
1

05.09.03 University of Oslo, INF3150 1

Threads and Critical Sections

Otto J. Anshus, Tore Larsen
University of Tromsø, Univ. of Oslo

(including slides from Kai Li, Princeton
University)

05.09.03 University of Oslo, INF3150 2

Process

• Provides illusion that program runs protected on its own
computer

• Address space
– Separate, protected, user address space

• All the state needed to run a program
• Program text & data, open files, child PIDs, pending alarms, signal

handlers, accounting information, etc. etc.
• Thread of execution, -thread of control, -thread

– Historically only one thread per process (implicit, hence no term)
– Program counter
– Registers
– Stack w/ linkage information (frames)
– How about more than one thread per process?

05.09.03 University of Oslo, INF3150 3

Threads, Overview

• Separate control flows (execution flows/threads)
within a the confinement of one process
– Multithreading

• Thread, entity scheduled for execution
• Threads in same process share address space, open

files etc.
• Thread switching within process doesn’t require new

address mappings to be set up
– Lightweight processes

05.09.03 University of Oslo, INF3150 4

Concurrency and Threads

• I/O devices
– Overlap I/Os with I/Os and computation (modern OS approach)

• Human users
– Doing multiple things to the machine: Web browser

• Distributed systems
– Client/server computing: NFS file server

• Multiprocessors
– Multiple CPUs sharing the same memory: parallel program

2

05.09.03 University of Oslo, INF3150 5

Threads and Processes

Process

Threads

Kernel threads

Kernel
Address
Space

Kernel Level

User Level

Project OpSysTrad. Threads
Processes in individual address spaces

05.09.03 University of Oslo, INF3150 6

Concurrency: Double buffering

Put (t,g)

/* Copy */ t
:= s;

Input sequence f

Output sequence g

Get (s,f) s

t

Get(s,f);

Repeat

Copy;

cobegin

Put(t,g);

Get(s,f);

coend;

until completed;

/* Fill s and empty t concurrently */

•Put and Get are disjunct

•… but not with regards to Copy!

(Threads)

Specifies
concurrent
execution

05.09.03 University of Oslo, INF3150 7

Concurrency: Time Dependent Errors

Repeat

cobegin

Copy;

Put(t,g);

Get(s,f);

coend;

until completed;

Repeat

Copy;

cobegin

Put(t,g);

Get(s,f);

coend;

until completed;

Oops!

•C-P-G

•C-G-P

•P-C-G

•P-G-C

•G-C-P

•G-P-C

The rightmost
(incorrect)
solution can be
executed in 6
ways:

Interleaving!

In the correct solution we solved the
problem of sharing of the buffers between
Copy and Put/Get by designing an
algorithm avoiding problems

05.09.03 University of Oslo, INF3150 8

Typical Thread API

• Creation
– Fork, Join

• Mutual exclusion
– Acquire (lock), Release (unlock)

• Condition variables
– Wait, Signal, Broadcast

• Alert
– Alert, AlertWait, TestAlert

•Difficult to use

•Not good: Combines
specification of
concurrency (Fork) with
synchronization (Join)

3

05.09.03 University of Oslo, INF3150 9

Fork/Join

P1:

….

FORK T1;

….

JOIN T1;

….

T1:

….

END;

P1 must
WAIT
until T1
finishes

P1:

….

FORK T1;

FORK T2;

FORK T3;

….

JOIN;

….

T1:

….

END;
T1:

….

END;
T1:

….

END;
JOIN whom??

Executes concurrently

05.09.03 University of Oslo, INF3150 10

Concurrent programming w/ threads

• “Lighter” than processes
– Easy and efficient sharing of data (why?)
– Thread switches cheaper than context switches

• Easier, more general, more scalable structure than I/O
multiplexing

05.09.03 University of Oslo, INF3150 11

User vs. Kernel-Level Threads

• Question
– What is the difference between user-level and kernel-level

threads?

• Discussions
– When a user-level thread is blocked on an I/O event, the

whole process is blocked
– A context switch of kernel-threads is expensive
– A smart scheduler (two-level) can avoid both drawbacks

05.09.03 University of Oslo, INF3150 12

User vs. Kernel Threads

KERNEL

Thread Package

Threads
Threads

Thread PackageProcess “Package”

4

05.09.03 University of Oslo, INF3150 13

Thread Control Block

• Shared information
– Processor info: parent process, time, etc
– Memory: segments, page table, and stats, etc
– I/O and file: comm ports, directories and file descriptors, etc

• Private state
– State (ready, running and blocked)
– Registers
– Program counter
– Execution stack

05.09.03 University of Oslo, INF3150 14

System Stack for Kernel Threads

• Each kernel thread has
– a user stack
– a private kernel stack

• Pros
– concurrent accesses to system

services
– works on a multiprocessor

• Cons
– More memory

• Each kernel thread has
– a user stack
– a shared kernel stack with

other threads in the same
address space

• Pros
– less memory

• Cons
– serial access to system services

Typical for all shared resources

05.09.03 University of Oslo, INF3150 15

“Too Much Milk” Problem

• Don’t buy too much milk
• Any person can be distracted at any point

Person A Person B

Look in fridge: out of milk
Leave for Shop
Arrive at Shop
Buy milk
Arrive home

Look in fridge: out of milk
Leave for Shop
Arrive at Shop
Buy milk
Arrive home

05.09.03 University of Oslo, INF3150 16

A Possible Solution?

if (noMilk) {
if (noNote) {

leave note;
buy milk;
remove note;

}
}

Ping!!!: and B
starts executing
until finished,
and then A
starts again

if (noMilk) {
if (noNote) {

leave note;
buy milk;
remove note;

}
}

A: B:

(But B will “see” A by the fridge?: That is what we are trying to achieve.)

And both A and B buys milk.

The
ENTRY is
flawed

5

05.09.03 University of Oslo, INF3150 17

Another Possible Solution?

Thread A

leave noteA
if (noNoteB) {
if (noMilk) {

buy milk
}

}
remove noteA

Thread B

leave noteB
if (noNoteA) {
if (noMilk) {

buy milk
}

}
remove noteB

Ping!! And B
starts

Ping!! And
A starts

“Milk starvation” possible, but
perhaps not a problem in
practice!

WHY?
05.09.03 University of Oslo, INF3150 18

Yet Another Possible Solution?

• Safe to buy
• If the other buys, quit

Thread A

leave noteA
while (noteB)
do nothing;

if (noMilk)
buy milk;

remove noteA

Thread B

leave noteB
if (noNoteA) {
if (noMilk) {

buy milk
}

}
remove noteB

•Not symmetric
solution

•Busy wait!

05.09.03 University of Oslo, INF3150 19

Remarks

• The last solution works, but
– Life is too complicated
– A’s code is different from B’s
– Busy waiting is a waste

• Peterson’s solution is also complex
• What we want is:

Acquire(lock);
if (noMilk)
buy milk;

Release(lock);

Critical section a.k.a.
Critical region a.k.a.
Mutual Exclusion
(Mutex)

05.09.03 University of Oslo, INF3150 20

Entry and Exit Protocols

ENTRY;

<Critical region>;

EXIT;

Threads blocked waiting to get access

Will release no. 1 in queue
so it can enter CR

All threads must conform to
the structure:

ENTRY;

<use resources
reserved>

EXIT;

What will
happen if
they don’t?

6

05.09.03 University of Oslo, INF3150 21

Critical Regions
Four Requirements for Good Solution

1. Mutual Exclusion: No two processes may be
simultaneously inside their critical regions

2. No assumptions may be made about speeds or the
number of CPUs

3. Progress: No process running outside its critical
region may block other processes from entering their
critical region

4. Bounded Waiting: No process should have to wait
forever to enter its critical region

05.09.03 University of Oslo, INF3150 22

Solutions w/ Busy Waiting

• Busy waiting
– Historically considered bad (Why?)
– Is it always?

• Disabling interrupts
– Cannot allow user processes to disable interrupts
– Affects only single CPU
– Useful for OS

• Spin locks
• Peterson
• TSL Instruction

05.09.03 University of Oslo, INF3150 23

Thread Safety

• Function is thread safe if and only if it will always
produce correct results when called repeatedly from
multiple concurrent threads

• Classes of thread-unsafe function:
1) Functions that do not protect shared variables
2) Function that keep state across multiple invocations
3) Functions that return a pointer to a static variable
4) Functions that call thread-unsafe functions

05.09.03 University of Oslo, INF3150 24

Reentrancy

• Reentrant functions are functions that do not
reference any shared data

• Proper subset of thread-safe functions

