
1

Concurrency, intro

Thomas Plagemann 
Slides from Tore Larsen 
(University of Tromsø)

Why is concurrency tricky

• We use threads or processes as powerful
concept to keep threads of control apart, 
looking at sequential processes instead of
arbitrarily interleaved thread of execution

• Yet, in reality interleaved, any process
may be interrupted at any time

• Subtle, hard-to-identify, programming
errors including race-conditions are
introduced



2

What remedies do we need?

• Low level mechanisms to temporarily
prohibit the interleaving of threads, 
removing the vulnerability of being
interrupted

• Higher-level programming constructs to 
make programming
– more convenient
– less error-prone
– … and other requirements, incl. Efficiency

Low level mechanisms

• Atomic read and atomic write, memory
coherency (…hang on)

• Turning interrupts off
• Atomic read-write operations



3

High level mechanisms

• Semaphors
• Mutexes
• Monitors
• Message passing

Progress

• This week
– Motivation plus low-level stuff

• Next week(s)
– The higher level constructs



4

Two basic issues

• Protecting control flows in the multitasking
environment

• Memory coherency
– Quality of computer system we’re using
– “A read from any given address always

returns the value of the latest write to that
address”

– Guaranteed by HW for single CPU systems 
and shared memory multiprocessors (SMPs)

Two issues (cont.)
• Memory coherency

– Provide for memory coherency. The machine must make sure 
that all of the processing nodes have an accurate picture of the
most up-to-date memory (for example: if Processor A has a 
piece of dirty data in its cache and has not written it back to 
memory, all other processors must know this).

– HW guarantee comes at a cost and/or performance penalty, 
particularly for SMPs. We should try to reduce the incurrence of
performance penalties

• Consistency
– Rules for allowing memory references to be reordered, that may

lead to observed differences in memory state by multiple 
processors.



5

Literature
• A lot exists!
• Early/first(?) textbook devoted to concurrency was Per 

Brinch Hansen “The Architecture of Concurrent
Programs”

• http://web.syr.edu/~pbhansen/html/book2.html
• Ben-Ari “Principles of Concurrent and Distributed

Programming,” is an old title that many still find useful
• http://www.amazon.com/exec/obidos/tg/detail/-

/013711821X/qid=1063188412/sr=1-4/ref=sr_1_4/104-5762746-
9774342?v=glance&s=books

• Fred Schneider, “On Concurrent Programming”
(strong on theory aspects)

• http://www.springerny.com/detail.tpl?cart=989601891383187&ISBN
=0387949429


