Threads and Critical Sections

Otto J. Anshus, Tore Larsen
University of Tromsg, Univ. of Oslo
(including slides from Kai Li, Princeton
University)

05.09.03 University of Oslo, INF3150

Process

Provides illusion that program runs protected on its own
computer
Address space
— Separate, protected, user address space
* All the state needed to run a program
» Program text & data, open files, child PIDs, pending alarms, signal
handlers, accounting information, etc. etc.
Thread of execution, -thread of control, -thread
— Historically only one thread per process (implicit, hence no term)
— Program counter
— Registers
— Stack w/ linkage information (frames)
— How about more than one thread per process?

05.09.03 University of Oslo, INF3150

Threads, Overview

* Separate control flows (execution flows/threads)
within a the confinement of one process
— Multithreading

 Thread, entity scheduled for execution

» Threads in same process share address space, open
files etc.

» Thread switching within process doesn’t require new
address mappings to be set up
— Lightweight processes

05.09.03 University of Oslo, INF3150

Concurrency and Threads

I/O devices

— Opverlap I/Os with I/Os and computation (modern OS approach)
Human users

— Doing multiple things to the machine: Web browser
Distributed systems

— Client/server computing: NFS file server
Multiprocessors

— Multiple CPUs sharing the same memory: parallel program

05.09.03 University of Oslo, INF3150

Threads and Processes

Trad. Threads Project OpSys

Processes in individual address spaces

o O O

Kernel threads

Process

User Level

Threads Kernel |
Address
Space \

\

05.09.03 University of Oslo, INF315 Kernel Level 5

Concurrency: Double buffering

/* Fill s and empty t concurrently */
Get(s,f);
Get (s,f) .9
Input sequence f

cobegin
Output sequence g Put(t,g);

Get(s,f);

Put (t,g) coend;
until completed;

*Put and Get are disjunct

. but not with regards to Copy!

05.09.03 University of Oslo, INF3150

Specifies
concurrent
execution

./\A Repeat
Copy;
/* Copy */t i

‘\(Threads)

Concurrency: Time Dependent Errors

Repeat Repeat The rightmost
: Oops! . (incorrect)
Copy; cobegin solution can be

cobegin Copy; executed in 6
Put(tg); Put(tg); e
*C-P-G
Get(s,1); Get(s,f);
*C-G-P
coend; coend;
P-C-G
until completed; until completed;
*P-G-C
*G-C-P
In the correct solution we solved the *G-P-C
problem of sharing of the buffers between
Copy and Put/Get by designing an Interleaving!

algorithm avoiding problems

05.09.03 University of Oslo, INF3150 7

Typical Thread API

«Difficult to use

e Creation *Not good: Combines
. specification of
- FOI'k, Join concurrency (Fork) with

* Mutual exclusion

— Acquire (lock), Release (unlock)
* Condition variables

— Wait, Signal, Broadcast
o Alert

— Alert, AlertWait, TestAlert

05.09.03 University of Oslo, INF3150

synchronization (Join)

Pl:

FORK T1. —

L JOIN T1; <
Pl must/‘

Fork/Join N

Executes concurrently

Concurrent programming w/ threads

» “Lighter” than processes
— Easy and efficient sharing of data (why?)
— Thread switches cheaper than context switches
» Easier, more general, more scalable structure than I/O
multiplexing

05.09.03 University of Oslo, INF3150 10

WAIT
until T1 Pl: DEND:
finishes
FORK TI;
FORK T2;—
FORK T3; —
% IOIN; +—
JOIN whom??]
05.09.03 whom Unjyersim > 150
User vs. Kernel-Level Threads
* Question

— What is the difference between user-level and kernel-level

threads?

e Discussions

— When a user-level thread is blocked on an I/O event, the
whole process is blocked

— A context switch of kernel-threads is expensive

— A smart scheduler (two-level) can avoid both drawbacks

05.09.03

University of Oslo, INF3150 11

User vs. Kernel Threads

Threads

Thread Package

Process “Package” Thread Package

KERNEL

05.09. University of Oslo, INF3150 12

Thread Control Block

* Shared information

— Processor info: parent process, time, etc

— Memory: segments, page table, and stats, etc

— 1/0 and file: comm ports, directories and file descriptors, etc
* Private state

— State (ready, running and blocked)

— Registers

— Program counter

— Execution stack

05.09.03 University of Oslo, INF3150 13

System Stack for Kernel Threads

e Each kernel thread has
— auser stack

— a private kernel stack

e Pros

¢ Each kernel thread has
— auser stack

— a shared kernel stack with
other threads in the same
address space

— concurrent accesses to system

services
— works on a multiprocessor
* Cons
— More memory

* Pros
— less memory
» Cons

— serial access to system services

05.09.03 Tyricaksferalbshanedrasqurces 14

“Too Much Milk” Problem

Person A Person B

Look in fridge: out of milk

Leave for Shop o '
Arrive at Shop Look in fridge: out of milk
Buy milk Leaye for Shop
Arrive home Arrive at Shop

Buy milk

Arrive home

* Don’t buy too much milk

» Any person can be distracted at any point
05.09.03 University of Oslo, INF3150 15

A Possible Solution?

A:
if (noMilk) {
if (noNote) {
leave note;
buy milk;
remove note;
}
}

And

05.09.03 (But B will “see /}JEP\]/

B:
if (noMilk) {
if (noNote) {
leave note;

buy milk;
remove note;
}
}
Ping!!!: and B
starts executi
until finished, The
and then A ENTRY is
starts again flawed

both A and B buys milk.

the fridge?: That is what trying to achieve.
ers?ly%?%ilo, INf5¥gvhat We are trying to ac feve.)

Another Possible Solution?

Thread A Thread B
leave noteA

if (noNoteB) {

if (noMilk) {
buy milk

} }

} }

remove noteA remove noteB

leave noteB
if (noNoteA) {
if (noMilk) ({

buy milk

Ping!! And B

“Milk starvation” possible, but
Ping!! And perhaps not a problem in
slo, INF3150 practice) 17

05.09.03

Yet Another Possible
Thread A
leave noteA le

while (noteB) if
do nothing;

if (noMilk)
buy milk;

remove noteA

}

+ Safe to buy
* If the other buys, quit

Solution?

Thread B

ave noteB
(noNoted) {

if (noMilk) {
buy milk

}

remove noteB

*Not symmetric
solution

Remarks

» The last solution works, but
— Life is too complicated
— A’s code is different from B’s
— Busy waiting is a waste
* Peterson’s solution is also complex

* What we want is:

Acquire (lock) ;

if (noMilk)
buy milk;

Release (lock) ;

Critical section a.k.a.

*+— Critical region a.k.a.
Mutual Exclusion
(Mutex)

05.09.03 University of Oslo, INF3150 19

05.09.03 University of Oslo, INF3150 *Busy wait! 18
Entry and Exit Protocols
Threads blocked waiting to get access .
What will
>y (Y %7 happen if
/ O O they don’t?
ENTRY;

<Critical region>;

EXIT;

Will release no. 1 in queue
so it can enter CR

05.09.03 University of Oslo, INF3150

/

All threads must conform to
the structure:

ENTRY;

<use resources
reserved>

EXIT;

20

Critical Regions
Four Requirements for Good Solution

1. Mutual Exclusion: No two processes may be
simultaneously inside their critical regions

2. No assumptions may be made about speeds or the
number of CPUs

3. Progress: No process running outside its critical
region may block other processes from entering their
critical region

4. Bounded Waiting: No process should have to wait
forever to enter its critical region

05.09.03 University of Oslo, INF3150 21

Solutions w/ Busy Waiting

Busy waiting
— Historically considered bad (Why?)
— Isitalways?
Disabling interrupts
— Cannot allow user processes to disable interrupts
— Affects only single CPU
— Useful for OS
Spin locks
Peterson
TSL Instruction

05.09.03 University of Oslo, INF3150

22

Thread Safety

* Function is thread safe if and only if it will always
produce correct results when called repeatedly from
multiple concurrent threads

* Classes of thread-unsafe function:

1) Functions that do not protect shared variables

2) Function that keep state across multiple invocations
3) Functions that return a pointer to a static variable
4) Functions that call thread-unsafe functions

05.09.03 University of Oslo, INF3150 23

Reentrancy

Reentrant functions are functions that do not
reference any shared data

Proper subset of thread-safe functions

05.09.03 University of Oslo, INF3150

24

