– Process switch, process control expensive
– IPC expensive

28.08.03 24

I/O Multiplexing:
More than one State Machine per Process

• select blocks for any of multiple events
• Handle (one of the events) that unblocks select

– Advance appropriate state machine
• Repeat

7

28.08.03 25

Concurrent prog. w/ I/O Multiplexing

• Establishes several control flows (state machines) in
one process

• Uses select
• Offers application programmer more control than

processor model (How?)
• Easy sharing of data among state machines
• More efficient (no process switch to switch between

control flows in same process)
• Difficult programming

