
1

Protection and System Calls

Otto J. Anshus
(including slides from Kai Li, Princeton

University)
University of Oslo

With adaptions by Tore Larsen, University of
Oslo and University of Tromsø

Protection Issues

• I/O protection
– Prevent users from performing illegal I/O’s

• Memory protection
– Prevent users from modifying kernel code and data

structures

• CPU protection
– Prevent a user from using the CPU for too long

Kai Li

Protection mechanisms in HW

• Two (or more) privilege levels
– Highest privilege level

• ”Anything is allowed”

– Lowest privilege level
• Only what can be safely let for anyone is available

• Memory protection
– Provided by a ”memory management unit (MMU),”

conceptually a level of logic between the processor and
memory. Privileged instructions set restrictions on how
regions in memory address space may be accessed. MMU
traps when instructions attempt to break the restrictions –
The trap invokes the operating system

Support in Modern Processors

User-
mode

Kernel-
mode

Return
to user-
mode

•Interrupt,

•Kernel system call

•Kernel-mode trap

•Interrupt,

•User
system call,

•User-
mode trap

• User mode
– Regular Instructions

– Access user-mode memory

– Illegal attempts will result in
faults/exceptions

• Kernel (supervisor, privileged) mode
– Regular instructions

– I/O instructions

– Access both user- and kernel-mode
memory

– An instruction to change to user mode

2

I/O
• I/O ports:

• created in system HW for com. w/peripheral devices
• Examples

– connects to a serial device
– connects to control registers of a disk controller

• I/O address space
• I/O instructions

– in, out: between ports and registers
– ins, outs: between ports and memory locations

• I/O protection mechanism
– I/O Privilege Level (IOPL): I/O instr. only from Ring Level 0 or

1 (typical)
– I/O permission bit map: Gives selective control of individual

ports

Will look at this and
memory mapped I/O
later

2^16=0-FFFFh
8-bit ports
2*8=16 bit port
4*16=32 bit port

Protection checks Intel Pentium

Intel Vol 3 System Programming Guide

When violation: Exception!

3

Intel Privilege Levels

Checks not done by OS,
but the levels can be used
in the design

The privileged instructions
can only be executed when
current privilege level (CPL)
is 0

System Call Mechanism

• User code can be arbitrary

• User code cannot modify kernel
memory

• Makes a system call with
parameters

• The call mechanism switches
code to kernel mode

• Execute system call

• Return with results

Kernel in
protected memory

entry

User
program

User
program

call

return

Kai Li/OJA

But HOW in a
secure way?

System Call Implementation

• Use an “interrupt”
• Hardware devices (keyboard, serial port, timer, disk,…)

and software can request service using interrupts

• The CPU is interrupted

• ...and a service handler routine is run

• …when finished the CPU resumes from where it was
interrupted (or somewhere else determined by the OS
kernel)

OS Kernel: Trap Handler

HW Device
Interrupt

HW exceptions

SW exceptions

System Service Call

Virtual address
exceptions

HW implementation of the boundary

System service
dispatcher

System
services

Interrupt
service
routines

Exception
dispatcher

Exception
handlers

VM manager’s
pager

Sys_call_table

4

Passing Parameters

• Passing in registers
• Simplest but limited

• Passing in a vector
• A register holds the

address of the vector

• Passing on the stack
• Push: library

• Pop: System

frame

frame

Top

Kai Li

Kernel has access to callers
address space, but not vice
versa

The Stack

•Many stacks possible, but only
one is “current”: the one in the
segment referenced by the SS
register

•Max size 4 gigabytes

•PUSH: write (--ESP);

•POP: read(ESP++);

•When setting up a stack
remember to align the stack
pointer on 16 bit word or 32 bit
double-word boundaries

Issues in System Call Mechanism

• Use caller’s stack or a special stack?
– Use a special stack

• Use a single entry or multiple entries
– A single entry is simpler

• System calls with 1, 2, 3, … N arguments
– Group system calls by # of args

• Can kernel code call system calls?
– Yes and should avoid the entry

Kai Li

Library Stubs for System Calls

• read(fd, buf, size)
int read(int fd, char * buf, int size)

{

move READ to R0

move fd, buf, size to R1, R2, R3

int $0x80

load result code from Rresult

}

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

Kai L/OJA

Return when
work is done

Could be an error
code

32-255 available
to user

Win NT: 2E

Linux: 80

5

System Call Entry Point

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

• Assume passing parameters in
registers
EntryPoint:

switch to kernel stack;

save all registers;

if legal(R0) call sys_call_table[R0];

restore user registers;

switch to user stack;

iret;

Kai Li/OJA

int 0x80

SW
interrupt

Kernel
Mode:
Total
control.
All
interrupts
are
disabled

System Call Entry Point

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

• Assume passing parameters in
registers
EntryPoint:

switch to kernel stack;

save all registers;

if legal(R0) call sys_call_table[R0];

restore user registers;

switch to user stack;

iret;

Kai Li/OJA

int 0x80

SW
interrupt

Put results into buf Or: User stack

Or: some register

Change to user mode
and return

Kernel
Mode:
Total
control.
All
interrupts
are
disabled

System Call Entry Point

• Assume passing parameters in
registers
EntryPoint:

switch to kernel stack;

save all registers;

if legal(R0) call sys_call_table[R0];

restore user registers;

switch to user stack;

iret;

Kai Li/OJA

int 0x80

SW
interrupt

Save/Restore Context?

If this code takes a long time: should
ENABLE interrupts

READ returns with result and
handler must return them to user

Or SCHEDULE to run another

Polling instead of Interrupt?

• OS kernel could check a request queue instead
of using an interrupt?

• Waste CPU cycles checking

• All have to wait while the checks are being done

• When to check?
– Non-predictable

– Pulse every 10-100ms?

» too long time

• Same valid for HW Interrupts vs. Polling

But used for Servers

6

Interrupts and Exceptions

• Processor exceptions
• MMU address faults, divide by zero, etc

• 386: the first 32 “interrupt descriptor table” entries are
special descriptors, trap gates, mapping exceptions to
handler code

• Interrupts from hardware
• slow: int ON, usual, timer

• fast: int OFF, less complex, keyboard

• Interrupts from software: sys calls

Due to bugs in current
running process

System Calls
• Process management

• end, abort , load, execute, create, terminate, set, wait

• Memory management
• mmap & munmap, mprotect, mremap, msync, swapon &

off,

• File management
• create, delete, open, close, R, W, seek

• Device management
• res, rel, R, W, seek, get & set atrib., mount, unmount

• Communication
• get ID’s, open, close, send, receive

Kai Li

