Semaphores
and other Wait-and-Signal mechanisms

Carsten Griwodz
University of Oslo
(including slides by Otto Anshus and Kai Li)

Critical Regions

Four conditions to provide mutual exclusion

1 No two threads simultaneously in critical region

No assumptions made about speeds or numbers of CPUs

3. No thread running outside its critical region may block another thread
a No thread must wait forever to enter its critical region

2.

Critical Regions

A enters critical region

/ A leaves critical region

ProcessA ——

B leaves
critical region

B enters
critical region

B attempts to
enter critical

| region
|/

I
|
[
|
|
|
: Y .
T1

:

Process B

1 B blocked 1
T, Ts 4

Time —————>

Mutual exclusion using critical regions

Recall Processes and Threads

* Process * Thread

Address space — Program counter

Program text and data — Registers

Open files — Stack

Child process IDs

Alarms

Signal handlers

Accounting information * Implemented in kernel or in
user space

« Implemented in kernel * Threads are the scheduled
entities

Producer-Consumer Problem

* Main problem description
— Two threads
— Different actions in the critical region
— The consumer can not enter the CR more often than
the producer
» Two sub-problems

— Unbounded PCP: the producer can enter the CR as
often as it wants

— Bounded PCP: the producer can enter the CR only N
times more often than the consumer

Unbounded PCP

Q
%(msg) GET (buf) \ Rules for the queue Q:

*No Get when empty

Producer *Q shared, so must have
mutex between Put and Get

Recall Mutexes

» Can be acquired and released
— Only one thread can hold one mutex at a time
— A second thread trying to acquire must wait

* Mutexes
— Can be implemented using busy waiting
— Simpler with advanced atomic operations
 Disable interrupts, TSL, XCHG, ...
— Still many approaches using busy waiting
— Better implemented using system calls block & unblock

Bounded PCP

Rules for the buffer B:
Capacity: N *No Get when empty

*No Put when full
GET (buf)
PUT (msg) *B shared, so must have
mutex between Put and

Get

Producer

Mutex Solution

Put (msg) {
acqui re(mut ex);
<put >
rel ease(nut ex) ;

Unbounded PCP |}

Get (nmsg) {
acqui re(mut ex);
whi | e(enpty) {
rel ease(mut ex) ;

Busy waiting

|_|—7acqui re(nutex);
—T 1}

<get >
rel ease(nut ex) ;

}

Put (msg) {
acqui re(mut ex);
while(full) {
Bounded PCP)
<put >
rel ease(nut ex) ;

}

rel ease(nut ex) ;
acqui re(mut ex) ;

Get (nsg) {

acqui re(mut ex);

whi | e(enpty) {
rel ease(mut ex) ;
acqui re(mut ex) ;

}

<get >

rel ease(nut ex) ;

}

Two Kinds of Synchronization

LOCK is initially OPEN

Acquire (id);

MUTEX

Acquire will let first
caller through, and
then block next until
Release

<CR>

CONDITION
SYNCHRONIZATION

Acquire will
block first caller
until Release

Rel ease (id);

Acquire (id);

<CR>

Rel ease (id);

LOCK is initially CLOSED

: 77Release (id);

SIGNAL

Sleep and Wakeup / Signal and Wait

* Wait (cond) » Signal (cond)
— Insert(caller, — Unblock first in
cond_queue) cond_queue, or just
— Block this thread return if empty

No counting, unused signals are ignored
Wait is atomic

Unbounded PCP using Signal and Wait

Rules for the queue Q:

Q
/:D:D:D:D\ *No Get when empty
GET (buf):
PUT (msg): (up *Q shared, so must have mutex
between Put and Get
Producer

while(1) { v\/n?:ce(l) !
<process> I \(Nginft(zz)nd)'

acqui re(mut ex) ; _
<insert> / acqui re(mut ex) ;

rel ease(nutex); <r ermove>
si gnal (cond); —] rel ease(nut ex) ;

} <process>

}

Unbounded PCP using Signal and Wait

Q
/ GET (buf\
PUT (msg):

while(1) { while(1) {

<process> ~— if(e_rrpty) .
acqui re(nut ex) ; /mal t(cond);

<insert> ; acqui re(nut ex) ;
rel ease(nut ex) ; <renove> .
si gnal (cond); rel ease(mut ex) ;
} <process>

}

Lost signal

Unbounded PCP using Signal and Wait

Q
/ GET (buf)\
PUT (msg):

while(1) { V\/nile(_l) {
<process> acqui re(mutex);
acqui re(mt ex) ; — whi | e(enpty) {
<insert> %\ wai t (cond);
si gnal (cond); rel ease(nutex);
rel ease(nut ex) ; acqui re(mut ex);
} Producer can’t enter }
<renove>
rel ease(nut ex);
<process>
}

Unbounded PCP using Signal and Wait

Q
/ GET (buf)\
PUT (msg):

while(1) { while(1) {
<process> acqui re(mut ex);

acqui re(mut ex)/; \ whi | e(enpty) {

<i nsert> — rel ease(nutex);
| —> wai t (cond);

si gnal (cond); ; (
rel ease(mut ex)\ /) acqui re(nut ex) ;
} <r enove>

Lost signal rel ease(nut ex);
<process>

}

Threads wait for ...

» Access to a critical region
— Mutex
— Semaphore

» A condition to be fulfilled
— Condition variable
— Barrier
— Semaphore

Semaphores

Semaphores (Dijkstra, 1965)

prolaag verhoog
* Down or Wait or “P” » Up or Signal or “V”

— Atomic — Atomic
— Decrement semaphore — Increment semaphore by 1

value by 1 — Wake up a waiting thread if
— Block if not positive any

P(s) { V(s) |

if (--s <0) if (++s <= 0)
} Bl ock(s); \ Unbl ock(s);

Can get negative s: counts number of waiting threads

s is NOT accessible through other means than calling P and V

Semaphores w/Busy Wait

P(s): V(s):

ATOMIC

- Starvation possible?

* Does it matter in practice?

The Structure of a Semaphore

-4 Threads waiting to get return after calling P (s) when s was <=0

st g O O O
V(s) P(s)
Unblock Block

(FIFO is fair)
+1 -1

«Atomic: Disable interrupts
*Atomic: P() and V() as System calls

*Atomic: Entry-Exit protocols

Using Semaphores

“The Signal” “The Mutex”
s:=0; s:=1
A B

One thread gets in, next

A blocks until B says V A
blocks until V is executed

si=11; The Team”

NB: remember to set the
initial semaphore value!

Up to 11 threads can pass P, the
ninth will block until V is said by
one of the eight already in there

Simple to debug?

A X =

What will happen?

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL
(“No milk”)

Examples

Unbounded

Q
/ GET (buf):\
PUT (msg): H

PCP using Semaphores

One semaphore for each
condition we must wait
*No Get when empty

for to become TRUE:
«Q shared, so must have\A

*Q empty: nonempty:=0;
mutex between Putand ™~ 4 Py

Rules for the queue Q:

*Q mutex: mutex:=1;

Producer Get
PUT (m5g) GET (buf): *Is Mutex needed when only 1 P and 1 C?
P(mut ex) ; P(nonenpty); *PUT at one end, GET at other end
<insert> P(mut ex) ;
V(nut ex) ; <r enove>
V(nonenpty); V(nut ex) ;

Bounded PCP using Semaphores

Rules for the buffer B: One semaphore for each

' q o condition we must wait
*No Get when empty \for to become TRUE:

in ‘(.'}J *No Put when full \-B empty: nonempty:=0;
Capacity: N *B shared, so must have

B full: nonfull:=N

mutex between Put and\
/ GET (buf): Get *B mutex: mutex:=1;
PUT (msg):
@
FUT (). GET (buf): “PUT at one end, GET at other end

P(nonful I'); P(nonenpty);

P(mut ex) ; P(mut ex) ;
<insert> <r enove>
V(nut ex) ; V(mut ex) ;
V(nonenpty); V(nonful I');

Dining Philosophers Problem

* Five philosopher

» Five dishes

* Five forks

» But a philosopher needs two forks for eating

» Usually the philosophers think, when they are hungry
the try to eat

* How to prevent all philosophers from starving

Dining Philosophers

*Each: 2 forks to eat S state

* Free
*5 philosophers: 10 forks to let all E E
eat concurrently

«5 forks: 2 can eat concurrently

Mutex on whole table: P(mutex); | T
«1 can eat at a time eat; !
V(mut ex) ;
Get L; Get R; P(s(i)); Ti
*Deadlock possible p(s(j +1));
eat;
S V(s(i+1));
S(i) = 1 initiall :
0 Y s

Get L; Get R if free else Put L;
«Starvation possible

Dining Philosophers

To avoid starvation they could look after each other:

state hinki
Entry: If L and R is not eating we can *Thinking
*Exit: If L (R) wants to eat and L.L (R.R) is not *Eating
eating we start him eating o *Want
S() = Oinitially ﬁ
P(mut ex) ;
state(i):=wvant;
if (state(i-1) !=Eating AND state(i+1) /! = Eating)
Ti {/*Safe to eat*/
; state(i):=Eating;
V\hlle.(l) { V(s(i)); / *Because ! */ }
<t hi nk> V(mut ex) ;
ENTRY, P(s(i)); /*N\(nit was 0!
<eat > We or nei ghbor nust say V(i) to us!*/

EXIT,
} \-) P(mut ex) ;

state(i): =Thinking;

if (state(i-1)=Want AND state(i-2)
I =Eat i ng)

state(i-1):=Eating;
V(s(i-1)); /*Start Left neighbor*/

}
/ *Anal ogue for Ri ght nei ghbor*/
V(nut ex) ;

Dining Philosophers

Can we in a simple way do better
than this one?

S

£

S(i) = 1 initially

GetL; Get R;
*Deadlock possible

P(s(i));

eat ;

V(s(i+1));

V(s(i));

P(s(i+1));

*Non-symmetric solution. Still
quite elegant

*Remove the danger of
circular waiting (deadlock)

*T1-T4: Get L; Get R;
*T5: Get R; Get L;

T, Ty, Ty, Tyt

P(s(i)):
P(s(i+1));
<eat >
V(s(i+1));

V(s(i));

Ts

P(s(1));
P(s(3));
<eat >
V(s(5));
V(s((1));

Readers and Writers Problem

» Several threads

» Shared data in a critical region

* Sometimes a thread wants to read the data
* Sometimes a thread wants to change the data

» Readers can enter a critical region together
» Writers can not enter a critical region together

The Readers and Writers Problem

P(mut ex) ;
rc = rc+l;
if(rc==1) P(db);
V(nut ex) ;
<read data>
while(1l) {
P(mut ex) ;
<do things> 1
rc =rc-1;
i f(you_want) .
if(rc==0) V(db);
READ;
V(nut ex) ;
el se
WITE, ————— |
—
} P(db);
<wite data>
V(db);

One solution to the readers and writers problem
But too many readers can starve writers

The Readers and Writers Problem

P(st opreaders);

P(mut ex) ;
rc = rc+l;
if(rc==1) P(db);
V(nut ex) ;
V(' st opreaders);
while(1) { <read data>
<do things> P(mut ex) ;
i f (you_want rc =re-1;
READ; if(rc==0) V(db);
el se V(nut ex) ;
, WwE /5 P(st opreaders);

P(db);
V(' st opreaders);
<wite data>

V(db) ;
Another solution to the readers and writers problem

Other wait-and-signal mechanisms

Event Count (Reed 1977)

Init(ec)

— Set the eventcountto O

Read(ec)

— Return the value of eventcount ec
Advance(ec)

— Atomically increment ec by 1
Anait(ec, v)

— Waituntilec >= v

Bounded PCP with Event Count

in=out=0; '3§
producer () { consuner () { in ‘(.od

out

int next = O; int next = O; -
Capacity: N

while (1) { while (1) {
produce an item next ++;
next ++; await(in, next);
awai t (out, next - N); take an item from buffer;
put the itemin buffer; advance(out);
advance(in); consune the item

} }

} }

* Does this work for more than one producer and
consumer?

* No, we will get multiple events happening, need a
sequencer

Condition Variables

* Wait (cond, mutex) » Signal (cond)
— Insert(caller, — Unblock first in
cond_queue) cond_queue, or just
— V(mutex) return if empty

— Block this thread

— When unblocked,
P(mutex)

No counting, unused signals are ignored
Insert, Unlock and Block not interrupted

Unbounded PCP using Condition Variable

Q
/ GET (buf):\
PUT (msg):

Producer

while(l) {
<process>
P(mut ex) ;
<i nsert>

V(ut ex) ;

si gnal (cond) ;

/\
/

No problems

while(1l) {
P(mut ex) ;
whi | e(enpty) {
/E wai t (cond, mut ex) ;
<r enove>
V(nut ex) ;
<process>

}

Unbounded PCP using Condition Variable

Q
/ GET (buf):\
PUT (msg):

Producer

while(l) {
<process>
P(mut ex) ;
<insert>

V(mut ex) ;

si gnal (cond);

while(1l) {

P(mut ex) ;

whi | e(enpty) {
wai t (cond, nut ex) ;

}
<r enove>

V(nut ex) ;

<process>

}

No problems either

while(1l) {

P(nut ex) ;

whi | e(enpty) {
wai t (cond, nut ex) ;

}
<r enove>

V(nut ex) ;

<process>

Emulations

* Not all wait-and-signal mechanisms exist in all
operating systems or thread packages

* Windows has no native condition variables
— But semaphores (and mutexes)

* Some Unix-like systems have no native semaphores

— But condition variables and mutexes

 Emulations

Building Condition Variables using Semaphores

cond:
semaphore | ock
semaphor e si gnal
i nt wai ters

[eNe

wai t (cond, mut ex) {
P(cond. | ock);
cond. wai t er s+=1;
V(cond. | ock) ;

si gnal (cond) {
P(cond. | ock);

i f(cond. waiters>0) {

— | V(cond. si gnal) ;

V(nut ex) ;
P(cond.’si gna|<)_;\
P(cond. I ock) ;
cond. wai ters-=1;

V(cond. | ock) ;

But no lost signal | V(cond. unl ock) ;

because of el se {
cond.waiters & V(cond. unl ock) ;
counting in

semaphores

P(mut ex) ;

N/

Looks like lost-signal situation in
signal-and-wait

Condition Variables Extension

* Wait (cond, mutex)
— Insert(caller,
cond_queue)
— V(mutex)
— Block this thread

— When unblocked,
P(mutex)

» Signal (cond)
— Unblock first in
cond_queue, or just
return if empty

» Broadcast (cond)
— Unblock all in
cond_queue, or just
return if empty

Building Condition Variables using Semaphores

cond:
senmaphore | ock
semaphor e si gnal
int waiters

[eoNe]

wai t (cond, mut ex) {
P(cond. | ock);
cond. wai t ers+=1;
V(cond. | ock) ;
V(nut ex) ;
P(cond. si gnal);
P(cond. I ock) ;
cond. wai t ers- =1;
V(cond. | ock) ;
P(nut ex) ;

br oadcast (cond) {

P(cond. | ock);

i f(cond. waiters>0) {
for(i=0;i<cond.waiters;i++)

V(cond. signal);

V(cond. unl ock) ;

} else {
V(cond. unl ock) ;

}

}

Condition Variables Extension Il

Wait (cond, mutex)

— Insert(caller,
cond_queue)

— V(mutex)
— Block this thread

— When unblocked,
P(mutex)

* Wait(cond,mutex,timeout)

— Wait no longer than
timeout

» Signal (cond)
— Unblock first in
cond_queue, or just
return if empty

» Broadcast (cond)

— Unblock all in
cond_queue, or just
return if empty

This needs additional scheduler support

Building Semaphores using Condition Variables
and Mutexes

semaphor e:
mut ex nut ex
cond cond

if(semval <= 0)
si gnal (sem cond) ;
rel ease(sem nut ex) ;

int val = <initial senpahore val ue>

V(sem { P(sem {
acqui re(sem nut ex) ; acqui re(sem nut ex) ;
semval += 1; semval -= 1;

if(semval < 0)
wai t (sem cond, sem nut ex) ;
rel ease(sem nut ex) ;

Barriers

@ @
Process e b 5 &
o |8 O] B o)
®- @ ©
Time —» Time —= Time —=
(a) (b) (c)

» Use of a barrier
— threads approaching a barrier
— all threads but one blocked at barrier
— last thread arrives, all are let through

Threads wait for ...

» Access to a critical region
— Mutex
— Semaphore

» A condition to be fulfilled
— Condition variable
— Barrier
— Semaphore

