
27.08.03 1

Operating Systems Structure
and

Processes

Otto J. Anshus
University of Tromsø/Oslo

27.08.03 2

The Architecture of an OS

• Monolithic
• Layered
• Virtual Machine, Library, Exokernel
• Micro kernel and Client/Server
• Hybrids

27.08.03 3

Goals of the architecture

• OS as Resource Manager
• OS as Virtual Machine (abstractions)
• Efficiency, flexibility, size, security, … as

discussed earlier

27.08.03 4

User
process

Call a service in OS

Services

Data from
network

Interrupt handler:

Interrupt
Hardware

Operating
System
Kernel

Service
Service

Service
Service

Start requested service

Start (next?) user program

Overhead

•UL -> KL

•UL address space -> UL addr. space

27.08.03 5

Monolithic

• All kernel routines are
together

• A system call interface
• Examples:

– Linux
– Most Unix OS
– NT (hybrid) Kernel

many many things

entry

User
program

User
program

call

return

27.08.03 6

Layered Structure

• Hiding information at
each layer

• Develop a layer at a time
• Examples

– THE (6 layers,
semaphores, Dijkstra
1968)

– MS-DOS (4 layers) Hardware

Level 1

Level 2

Level N
...

27.08.03 7

Microkernel and Client/Server

• Micro-kernel is “micro”
• Services are implemented

as user level processes
• Micro-kernel get services

on behalf of users by
messaging with the service
processes

• Example: L4, Nucleus,
Taos, Mach, NT (hybrid)

µ−kernel
entry

User
program Services

call

return
27.08.03 8

Virtual Machine
"A running program is often referred to as a virtual machine - a machine that doesn't
exist as a matter of actual physical reality. The virtual machine idea is itself one of the
most elegant in the history of technology and is a crucial step in the evolution of ideas
about software. To come up with it, scientists and technologists had to recognize that
a computer running a program isn't merely a washer doing laundry. A washer is a
washer whatever clothes you put inside, but when you put a new program in a
computer, it becomes a new machine.... The virtual machine: A way of understanding
software that frees us to think of software design as machine design."

From David Gelernter's "Truth, Beauty, and the Virtual Machine," Discover
Magazine, September 1997, p. 72.

27.08.03 9

Virtual Machine

• Virtual machine monitor
– provide multiple virtual “real”

hardware
– run different OS codes

• Example
– IBM VM/370: Started in the

70’s. Check out
– virtual 8086 mode
– Java VM
– VMware
– Exokernel

Bare hardware

Small kernel

VM1 VMn
. . .

OS1 OSn

user user

Exact copies of
the bare hardware

Syscall
trapped

Privileged
instructions
trapped

Virtual Kernel
Mode

Kernel
Mode

User Mode

Virtual User
Mode

27.08.03 10

27.08.03 11

Virtual 8086

27.08.03 12

Java VM

27.08.03 13 27.08.03 14

Hardware Support

• What is the minimal support?
• 2 modes
• Exception and interrupt trapping

• Can virtual machine be protected without such
support?

• Yes, emulation instead of executing on real machine

27.08.03 15

Pro et Contra
Monolithic Layered VM C/S Micro kernel

•Many virtual
computers with
different OS’es

•Test of new OS
while production
work continues

•All in all:
flexibility

•Performance
issues?

•Complexity
issues?

•Performance

•More
unstructured

•Performance
issues?

•Clean, less bugs

•Clear division of
labour

•More flexible

•Small means less
bugs+manageable

•Distributed systems

•Failure isolation of
services at Kernel Level

•Flexibility issues?

•Performance issues?

•Clear division of
labour

•Performance
issues?

27.08.03 16

“Truths” on Micro Kernel Flexibility and
Performance

• A micro kernel restricts application level flexibility.
• Switching overhead kernel-user mode is inherently expensive.
• Switching address-spaces is costly.
• IPC is expensive.
• Micro kernel architectures lead to memory system degradation.
• Kernel should be portable (on top of a small hardware-

dependent layer).

Taken from J. Liedtke, SOSP 15 paper:
”On micro kernel construction”

NO: Can be <50 cycles

NO: 6-20 microsec round-trip,
53-500 cycles/IPC one way

27.08.03 17

Concurrency and Process

• Problem to solve
– A shared CPU, many I/O devices and lots of

interrupts
– Users feel they have machine to themselves

• Answer
– Decompose hard problems into simple ones
– Deal with one at a time
– Process is such a unit

27.08.03 18

Flow of Execution

Kernel Mode

User Mode

“Input finished” interrupt

P1: Input syscall

P1: CPU bound

P2: CPU bound

Trap handling;
Scheduler;
Dispatch;

Trap handling;
Scheduler; Dispatch;

Trap handling;
Scheduler;
Dispatch;

Int0x80

Timer 10-100ms

(Could have started another
process than P1)

(Assume R to disk
=> long wait 10-
100’s ms)

27.08.03 19

Procedure, Co-routine, Thread, Process

• Procedure, Function, (Sub)Routine
• Call-execute all-return nesting

• Co-routine
• Call-resumes-return

• Thread (more later)
• Process

– Single threaded
– Multi threaded

User level non preemptive “scheduler”
in user code

27.08.03 20

Procedure and Co-routine

Call A;
Call B;

Call B;

1

1

2
2

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

Never executed

“User Yield when finished”

“User Yield during execution
to share CPU”

Return

27.08.03 21

Process

• Sequential execution of operations
– No concurrency inside a (single threaded) process
– Everything happens sequentially

• Process state
– Registers
– Stack(s)
– Main memory
– Files in UNIX
– Communication ports
– Other resources

27.08.03 22

Program and Process

main()
{
...
foo()
...
}

foo()
{

...
}

Program

main()
{
...
foo()
...
}

foo()
{

...
}

Process

heap
stack
main
foo

registers
PC

Resources:
comm. ports,

files,
semaphores

PID

For at least one
thread of execution

The
context

27.08.03 23

Process vs. Program

• Process > program
– Program is just part of process state
– Example: many users can run the same program

• Process < program
– A program can invoke more than one process
– Example: Fork off processes to lookup webster

27.08.03 24

Process State Transitions

Running

BlockedReady

Sc
he

du
ler

dis

pa
tch W

ait for

resource

Resource becomes
available

Create
a process

terminate

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true
paralellism”)

PCB’s

Memory resident part

Instruction Pointer
(program counter) in the
EIP register

27.08.03 25

Process State Transition

Running

BlockedReady

Sc
he

du
ler

dis

pa
tch W

ait for

resource

Resource becomes
available

Create
a process

terminate

27.08.03 26

Process Control Block (Process Table)

• What
– Process management info

• State (ready, running, blocked)
• Registers, PSW, parents, etc

– Memory management info
• Segments, page table, stats, etc

– I/O and file management
• Communication ports, directories, file descriptors, etc.

27.08.03 27

Discussion: What needs to be saved and restored
on a context switch?

• Volatile state
• Program counter (Program Counter (PC) also called Instruction

Pointer (Intel: EIP))
• Processor status register
• Other register contents
• User and kernel stack pointers
• A pointer to the address space in which the process runs

• the process’s page table directory

27.08.03 28

…and how?

• Save(volatile machine state, current process);
• Load(another process’s saved volatile state);
• Start(new process);

27.08.03 29

Threads and Processes

Process

Threads

Kernel threads

Kernel
Address
Space

Kernel Level

User Level

Project OpSysTrad. Threads
Processes in individual address spaces

