
CPU Scheduling

Thomas Plagemann

(with slides from Otto J. Anshus,
Kai Li, Pål Halvorsen and Andrew S. Tanenbaum)

Outline

• Goals of scheduling

• Scheduling algorithms:
– FCFS/FIFO, RR, STCF/SRTCF
– Priority (CTSS, UNIX, WINDOWS, LINUX)
– Lottery
– Fair share

– Real-time: EDF and RM

Why Spend Time on Scheduling?

• Bursts of CPU usage alternate with periods of I/O wait
– a CPU-bound process
– an I/O bound process

• Optimize the system to the given goals
• Example: CPU-Bound vs. I/O-Bound Processes:

Scheduling Performance Criteria
• CPU (resource) utilization

• 100%, but 40-90% normal
• Throughput

• Number of “jobs” per time unit
• Minimize overhead of context switches
• Efficient utilization (CPU, memory, disk etc)

• Turnaround time
• = time process arrives - time process exits

• = sum of all waiting times (memory, R_Q, execution, I/O, etc)
• How fast a single job got through

• Response time
• = time request starts - time response starts

• Having a small variance in Response Time is good (predictability)
• Short response time: type on a keyboard

• Waiting time
• in the Ready_Queue, for memory, for I/O, etc.

• Fairness
• no starvation

Scheduling Algorithm Goals

Non-Preemptive: FIFO (FCFS) Policy

• Run to
– to completion (old days)
– until blocked, yield, or exit

• Advantages

• Disadvantage

Insert_last (p, R_Q)

current until
block, yield, exit

R_Q

Average Turnaround Time for CPU bursts:
Process Burst time
1 24
2 3
3 3

Arrival order: 1 - 2 - 3
0 24 27 30

P1 P2 P3

TT average = (24+27+30)/3=27

Arrival order: 2 - 3 - 1
0 3 6 30

P1P2 P3

TT average = (3+6+30)/3=13

Discussion topic FCFS
How well will FCFS handle:

•Many processes doing I/O arrives

•One CPU-bound process arrives

I/O
interrupts

CPU-bound process starts executing.

All I/O-bound processes enter the back of the Ready_Queue

Block

All the I/O-bound processes execute their I/O instructions

Block

Block

. . .

CPU-bound does I/O

Block

All I/O devices
are now IDLE

All the I/O-bound processes execute their I/O instructions

Block
Block

. . .

I/O interrupt CPU-bound starts executing again
“CONVOY” effect

- Low CPU utilization

- Low device utilization

CPU is IDLE

Round Robin

• FIFO queue
• n processes, each runs a time slice or quantum, q

– each process gets 1/n of the CPU in max q time units at a time

• Max waiting time in Ready_Queue per process: (n-1) * q

• How do you choose the time slice?
– Overhead vs. throughputs
– Overhead is typically about 1% or less

• interrupt handler + scheduler + dispatch
• 2 context switches: going down, and up into new process

– CPU vs. I/O bound processes

Current
process

Ready queue

FIFO vs. Round Robin
• 10 jobs and each takes 100 seconds

• FIFO

• Round Robin
– time slice 1s and no overhead

• Comparisons

Case: Time Slice Size

• Resource utilization example
– A and B each uses 100% CPU
– C loops forever (1ms CPU and 10ms disk)

• Large or small time slices?
– nearly 100% of CPU utilization regardless of size
– Time slice 100ms: nearly 5% of disk utilization with Round Robin
– Time slice 1ms: nearly 85% of disk utilization with Round Robin

• What do we learn from this example?
– The right (shorter) time slice can improve overall utilization
– CPU bound: benefits from having longer time slices (>100 ms)
– I/O bound: benefits from having shorter time slices (≤10ms)

Shortest Time to Completion First (STCF)
(a.k.a. Shortest Job First)

• Non-preemptive
• Run the process having smallest service time
• Random, FCFS, … for “equal” processes

• Problem to establish what the running time of a job is
• Suggestions on how to do this?

– Length of next CPU-burst
• Assuming next burst = previous burst
• Can integrate over time using a formula taking into account old

and new history of CPU burst lengths
– But mix of CPU and I/O, so be careful

Shortest Remaining Time to Completion First (SRTCF)
(a.k.a. Shortest Remaining Time First)

• Preemptive, dynamic version of STCF
• If a shorter job arrives, PREEMPT current,

and do STCF again

• Advantage: high throughput, average turnaround is low
(Running a short job before a long decreases the waiting
time MORE for the short than it increases for the long!)

• Disadvantage: starvation possible, must know execution time

Priority Scheduling

• Assign each process a priority
• Run the process with highest priority in the ready queue first

• Multiple queues

• Advantage
– (Fairness)
– Different priorities according

to importance

• Disadvantage
– Users can hit keyboard frequently
– Starvation: so should use dynamic priorities

• Special cases (RR in each queue)
– FCFS (all equal priorities, non-preemptive)
– STCF/SRTCF (the shortest jobs are assigned the highest priority)

Multiple Queue
• Good for classes of jobs

– real-time vs. system jobs vs. user jobs vs. batch jobs

• Multi level feedback queues
– Adjust priority dynamically

• Aging
• I/O wait raises the priority
• Memory demands,

#open files, CPU:I/O bursts
– Scheduling between the queues

• Time slice (and cycle through the queues)
• Priority typical:

– Jobs start at highest priority queue
– If timeout expires (used current time slices), drop one level
– If timeout doesn’t expires, stay or pushup one level

– Can use different scheduling per queue
– A job using doing much I/O is moved to an “I/O bound queue”

Compatible Time-Sharing System (CTSS)
• One of the first (1962) priority schedulers using multiple feedback

queues (moving processes between queues)

• One process in memory at a time (high switch costs)

• Large slices vs. response time
priority classes

• Each time the quantum was used,
the process dropped one priority class (larger slice, less frequent)

• Interaction back to highest priority class

• Short, interactive should run more often

“Priority”
0
1
2
3

Time slices
1
2
4
8

Scheduling in UNIX
• Many versions

• User processes have positive
priorities, kernel negative

• Schedule lowest priority first
• If a process uses the whole time

slice, it is put back at the end of
the queue (RR)

• Each second the priorities are
recalculated:
priority =

CPU_usage (average #ticks)
+ nice (+- 20)
+ base (priority of last corresponding kernel process)

Scheduling in UNIX (4.4BSD)
• Similar to last slide

• Time slices of 100 ms

• Priorities is updated every 4th tick (40 ms)

p_usrpri = PUSER + [p_estcpu x ¼] + 2 x p_nice

– PUSER defaults to 50 (min), may be changed but here one uses only
values between 50 and 127

– p_estcpu =
• running process: [(2 x load)/(2 x load + 1)] x p_estcpu + p_nice

• blocked process: [(2 x load)/(2 x load + 1)]p_sleeptime x p_estcpu

– p_nice defaults to 0

Scheduling in Windows 2000
Preemptive kernel
32 priority levels - Round Robin (RR) in each
Schedules threads individually

Processor affinity

Default time slices (3 quantums = 10 ms) of
120 ms – Win2000 server
20 ms – Win2000 professional/workstation
may vary between threads

Interactive and throughput-oriented:
“Real time” – 16 system levels

fixed priority
may run forever

Variable – 15 user levels
priority may change – thread priority = process priority ± 2
uses much CPU cycles drops
user interactions, I/O completions increase

Idle/zero-page thread – 1 system level
runs whenever there are no other processes to run
clears memory pages for memory manager

16

17

...

30

31

1

2

...

14

15

0

Real Time (system thread)

Variable (user thread)

Idle (system thread)

Scheduling in Linux
Preemptive kernel
Threads and processes used to be equal,
but Linux uses (in 2.6) thread scheduling

SHED_FIFO
may run forever, no timeslices
may use it’s own scheduling algorithm

SHED_RR
each priority in RR
timeslices of 10 ms (quantums)

SHED_OTHER
ordinary user processes
uses “nice”-values: 1≤ priority≤40
timeslices of 10 ms (quantums)

Threads with highest goodness are selected first:
realtime (FIFO and RR):
goodness = 1000 + priority
timesharing (OTHER):
goodness = (quantum > 0 ? quantum + priority : 0)

Quantums are reset when no ready
process has quantums left:
quantum = (quantum/2) + priority

127

126

...

2

1

127

126

...

2

1

default (20) 19

18

...

-19

-20

SHED_FIFO

SHED_RR

SHED_OTHER

nice

Lottery Scheduling

• Motivations
– SRTCF does well with average response time, but unfair
– Guaranteed scheduling may be hard to implement
– Adjust priority is a bit ad hoc. For example, at what rate?

• Lottery method
– Give each job a number of tickets
– Randomly pick a winning tickets
– To approximate SRTCF, short jobs gets more tickets
– To avoid starvation, give each job at least one ticket
– Allows ticket exchange

C.A. Waldspurger and W.E. Weihl, “Lottery Scheduling: Flexible Proportional-Share Resource Management.”
Proc. of the 1st USENIX Symp. on Operating System Design and Implementation (OSDI). Nov 1994.

Fair Share

• Each PROCESS should have an equal share of the CPU
• History of recent CPU usage for each process
• Process with least recently used CPU time := highest priority

– an editor gets a high priority
– a compiler gets a low priority

• Each USER should have an equal share of the CPU
• Take into account the owner of a process
• History of recent CPU usage for each user

Real-Time Scheduling

process 1 process 2 process 3 process 4 process N RT process…

RT process

request

round-robin

process 1 process 2 process 3 process 4 process N…

RT process

request
priority,
non-preemtive

delay

RT process

delay

process 1 process 2 process 3 process 4 process N…

request
priority,
preemtive p 1 p 1 process 2 process 3 process 4 process N…

RT process

RT process p 1 process 2 process 3 process 4 process N…

only delay switching and interrupts

NOTE: preemption may also be limited to preemption points (fixed
points where the scheduler is allowed to interrupt a running process)

giving larger delays

Real-time tasks are often periodic
(e.g., fixed frame rates and audio sample frequencies)

Time constraints for a periodic task:
s – starting point
(first time the task require processing)
e – processing time
d – deadline
p – period
r – rate (r = 1/p)

0 ≤ e ≤ d
(often d ≤ p: we’ll use d = p – end of period, but Σd ≤ Σp is enough)
the kth processing of the task

is ready at time s + (k – 1) p
must be finished at time s + (k – 1) p + d

the scheduling algorithm must account for these properties

Real-Time Scheduling

s time

e
d

p

Schedulable Real-Time Systems

Given
m periodic events
event i occurs within period Pi and requires Ci seconds

Then the load can only be handled if

Can we process 3 video streams, 25 fps,
each frame require 10 ms CPU time?

3 * (10ms/40ms) = 3 * 25 * 0.010 = 0.75 < 1 YES

1
1

m
i

i i

C
P=

≤∑

Earliest Deadline First (EDF)
Preemptive scheduling based on dynamic task priorities

Task with closest deadline has highest priority
priorities vary with time

Dispatcher selects the highest priority task

Assumptions:
requests for all tasks with deadlines are periodic
the deadline of a task is equal to the end on its period (starting of next)
independent tasks (no precedence)
run-time for each task is known and constant
context switches can be ignored

Earliest Deadline First (EDF)

Example:

Task A

Task B
time

Dispatching

deadlines

priority A > priority B

priority A < priority B

Rate Monotonic (RM) Scheduling
Classic algorithm for hard real-time systems with one CPU
[Liu & Layland ‘73]

Pre-emptive scheduling based on static task priorities

Optimal: no other algorithms with static task priorities can
schedule tasks that cannot be scheduled by RM

Assumptions:
requests for all tasks with deadlines are periodic
the deadline of a task is equal to the end on its period (starting of next)
independent tasks (no precedence)
run-time for each task is known and constant
context switches can be ignored
any non-periodic task has no deadline

Process priority based on task periods
task with shortest period gets
highest static priority
task with longest period gets
lowest static priority
dispatcher always selects task requests with highest priority

Example:

Rate Monotonic (RM) Scheduling

pr
io

rit
y

period length

shortest period,
highest priority

longest period,
lowest priority

Task 1

p1

Dispatching

Task 2

p2 P1 < P2
P1 highest priority

preemption

EDF Versus RM – I

Task A

Task B

Rate monotonic

time

deadline miss

Earliest deadline first

deadlines

Rate monotonic
deadline miss

RM may give some
deadline violations
which is avoided by EDF

EDF Versus RM – II
EDF

dynamic priorities changing in time
overhead in priority switching
QoS calculation – maximal throughput:

Σ Ri x Pi ≤ 1, R – rate, P – processing time

RM
static priorities based on periods
may map priority onto fixed OS priorities (like Linux)
QoS calculation:

Σ Ri x Pi ≤ ln(2), R – rate, P – processing time

all streams i

all streams i

Summary

• Scheduling performance criteria and goals are
dependent on environment

• There exists several different algorithms targeted for
various systems

• Traditional OSes like Windows, UniX, Linux, ... usually uses
a priority-based algorithm

• The right time slice can improve overall utilization

