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Process

Provides illusion that program runs protected on its own
computer
Address space
— Separate, protected, user address space
* All the state needed to run a program
» Program text & data, open files, child PIDs, pending alarms, signal
handlers, accounting information, etc. etc.
Thread of execution, -thread of control, -thread
— Historically only one thread per process (implicit, hence no term)
— Program counter
— Registers
— Stack w/ linkage information (frames)
— How about more than one thread per process?
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Threads, Overview

* Separate control flows (execution flows/threads)
within a the confinement of one process
— Multithreading

 Thread, entity scheduled for execution

» Threads in same process share address space, open
files etc.

» Thread switching within process doesn’t require new
address mappings to be set up
— Lightweight processes
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Concurrency and Threads

I/O devices

— Opverlap I/Os with I/Os and computation (modern OS approach)
Human users

— Doing multiple things to the machine: Web browser
Distributed systems

— Client/server computing: NFS file server
Multiprocessors

— Multiple CPUs sharing the same memory: parallel program
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Threads and Processes

Trad. Threads Project OpSys

Processes in individual address spaces
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Concurrency: Double buffering

/* Fill s and empty t concurrently */
Get(s,f);
Get (s,f) .9
Input sequence f

cobegin
Output sequence g Put(t,g);

Get(s,f);

Put (t,g) coend;
until completed;

*Put and Get are disjunct

. but not with regards to Copy!
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Specifies
concurrent
execution

./\A Repeat
Copy;
/* Copy */t i

‘\(Threads)

Concurrency: Time Dependent Errors

Repeat Repeat The rightmost
: Oops! . (incorrect)
Copy; cobegin solution can be

cobegin Copy; executed in 6
Put(tg); Put(tg); e
*C-P-G
Get(s,1); Get(s,f);
*C-G-P
coend; coend;
P-C-G
until completed; until completed;
*P-G-C
*G-C-P
In the correct solution we solved the *G-P-C
problem of sharing of the buffers between
Copy and Put/Get by designing an Interleaving!

algorithm avoiding problems
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Typical Thread API

«Difficult to use

e Creation *Not good: Combines
. specification of
- FOI'k, Join concurrency (Fork) with

* Mutual exclusion

— Acquire (lock), Release (unlock)
* Condition variables

— Wait, Signal, Broadcast
o Alert

— Alert, AlertWait, TestAlert
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synchronization (Join)




Pl:

FORK T1. —

L JOIN T1; <
Pl must/‘

Fork/Join N

Executes concurrently

Concurrent programming w/ threads

» “Lighter” than processes
— Easy and efficient sharing of data (why?)
— Thread switches cheaper than context switches
» Easier, more general, more scalable structure than I/O
multiplexing
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WAIT
until T1 Pl: DEND:
finishes
FORK TI;
FORK T2;—
FORK T3; —
% IOIN; +—
JOIN whom?? ]
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User vs. Kernel-Level Threads
* Question

— What is the difference between user-level and kernel-level

threads?

e Discussions

— When a user-level thread is blocked on an I/O event, the
whole process is blocked

— A context switch of kernel-threads is expensive

— A smart scheduler (two-level) can avoid both drawbacks
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User vs. Kernel Threads

Threads

Thread Package

Process “Package” Thread Package

KERNEL
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Thread Control Block

* Shared information

— Processor info: parent process, time, etc

— Memory: segments, page table, and stats, etc

— 1/0 and file: comm ports, directories and file descriptors, etc
* Private state

— State (ready, running and blocked)

— Registers

— Program counter

— Execution stack
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System Stack for Kernel Threads

e Each kernel thread has
— auser stack

— a private kernel stack

e Pros

¢ Each kernel thread has
— auser stack

— a shared kernel stack with
other threads in the same
address space

— concurrent accesses to system

services
— works on a multiprocessor
* Cons
— More memory

* Pros
— less memory
» Cons

— serial access to system services
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“Too Much Milk” Problem

Person A Person B

Look in fridge: out of milk

Leave for Shop o '
Arrive at Shop Look in fridge: out of milk
Buy milk Leaye for Shop
Arrive home Arrive at Shop

Buy milk

Arrive home

* Don’t buy too much milk

» Any person can be distracted at any point
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A Possible Solution?

A:
if ( noMilk ) {
if (noNote) {
leave note;
buy milk;
remove note;
}
}

And

05.09.03 (But B will “see /}JEP\]/

B:
if ( noMilk ) {
if (noNote) {
leave note;

buy milk;
remove note;
}
}
Ping!!!: and B
starts executi
until finished, The
and then A ENTRY is
starts again flawed

both A and B buys milk.

the fridge?: That is what trying to achieve.
ers?ly%?%ilo, INf5¥gvhat We are trying to ac feve.)




Another Possible Solution?

Thread A Thread B
leave noteA

if (noNoteB) {

if (noMilk) {
buy milk

} }

} }

remove noteA remove noteB

leave noteB
if (noNoteA) {
if (noMilk) ({

buy milk

Ping!! And B

“Milk starvation” possible, but
Ping!! And perhaps not a problem in
slo, INF3150 practice) 17
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Yet Another Possible
Thread A
leave noteA le

while (noteB) if
do nothing;

if (noMilk)
buy milk;

remove noteA

}

+ Safe to buy
* If the other buys, quit

Solution?

Thread B

ave noteB
(noNoted) {

if (noMilk) {
buy milk

}

remove noteB

*Not symmetric
solution

Remarks

» The last solution works, but
— Life is too complicated
— A’s code is different from B’s
— Busy waiting is a waste
* Peterson’s solution is also complex

* What we want is:

Acquire (lock) ;

if (noMilk)
buy milk;

Release (lock) ;

Critical section a.k.a.

*+— Critical region a.k.a.
Mutual Exclusion
(Mutex)
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Entry and Exit Protocols
Threads blocked waiting to get access .
What will
>y (Y %7 happen if
/ O O they don’t?
ENTRY;

<Critical region>;

EXIT;

Will release no. 1 in queue
so it can enter CR
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/

All threads must conform to
the structure:

ENTRY;

<use resources
reserved>

EXIT;
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Critical Regions
Four Requirements for Good Solution

1. Mutual Exclusion: No two processes may be
simultaneously inside their critical regions

2. No assumptions may be made about speeds or the
number of CPUs

3. Progress: No process running outside its critical
region may block other processes from entering their
critical region

4. Bounded Waiting: No process should have to wait
forever to enter its critical region
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Solutions w/ Busy Waiting

Busy waiting
— Historically considered bad (Why?)
— Isitalways?
Disabling interrupts
— Cannot allow user processes to disable interrupts
— Affects only single CPU
— Useful for OS
Spin locks
Peterson
TSL Instruction
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Thread Safety

* Function is thread safe if and only if it will always
produce correct results when called repeatedly from
multiple concurrent threads

* Classes of thread-unsafe function:

1) Functions that do not protect shared variables

2) Function that keep state across multiple invocations
3) Functions that return a pointer to a static variable
4) Functions that call thread-unsafe functions
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Reentrancy

Reentrant functions are functions that do not
reference any shared data

Proper subset of thread-safe functions
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