Protection and System Calls

Otto J. Anshus
(including slides from Kai Li, Princeton
University)
University of Oslo

With adaptions by Tore Larsen, University of
Oslo and University of Tromsg

Protection Issues

* |/O protection
— Prevent users from performing illegal 1/0’s

* Memory protection

— Prevent users from modifying kernel code and data
structures

» CPU protection
— Prevent a user from using the CPU for too long

Kai Li

Protection mechanisms in HW

e Two (or more) privilege levels
— Highest privilege level
* "Anything isallowed”
— Lowest privilege level
« Only what can be safely let for anyoneisavailable
e Memory protection
— Provided by a” memory management unit (MMU),”
conceptually alevel of logic between the processor and
memory. Privileged instructions set restrictions on how
regions in memory address space may be accessed. MMU
traps when instructions attempt to break the restrictions —
The trap invokes the operating system

Support in Modern Processors

e User mode
— Regular Instructions
— Access user-mode memory
— Illegal attempts will result in

[nterrupts are imperamt

eInterrupt

faults/exceptions mode Return
« Kerne (supervisor, privileged) modéem @ mode.
— Regular instructions modetrap mode
— 1/Oinstructions
— Access both user- and kernel-mode 'me"upt
memory *Kernd systemcal

— Aninstruction to change to user mode *Kemel-modetrp

Table 2-2. Summary of System Instructions

Useful to Proiected from
Instruction Description 7 A ?

LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Reglster No No
LIDT Load IDT Reglster No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers Yas Yes (load only)
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yas
ARPL Adjust RPL Yes! No
LAR Load Access Rights Yes No
LsL Load Segment Limit Yes No

Table 2-2. S y of System Instructions (Contd.)
Useful to Protected from
Instruction Description ication? Application?

VERR Verify for Reading Yes No

VERW Verlfy for Wrlting Yes No

MOV DBn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WEBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) | Bus Lock Yes No

RASM Retum from system management made No Yes
RDMSR? Read Model-Specliic Registers No Yes
WRMSR? V¥rite Modsl-Specific Registers No Yes
RDPMC* Read Performance-Monitering Counter Yes Yes?
RDTSG? Read Time-Stamp Counter Yos Yos®

276=0-FFFFh
8-hit ports
2*8=16 bit port
4*16=32 bit port

1/O

/O ports:
» created in system HW for com. w/peripheral devices
» Examples
— connectsto aserial device
— connects to control registers of adisk controller

* |/O address space

* 1/Oinstructions
— in, out: between portsand registers
— ins, outs: between portsand memory locations
* |/O protection mechanism
— /O Privilege Level (IOPL): /O instr. only from Ring Level O or
1 (typical)
— /O permission bit map: Gives selective control of individual
ports

Will look at this and

Protection checks Intel Pentium

® Limit checks.
* Type checks.

® Privilege level checks.

‘ When violation: Exception! ‘

® Restriction of addressable domain,
® Restriction of procedure entry-points.
® Restriction of instruction set.

Intel Vol 3 System Programming Guide

Intel Privilege Levels

The privileged instructions

Checks not done by OS, Protection Rings can only be executed when
but the levels can be used current privilege level (CPL)
in thedesign is 0

Cperating

System
Karneal

A
-

Oparating System
Services

Applications

System Call Mechanism

* User code can be arbitrary
. User User
* User code cannot modify kernel | program program
memory ~% -
e Makes a system call with YNZ
parameters

e Thecall mechanism switches
codeto kernel mode

* Execute system call

Kernd in
protected memory

e Return with results
But HOWin a
Kai Li/OJA secure way?

System Call Implementation

e Usean “interrupt”
 Hardware devices (keyboard, serial port, timer, disk,...)
and software can reguest service using interrupts
» The CPU isinterrupted
* ...and a service handler routineis run

* ...when finished the CPU resumes from where it was
interrupted (or somewhere el se determined by the OS
kernel)

OS Kernel: Trap Handler

Interrupt
service
HW Device Sys_call_table L routines
Interrupt
System Service Call ?’Stemerv
ispatcher System
HW exceptions services
SW exceptions
Exception j
Virtud address dispatcher Exception
exceptions L] handlers
VM manager’s
— pager

HW implementation of the boundary

Passing Parameters

» Passingin registers
e Simplest but limited
» Passingin avector

* A register holds the
address of the vector

* Passing on the stack
e Push: library
* Pop: System

Kai Li

Kerne hasaccessto cdlers
address space, but not vice
versa

Top

frame

frame

The Stack

Shack Segmant

Bultom of Stack
™ (il EASP Ylue)
[
lﬂhmm
The Bitack Gan B
F“"’“""l 16.0r 22 Bitn Wids
Fernmnetars.
Famoad i The EBP reghter b
- Geled R/pcty wat 1o poind
Frae Baundiny | -
Rambmineton 1y EBP Rege
fe—| EAP Rogisor
Top of Slack
Puehas Mova s Pope Move tha
Top Of Binck lo Top Of Black o
Higtnd A diring:

Flgure 41, Staok Swuoture

*Many stacks possible, but only
oneis“current”: the one in the
segment referenced by the SS
register

*Max size 4 gigabytes
*PUSH: write (--ESP);
*POP: read(ESP++);

*When setting up a stack
remember to align the stack
pointer on 16 bit word or 32 bit
double-word boundaries

Issues in System Call Mechanism

— Usea special stack

Kai Li

Use caller’s stack or a special stack?

Use asingle entry or multiple entries

— A singleentry issimpler
Systemcallswith 1, 2, 3, ... N arguments
— Group system calls by # of args

Can kernel code call system calls?

— Yes and should avoid the entry

Library Stubs for System Calls

« read(fd, buf, size)

int read(int fd, char * buf, int sze)

{

move READ to R,

32-255 avail g

to user

—int $0x80

/(oad result codefrom R gt
}

hie Move fd, buf, szeto R}, R,, Ry

Return when|
work is done
Could be an error
code
Kai L/OJA

User
User memory
stack
Registers
Registers
Kerne
sack Kernel
memory
Win NT: 2E
Linux: 80

_
System Call Entry Point

» Assume passing parametersin
®isters Ueer User
EntryPoint: Kernd Sack memory
sw switch to kernel stack; | Mode: :
interrupt . Totd ’m
saveal regigers, control.
if legal(Ry) call sys call_@blIER]; -
restore user registers, | e P m‘
switch to user stack; disabled Kernel
iret: stack Kernel

memory

Kai Li/OJA

_
System Call Entry Point

* Assume passing parametersin
®isters Ueer User
EntryPoint: Kernd Sack memory
sw switch to kernel stack; | Mode: :
interrupt . Totd ’m
saveal regigers, control.
if legal(Ry) call sys call_@blIER]; -
restore user registers, _ | e P m‘
switch to user stack; disabled Kernel
iret; stack Kernel
' memory

Change to user mode

and return PUt results into buf Or: User stack
Kai Li/OJA

Or: some register

_
System Call Entry Point

e Assume passing parametersin
®isters
EntryPoint:

0 ?
S:V) switch to kernel stack; Save/Restore Context?
interru ;
P saveall registers, — |
if legal (Ry) call sys call_gpbl +— If this code takes along time: should
restore user registers, ENABLE interrupts
switch to user stack;
iret; READ returns with result and
handler must return them to user

Or SCHEDULE to run another

Kai Li/OJA

Polling instead of Interrupt?

» OSkernel could check arequest queue instead
of using an interrupt?
» Waste CPU cycles checking

« All haveto wait while the checks are being done
* When to check?

“erpretaas
— Pulse every 10-100ms?

» too long time

» Samevalid for HW Interrupts vs. Polling

Interrupts and Exceptions

Dueto bugsin current

¢ Processor eXCGptiOI’]S | running process

* MMU address faults, divide by zero, etc
» 386: thefirst 32 “interrupt descriptor table” entries are
special descriptors, trap gates, mapping exceptions to
handler code
* Interrupts from hardware
* slow: int ON, usual, timer
« fast: int OFF, less complex, keyboard

* Interrupts from software: sys calls

Kai Li

System Calls
Process management
» end, abort , load, execute, create, terminate, set, wait

Memory management

* mmap & munmap, mprotect, mremap, Mmsync, swapon &
off,

File management
* create, delete, open, close, R, W, seek
Device management
* res, rel, R, W, seek, get & set atrib., mount, unmount

Communication
* get ID’s, open, close, send, receive

