
Thread Packages

Carsten Griwodz
University of Oslo

(includes slides from O. Anshus, T. Plagemann,
M. van Steen and A. Tanenbaum)

Overview

• What are threads?
• Why threads?
• Thread implementation

– User level
– Kernel level
– Scheduler activation

• Some examples
– Posix
– Linux
– Java
– Windows

• Summary

Processes
The Process Model

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant

Threads
The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads

The Thread Model (2)

Accounting information

Items private to each threadItems shared by all threads in a
process

Signals and signal handlers

Pending alarms

StateChild processes

StackOpen files

RegistersGlobal variables

Program counterAddress space

Per thread itemsPer process items

The Thread Model (3)

Each thread has its own stack

Thread Usage (1)

A word processor with three threads

Thread Usage (2)

A multithreaded Web server

Thread Usage (3)

• Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

Thread Usage (4)

Three ways to construct a server

Implementation of Thread Packages

• Two main approaches to implement threads
– In user space
– In kernel space

Kernel

Run-time system

Kernel

User-level thread package Thread package managed by
the kernel

Thread Package Performance

Operation User level threads Kernel-level threads Processes

Null fork

Signal-wait

34µs

37µs

948µs

441µs

11,300µs

1,840µs

Taken from Anderson et al 1992

Why?
•Thread vs. Process Context
switching

•Cost of crossing protection
boundary

•User level threads less general, but
faster

•Kernel level threads more general,
but slower

•Can combine: Let the kernel
cooperate with the user level
package

Observations
•Look at relative numbers as computers are faster in 1998 vs. 1992

•Fork: 1:30:330

•Time to fork off around 300 user level threads ~time to fork off one
single process

•Assume a PC year 2003, ‘92 relative numbers = ‘03 actual numbers
in µs

•Fork off 5000 threads/processes: 0.005s:0.15s:1,65s. OK if long
running application. BUT we are now ignoring other overheads when
actually running the application.

•Signal/wait: 1:12:50

•Assume 20M signal/wait operations: 0,3min:4 min:16,6min. Not OK.

Implementation of Thread Packages

• Two main approaches to implement threads
– In user space
– In kernel space

• Hybrid solutions: cooperation between user level and kernel
– Scheduler activation
– Pop-up threads

Kernel

Run-time system

Kernel

User-level thread package Thread package managed by
the kernel

Implementation of Threads

User level

•If a thread blocks in a system call,
user process blocks

•Can have a wrapper around
syscalls preventing process block

Kernel level

•Support for one single CPU

User level

•If a thread blocks in a system call,
user process does not

•Can schedule threads
independently

Kernel level

•Support for multiple CPUs

Kernel

Run-time system

Kernel

User-level thread package Thread package managed by
the kernel

Implementing Threads in User Space

A user-level thread package

User Level Thread Packages

• Implementing threads in user space
– Kernel knows nothing about them, it is managing single-

threaded applications
– Threads are switched by runtime system, which is much

faster than trapping the kernel
– Each process can use its own customized scheduling

algorithm
– Blocking system calls in one thread block all threads of the

process (either prohibit blocking calls or write jackets around
library calls)

– A page fault in one thread will block all threads of the
process

– No clock interrupts can force a thread to give up CPU, spin
locks cannot be used

– Designed for applications where threads make frequently
system calls

User Level Thread Packages

• Implementation options
– Libraries

• Basic system libraries (“invisible”)
• Additional system libraries
• Additional user libraries

– Language feature
• Java (1.0 – 1.2 with “green threads”)
• ADA

• …

Implementing Threads in the Kernel

A threads package managed by the kernel

Kernel Level Thread Packages

• Implementing threads in the kernel
– When a thread wants to create a new thread or destroy

an existing thread, it makes a kernel call, which then
does the creation or destruction (optimization by
recycling threads)

– Kernel holds one table per process with one entry per
thread

– Kernel does scheduling, clock interrupts available,
blocking calls and page faults no problem

– Performance of thread management in kernel lower

Hybrid Implementations

Multiplexing user-level threads onto kernel- level
threads

Scheduler Activations

• Scheduler activation
– Goals: combine advantages of kernel space implementation

with performance of user space implementations
– Avoid unnecessary transitions between user and kernel

space, e.g., to handle local semaphore
– Kernel assigns virtual processors to each process and

runtime system allocates threads to processors
– The kernel informs the process’s runtime system via an

upcall when one of its blocked threads becomes runnable
again

– Runtime system can schedule
– Runtime system has to keep track when threads are in or are

not in critical regions
– Upcalls violate the layering principle

User-level threads on top of
Scheduler Activations

User-level threads

User-level scheduling

Scheduler activation
blocked active

user

kernel

blocked active

Kernel-level scheduling

Physical processor

Scheduler Activations - I

User program

(1) (2) (1) (2) (3) (4)

Ready list

OS Kernel

User-level

Runtime

System

(B)(A)

add
processor

add
processor

Scheduler Activations - II

User program

(1) (2) (3) (4)

Ready list

OS Kernel

User-level

Runtime

System

(A) (B)

(3)

(C)

A’s thread has
blocked

Blocking I/O

Scheduler Activations - III

User program

(1) (2) (1) (2)(4)

Ready list

OS Kernel

User-level

Runtime

System

(A) (B)

(3)

(C)

I/O Completed

(D)

A’s thread and B’s
thread can
continue

Scheduler Activations - IV

User program

(4) (2)

Ready list

OS Kernel

User-level

Runtime

System

(3)

(C)

(1)

(D)

Pop-Up Threads

• Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives

Pop-Up Threads

• Fast reacting to external events possible
– Packet processing is meant to last a short time
– Packets may arrive frequently

• Questions with pop-up threads
– How to guarantee processing order without loosing

efficiency?
– How to manage time slices? (process accounting)
– How do schedule these threads efficiently?

Existing Thread Packages

• All have
– Thread creation and destruction
– Switching between threads

• All specify mutual exclusion mechanisms
– Semaphores, mutexes, condition variables, monitors

• Why do they belong together?

Some existing thread packages

• POSIX Pthreads (IEEE 1003.1c) for all/most platforms
– Some implementations may be user level, kernel level or

hybrid
• GNU PTH
• Linux
• JAVA for all platforms

– User level, but can use OS time slicing
• Win32 for Win95/98 and NT

– kernel level thread package
• OS/2

– kernel level

• Basic idea in most packages
– Simplicity, fancy functions can be built using simpler ones

Threads in POSIX

Release on thread waiting on a condition variablepthread_cond_signal

Wait on a condition variablepthread_cond_wait

Destroy a condition variablepthread_cond_destroy

Create a condition variablepthread_cond_init

Unlock a mutexpthread_mutex_unlock

Lock a mutexpthread_mutex_lock

Destroy a mutexpthread_mutex_destroy

Create a new mutexpthread_mutex_init

Wait for a thread to terminatepthread_join

Terminate the calling threadpthread_exit

Create a new thread in the caller’s address spacepthread_create

DescriptionThread call

Threads in POSIX

Process

Thread

Address
space

Process
group

• Process groups: addition to simplify process management
– Stopping process together
– More generally signalling all processes together
– No resource management implications

GNU PTH

• Name: Portable Threads

• User level thread package
• Implements a POSIX thread package for operating

systems that don’t have any
• Extends the API of the POSIX thread package

– Many blocking functions are not wrapped by the
POSIX API

GNU PTH

……

Wrapper to blocking select call that can wait for
other events as well, in particular mutexes etc.

pth_select_ev

PTH wrapper to blocking select callpth_select

PTH wrapper to blocking read callpth_read

Create a barrierpth_barrier_init

Create a condition variablepth_cond_init

Create a mutexpth_mutex_init

Sleep for a short timepth_nap

Wait for a generic PTH eventpth_wait

Create a new threadpth_spawn

DescriptionThread call

Thread Package LinuxThreads

• Linux implementation is based on ideas from 4.4BSD
• New system call
• Pid = clone(function, stack_ptr, sharing_flags, arg);

• New thread starts executing at function with arg as
parameter and a private stack

• Special feature of clone: sharing_flags
– Bitmap of five bits
– Allows much finer grain of sharing than trad. UNIX

Thread Package LinuxThreads

New thread gets own
PID

New thread gets old
PID

CLONE_PID

Copy the tableShare the signal
handler table

CLONE_SIGHAND

Copy the file
descriptors

Share file descriptorsCLONE_FILES

Do not share themShare umask, root
and working dirs

CLONE_FS

Create a new
process

Create a new threadCLONE_VM

Meaning when
cleared

Meaning when setFlag

Thread Package LinuxThreads

• LinuxThreads builds on clone
– Processes
– Threads

• Not POSIX compliant
– Uses a manager thread if more than one thread exists

in a process
– LinuxThreads threads a not peers but parents ad

children
– Can not direct signals correctly at threads
– Mutual exclusion implemented using signals

Linux NPTL

• Native POSIX Thread Library

• New thread package for Linux 2.6
• POSIX compliant

• Kernel thread implementation
– Favored over scheduler activation approach

• NGPT (Next Generation POSIX Threading)

– Less code to maintain
– Particular implementation proved to be faster

Linux NPTL

• Extends clone

• New mutual exclusion mechanisms
– Rely on “fast user-level locking”
– Wait queues are maintained by the kernel
– Switching from kernel mode to user mode for

• Waiting
• Signaling if blocked processes exist

JAVA

• Multithreaded language, many packages with classes
• All threads are inside a process
• java.lang package

– Thread class
• start, (stop,) set priority, etc

• synchronized keyword

• I/O in Java
– Must create one thread per I/O channel up to Java 1.3
– Thread will block on I/O

• Interpreted
– (10-20 times slower than C (++))
– … + just in time compiling at run time (closer to C(++))
– … + portions of application can be written in C(++)

Monitors in Java

Public synchronized void put (int m)
{

while (count == n)
{

try { wait(); }
catch (InterruptedException e) {}

}
<update buffer and state variables>
notifyAll();

}

Public synchronized void get (int m)
{

<etc>
}

Monitor MUTEX

Reevaluates because all
threads waiting are awaken

More on Java synchronize()

• To a block of statements (as we did in the example)
• To a method

– Static method (a.k.a. class method)
• Mutex on a whole class
• Only one static synchronized method for a particular

class can be running at any given time
• Gives the thread

– Nonstatic method
• Mutex between different methods accessing the same

object
• No mutex if threads are using the same method on

different objects

Processes and Threads in Windows 2000

• Basic concepts used for CPU and resource management

Lightweight thread managed entirely in user
space

Fiber

Entity scheduled by the kernelThread

Container for holding resourcesProcess

Collection of processes that share quotas and
limits

Job

DescriptionName

Processes and Threads in Windows 2000

• Relationship between jobs, processes, threads and fibers

P T T PTTAccess tokens

Kernel mode thread stack
Process
handle
table

User stack

Process

Thread

Address
space

Job

Processes and Threads in Windows 2000

Release the lock on a critical sectionLeaveCriticalSection

Acquire the lock on a critical sectionEnterCriticalSection

Increase the semaphore count by 1ReleaseSemaphore

Release a mutex to allow another thread to acquire itReleaseMutex

Set an event to signaled, then to non-signaledPulseEvent

Block on a set of objects whose handles are givenWaitforMultipleObjects

Block on a single semaphore, mutex, etc.WaitForSingleObject

Open an existing mutexOpenMutex

Open an existing semaphoreOpenSemaphore

Create a new mutexCreateMutex

Create a new semaphoreCreateSemaphore

Set the priority for one threadSetThreadPriority

Set the priority class for a processSetPriorityClass

Terminate this threadExitThread

Terminate current process and all its threadsExitProcess

Create a new fiberCreateFiber

Create a new thread in an existing processCreateThread

Create a new processCreateProcess

DescriptionWin32 API function

Summary

• What are threads?
• Why threads?
• Thread implementation

– User level
– Kernel level
– Scheduler activation

• Some examples
– Posix
– Linux
– Java
– Windows

• Summary

Appendix – Java and Pthreads

• The following transparencies give more details about
threads in Java and POSIX

java.lang.Thread
• run() is the body of the thread
• start()starts a thread
• stop() stops a thread
• suspend() temporarily blocks a thread
• resume() will resume a thread
• sleep() puts a thread to sleep for a specified amount of time
• yield() makes the current thread give up control to any other

thread of equal priority that are waiting to run
• join() waits for a thread to die
• interrupt() wakes up a waiting thread or sets a flag on a non-

waiting thread
• interrupted() allows a thread to test its own interrupt flag
• isInterrupted() allows a thread to test another threads interrupt

flag
• wait(object) makes current thread block until notify(object) is

called by another thread

Java: Preemptive, but not always time
sliced

• A running thread will be preempted by a higher
priority thread

• No guarantee that we have time slicing
– Java assumes the OS may or may not support it for

user level threads

Java Thread Groups

• A group of
– threads
– group of threads

• Can kill, suspend and resume ALL threads in a group
with a single invocation

• Can count number of active threads
• Examples

– Kill all threads pulling in data for a page (we clicked
stop on the browser)

– A computation is finished, so must kill all threads still
computing along various branches

ThreadGroup g=new ThreadGroup(parent, name)

g.stop()

Int activeCount()

Types of use of Java Threads

• Unrelated threads

• Related but unsynchronized threads

• Mutually exclusive threads

• Communicating mutually exclusive

Unrelated, no
interaction

Work is split, but no
direct interaction

Mutex

Mutex and Condition
synchronization

Unrelated & Related
Unsynchronized Java
Threads

Class Producer extends Thread {
public void run() {

while(true) {
System.out.println(“ Buy ”);
yield();

}
}

}

Buy
OK
Buy
OK
...

The output window

Producer Consumer

Class Consumer extends Thread {
public void run() {

while(true) {
System.out.println(“ OK”);
yield();

}
}

}

Public class ProducerConsumer {
public static void main (...) {

Producer seller = new Producer();
seller.start();
Consumer buyer = new Consumer();
buyer.start();

}
}

Could also have started
unnamed threads:

new Producer.start();
new Consumer.start();

Mutually Exclusive
Java Threads

Shared Buffer
Producer

Public class ProducerConsumer {
static Object buffer = new Object();
public static void main (...) {

Producer seller = new Producer();
seller.start();
Consumer buyer = new Consumer();
buyer.start();

}
}

Class Producer extends Thread {
public void run() {

while(true) {
synchronized (buffer) {

buffer = “Buy”;
System.out.println(“ Buy ”);

}
yield();

}
}

}

Class Consumer extends Thread {
public void run() {

while(true) {
synchronized (buffer) {

if (buffer == “Buy”) System.out.println(“ OK”);
else System.out.println(“ No”);

}
yield();

}
}

}

Need more here, but we
will ignore it

Mutex is OK, but the
condition
synchronization is
wrong!:

Steal

Initial value

Output to
window can be:

No
Buy
OK

Synchronizing and
Mutually Exclusive Java
Threads

Shared Buffer
Producer

Class Producer extends Thread {
public void run() {

while(true) {
synchronized (buffer) {

while <full> wait(nonfull_object);
buffer = “Buy”;
System.out.println(“ Buy ”);
notifyAll(nonempty_object);

}
yield();

}
}

}

Class Consumer extends Thread {
public void run() {

while(true) {
synchronized (buffer) {

while <empty> wait(nonempty_object);
if (buffer == “Buy”) System.out.println(“ OK”);

else System.out.println(“ No”);
notifyAll(nonfull_object);

}
yield();

}
}

}

Consumer

Notify

•No FIFO order when waking!

•Must reevaluate

But stop right there about wait() and
notify()

• All is OK in the bounded buffer if the threads are
waken up as a result of a notify

• But we can send an interrupt() to a thread and wake
it up!
– Can not Put/Get in this situation, so need something to

catch an interrupt from interrupt():
• try {wait();} catch (InterruptedException e) {<analyze and

take care of the exception e>}
• In effect we have support for some user level exception

handling
• Will propagate upwards until termination if not handled

Exceptions in Java

Java Others In class Comments

Exception Exception Exception.
Interrupt

User level releases an exception.
HW releases an interrupt.

Throwing Raising Releasing Causing an exception

Catching Handling Handling.
Trapping.

Trapping an exception and taking
care of it

Catch
clause

Handler Trap
Handler

The code taking care of the
exception

Stack
trace

Call chain Stack call
trace

The sequence of (call) statements
that brought control to the
operation where the exception
happened

Java Daemon Threads

• Serves other threads in an
application

• Application exits when there are only
daemons left

• Examples
– timer
– network socket connections

setDaemon(boolean on)

•true

•false

Size of Java threads

• Each thread default stack size 400Kbytes
• 0.5Kbytes for internal state
• A Unix process: 2Gbyte address space

– => about 5000 Java threads
– But other limitations imposed by

• CPU availability, Swap space, Disk bandwidth

– Try it (the system will grind to a halt)

• Number of threads needed depend upon application
– Use threads to achieve concurrency
– Overlap CPU and I/O

Pthreads
• Portable Operating System Interface (POSIX)

threads
• Unix, Windows NT (freeware)
• And no daemon support :-)

Pthread library functions

• pthread_create (thread_ID,…)
• pthread_exit
• pthread_join (thread_ID,...)
• pthread_detach (thread_ID)
• pthread_cancel
• pthread_kill

Mutex and condition synchronization

• Intra process mutex
– shared by the threads of the process

• Inter process mutex
– shared by threads in different processes

• Must map the mutex to memory shared by the processes

Mutex in Pthreads

• Creating a mutex
– Intra-process:

• static pthread_mutex_t lockname; */Init value is 0=open*/

• pthread_mutex_init
• pthread_mutex_lock
• pthread_mutex_unlock
• pthread_mutex_trylock
• pthread_mutex_destroy

Condition Synchronization in Pthreads
• Condition variable

• pthread_cond_t condname = PTHREAD_COND_INITIALIZER;
• Both intra- and inter process

• pthread_cond_signal (condname)
• Scheduling policy determines which thread
• OK with just one consumer and one producer

• pthread_cond_broadcast ()
• All threads waiting will be notifyed and must reevaluate

– As with all monitors the MUTEX must first be
acquired (automatically)

• OK when several consumers (and producers)

• pthread_cond_wait (condname, lockname)
• Automatically opens the mutex on lockname

• pthread_cond_timedwait
• times out and returns error code

Monitors in C using Pthreads

pthread_mutex_lock (&lock);
while (<buffer empty>) pthread_cond_wait (&nonfull, &lock);
<update buffer and state variables>;
pthread_cond_broadcast (&nonempty);

pthread_mutex_unlock (&lock)

No need to remember UNLOCK in C++ and Java
because we can declare a class monitor and } will unlock

Start all threads waiting.

They will all reevaluate if they
can continue

Read/Write Locks in Pthreads

• See the Readers and Writers example
• Currently no such predefined locks in Pthreads
• Solaris SPLIT (Solaris to POSIX Interface Layer for

Threads) has these locks
• rwlock_init
• rw_rdlock and unlock
• rw_wrlock and unlock

Spin locks in Pthreads

• Lock is closed, and we take 37us to do a wait and
block! But then the lock is actually only held for 5us
by the other thread! Much time wasted.

• Try a spin lock:
• pthread_mutex_trylock()

if (no success after, say, 10 iterations)
pthread_mutex_lock()

Trylock takes about 2us

But remember:

•CR must be short (5us in the example)

•Not sensible on a single CPU (why?)

Try it and see what happens: set
iteration counter to 0 and measure
time vs. grabbing the lock directly

Semaphores in Pthreads

• sem_t s;
• sem_init (&s, 0, 1); /* Init semaphore s to 1)
• sem_wait (&s)
• sem_trywait (&s)

• if (semaphore = 0) return status code, no block

• sem_post (&s)

0 means intra
process

Scheduling of Pthreads

• Each thread has a priority
• Unblocking waiting threads: order is not always

guaranteed, depends upon scheduling policy used
• Preemption the norm
• Scheduling by kernel: thread is declared BOUND
• Scheduling “somewhat” by user level: UNBOUND
• Scheduling policy

• SCHED_OTHER: default (time slice according to
priority), no unblocking order guaranteed

• SCHED_FIFO: next is hghest priority, longest waiting
• SCHED_RR: FIFO+RR

Size of Pthreads

• Solaris default stack size 1MB
– Thread stacks do not grow automatically!

MT can boost Performance

• Reduce contention to shared data
– “tiling”, more locks, finer granularity of access
– simpler locks, spin locks

• Reduce overhead
– One lock instead of several when data items are used

together
– Stuff in inner loops can cost, so remove if possible

• Reduce paging
– When a thread waits for a page, another one can run

• Communication bandwidth
– Frequency of synchronization
– Size of data

• Number of threads: keep all CPUs busy, but not more

Thread Scheduling (1)

Possible scheduling of user-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst

Thread Scheduling (2)

Possible scheduling of kernel-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst

