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An aside on concurrency

• Timing and sequence of events are key concurrency issues 
• We will study classical OS concurrency issues, including 

implementation and use of classic OS mechanisms to support 
concurrency

• In a later course on parallel programming may revisit this 
material

• Later course on distributed systems you may want to use formal 
tools to understand and model timing and sequencing better

• Single CPU computers are designed to uphold a simple and 
rigid model of sequencing and timing. ”Under the hood,” even 
single CPU systems are distributed in nature, and are carefully 
organized to uphold strict external requirements
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Process

• An instance of a program under execution
– Program specifying (logical) control-flow (thread)
– Data 
– Private address space
– Open files
– Running environment

• The most important operating system concept
• Used for supporting the concurrent execution of independent or 

cooperating program instances
• Used to structure applications and systems
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Supporting and Using Processes

• Multiprogramming
– Supporting concurrent execution (parallel or transparently interleaved)

of multiple processes (or threads). 
– Achieved by process- or context switching, switching the CPU(s) back 

and forth among the individual processes, keeping track of each process’ 
progress 

• Concurrent programs
– Programs (or threads) that exploit multiprogramming for some purpose 

(e.g. performance,  structure)
– Independent or cooperating
– Operating systems is important application area for concurrent 

programming. Many others (event driven programs, servers, ++)
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Implementing processes

• Os needs to keep track of all processes
– Keep track of it’s progress
– Parent process
– Metadata (priorities etc.) used by OS
– Memory management
– File management

• Process table with one entry (Process Control Block) 
per process 

• Will also align processes in queues
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Primitives of Processes

• Creation and termination
– fork, exec, wait, kill

• Signals
– Action, Return, Handler

• Operations
– block, yield

• Synchronization
– We will talk about this later
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fork (UNIX)

• Spawns a new process (with new PID)
• Called in parent process
• Returns in parent and child process
• Return value in parent is child’s PID
• Return value in child is ’0’
• Child gets duplicate, but separate, copy of parent’s 

user-level virtual address space
• Child gets identical copy of parent’s open file 

descriptors
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fork, exec, wait, kill

• Return value tested for error, zero, or positive
• Zero, this is the child process

– Typically redirect standard files, and
– Call Exec to load a new program instead of the old

• Positive, this is the parent process
• Wait, parent waits for child’s termination

– Wait before corresponding exit, parent blocks until exit
– Exit before corresponding wait, child becomes zombie (un-dead) until 

wait

• Kill, specified process terminates
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When may OS switch contexts?

• Only when OS runs
• Events potentially causing a context switch:

– Process created (fork)
– Process exits (exit)
– Process blocks implicitly (I/O, IPC)
– Process blocks  explicitly (yield)
– User or System Level Trap

• HW
• SW: User level System Call
• Exception

– Kernel preempts current process
• Potential scheduling decision at “any of above”
• +“Timer” to be able to limit running time of processes

Preemptive 
scheduling

Non-Preemptive 
scheduling

28.08.03 10

Context Switching Issues
• Performance

– Should be no more than a few microseconds
– Most time is spent SAVING and RESTORING the context of processes

• Less processor state to save, the better
– Pentium has a multitasking mechanism, but SW can be faster if it saves 

less of the state
• How to save time on the copying of context state?

– Re-map (address) instead of copy (data)

• Where to store Kernel data structures “shared” by all processes
• Memory

• How to give processes a fair share of CPU time
• Preemptive scheduling, time-slice defines maximum time interval 

between scheduling decisions
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Example Process State Transitions
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Process State Transition of
Non-Preemptive Scheduling
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(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch



4

28.08.03 13

Scheduler

• Non-preemptive scheduler invoked by explicit block or 
yield calls, possibly also fork and exit

• The simplest form
Scheduler:

save current process state (store to PCB)
choose next process to run
dispatch (load PCB and run)

• Does this work?
• PCB (something) must be resident in memory
• Remember the stacks
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Stacks
• Remember: We have only one copy of the Kernel in memory

=> all processes “execute” the same kernel code
=> Must have a kernel stack for each process

• Used for storing parameters, return address, locally created 
variables in frames or activation records

• Each process
– user stack
– kernel stack

• always empty when process is in user mode executing 
instructions

• Does the Kernel need its own stack(s)?
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More on Scheduler
• Should the scheduler use a special stack?

– Yes, 
• because a user process can overflow and it would require another

stack to deal with stack overflow
• because it makes it simpler to pop and push to rebuild a process’s 

context
• Must have a stack when booting...

• Should the scheduler simply be a “kernel process”?
– You can view it that way because it has a stack, code and its data 

structure
– This process always runs when there is no user process

• “Idle” process
– In kernel or at user level?
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Win NT Idle

• No runable thread exists on the processor
– Dispatch Idle Process (really a thread)

• Idle is really a dispatcher in the kernel
– Enable interrupt; Receive pending interrupts; Disable interrupts;
– Analyze interrupts; Dispatch a thread if so needed;
– Check for deferred work; Dispatch thread if so needed;
– Perform power management;
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Threads and Processes

Process

Threads

Kernel threads

Kernel
Address
Space

Kernel Level

User Level

Project OpSysTrad. Threads
Processes in individual address spaces
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Where Should PCB Be Saved?

• Save the PCB on user stack
– Many processors have a special instruction to do it 

efficiently
– But, need to deal with the overflow problem
– When the process terminates, the PCB vanishes

• Save the PCB on the kernel heap data structure
– May not be as efficient as saving it on stack
– But, it is very flexible and no other problems
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Job swapping

• The processes competing for resources may have combined 
demands that results in poor system performance

• Reducing the degree of multiprogramming by moving some 
processes to disk, and temporarily not consider them for 
execution may be a strategy to enhance overall system 
performance
– From which states(s), to which state(s)? Try extending the following 

examples using two suspended states.

• The term is also used in a slightly different setting, see MOS 
Ch. 4.2 pp. 196-197
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Job Swapping, ii

Partially executed
swapped-out processes

Ready Queue CPU

I/O Waiting
queues

I/O

Terminate

Swap outSwap in
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Add Job Swapping to
State Transition Diagram
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Concurrent Programming w/ Processes

• Clean programming model
– File tables are shared
– User address space is private

• Processes are protected from each other
• Sharing requires some sort of IPC (InterProcess

Communication)
• Slower execution

– Process switch, process control expensive 
– IPC expensive
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I/O Multiplexing:
More than one State Machine per Process

• select blocks for any of multiple events
• Handle (one of the events) that unblocks select

– Advance appropriate state machine
• Repeat
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Concurrent prog. w/ I/O Multiplexing

• Establishes several control flows (state machines) in 
one process

• Uses select
• Offers application programmer more control than 

processor model (How?)
• Easy sharing of data among state machines
• More efficient (no process switch to switch between 

control flows in same process)
• Difficult programming


