CPU Scheduling

Thomas Plagemann

(with slides from Otto J. Anshus,
Kai Li, P&l Halvorsen and Andrew S. Tanenbaum)

Outline

¢ Goals of scheduling

e Scheduling algorithms:
— FCFS/FIFO, RR, STCF/SRTCF
Priority (CTSS, UNIX, WINDOWS, LINUX)
Lottery
Fair share

Real-time: EDF and RM

Why Spend Time on Scheduling?

¢ Optimize the system to the given goals
e Example: CPU-Bound vs. I/O-Bound Processes:

(a) | — — —]
Long CPU burst \
Waiting for /O

Short GPU burst \
/ | g | 1 I
u

() [{1 +— T Lt

ﬂ_

]
=]

Time

o Bursts of CPU usage alternate with periods of I/O wait
— a CPU-bound process
— an I/O bound process

Scheduling Performance Criteria

¢ CPU (resource) utilization
e 100%, but 40-90% normal
¢ Throughput
e Number of “jobs” per time unit
¢ Minimize overhead of context switches
e Efficient utilization (CPU, memory, disk etc)
e Turnaround time
o =time process arrives time process exits
e = sum of all waiting times (memory, R_Q, execution, I/O, etc)
¢ How fast a single job got through
 Response time
o =time request starts - time response starts
e Having a small variance in Response Time is good (predictability)
¢ Short response time: type on a keyboard
¢ Waiting time
« in the Ready_Queue, for memory, for I/0, etc.
¢ Fairness
¢ no starvation

Scheduling Algorithm Goals

All systems

Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems

Interactive systems

Real-time systems

Non-Preemptive: FIFO (FCFS) Policy

e Runto
— to completion (old days)
— until blocked, yield, or exit

¢ Advantages

¢ Disadvantage

current until
block, yield, exit

Insert_last (p, R_Q)

|~ Average Turnaround Time for CPU bursts:

Process Burst time

1 24
2 3
3 3
Arrival order: 1-2-3 | P1 |P2 | P3 |
0 24 27 30
TT average = (24+27+30)/3=27

Arrival order: 2-3-1 | P2 | P3 | Pl |
0 3 6 30

TT average = (3+6+30)/3=13

How well will FCFS handle:

«Many processes doing 1/O arrives DlSCUSS|On tOplc FCFS

*One CPU-bound process arrives

All the 1/0-bound processes execute their I/O instructions
Block
Block
Block
CPU-bound process starts executing.
1/0
interrupts — All 1/0-bound processes enter the back of the Ready_Queue
All 1/O devices
are now IDLE CPU-bound does I/O
wlem Block
AI+I the 1/0-bound processes execute their 1/0 instructions
- Block .
Block
CPUis IDLE
i .. “CONVOY?” effect
/o interrupt__ 7= CPU-bound starts executing again L
- Low CPU utilization
v - Low device utilization
Round Robin
Ready queue
L]
Current
e FIFO queue process

n processes, each runs a time slice or quantum, q
— each process gets 1/n of the CPU in max q time units at a time

Max waiting time in Ready_Queue per process: (n-1) * q

How do you choose the time slice?
— Overhead vs. throughputs
— Overhead is typically about 1% or less
e interrupt handler + scheduler + dispatch

¢ 2 context switches: going down, and up into new process
— CPU vs. I/O bound processes

FIFO vs. Round Robin

10 jobs and each takes 100 seconds

FIFO

Round Robin
— time slice 1s and no overhead

Comparisons

Case: Time Slice Size

e Resource utilization example
— A and B each uses 100% CPU
— C loops forever (1ms CPU and 10ms disk)

e Large or small time slices?
— nearly 100% of CPU utilization regardless of size
— Time slice 100ms: nearly 5% of disk utilization with Round Robin
— Time slice 1ms: nearly 85% of disk utilization with Round Robin

e What do we learn from this example?
— The right (shorter) time slice can improve overall utilization
— CPU bound: benefits from having longer time slices (>100 ms)
— I/0 bound: benefits from having shorter time slices (<10ms)

Shortest Time to Completion First (STCF)
(a.k.a. Shortest Job First)

Non-preemptive
Run the process having smallest service time
Random, FCFS, ... for “equal” processes

Problem to establish what the running time of a job is

Suggestions on how to do this?
— Length of next CPU-burst
e Assuming next burst = previous burst

¢ Can integrate over time using a formula taking into account old
and new history of CPU burst lengths

— But mix of CPU and I/0O, so be careful

Shortest Remaining Time to Completion First (SRTCF)
(a.k.a. Shortest Remaining Time First)

e Preemptive, dynamic version of STCF

¢ If a shorter job arrives, PREEMPT current,
and do STCF again

¢ Advantage: high throughput, average turnaround is low

(Running a short job before a long decreases the waiting
time MORE for the short than it increases for the long!)

¢ Disadvantage: starvation possible, must know execution time

Priority Scheduling

Assign each process a priority
Run the process with highest priority in the ready queue first

. Queue Runable processes
Multiple queues headers

Priority 4 —D—D—D (Highest priority)
Advantage —
— (Fairness)

- Different priorities according Priority 2 —D
to importance
; Priority 1 (Lowest priority)
Disadvantage

— Users can hit keyboard frequently
— Starvation: so should use dynamic priorities

Special cases (RR in each queue)
— FCFS (all equal priorities, non-preemptive)
— STCF/SRTCF (the shortest jobs are assigned the highest priority)

Multiple Queue

e Good for classes of jobs
— real-time vs. system jobs vs. user jobs vs. batch jobs

e Multi level feedback queues
— Adjust priority dynamically
¢ Aging
¢ I/O wait raises the priority

¢ Memory demands,
#open files, CPU:I/O bursts

— Scheduling between the queues
¢ Time slice (and cycle through the queues)
e Priority typical:
— Jobs start at highest priority queue
— If timeout expires (used current time slices), drop one level
— If timeout doesn't expires, stay or pushup one level
— Can use different scheduling per queue
— A job using doing much I/0 is moved to an “I/O bound queue”

Compatible Time-Sharing System (CTSS)

One of the first (1962) priority schedulers using multiple feedback
queues (moving processes between queues)

One process in memory at a time (high switch costs)

“Priority” Time slices

Large slices vs. response time 111 0 1
- priority classes 1 ; 2
:IID 4

3 8

Each time the quantum was used, _11m
the process dropped one priority class (larger slice, less frequent)

Interaction - back to highest priority class

Short, interactive should run more often

Scheduling in UNIX

Highest

Many versions priorty |7 1 -1
4 Waiting for disk 1/0) Process waling
User processes have positive 8 | MWling o ok buflr nemelmode
priorities, kernel negative 2 Walting or ferminalinput
Schedule lowest priority first) w:"”g f"f;""'::a' o~
. 0 aiting for child to exist
If a process uses the whole time . — —
slice, it is put back at the end of) T LOo-O
the queue (RR)) Process walting
2 User priority 2 in user mode
3 User priority 3 O
Each second the priorities are Lowest “ T } _
recalculated: e Process queved
' on priority level 3

priority =
CPU_usage (average #ticks)
+ nice (+- 20)
+ base (priority of last corresponding kernel process)

Scheduling in UNIX (4.4BSD)

¢ Similar to last slide
e Time slices of 100 ms

e Priorities is updated every 4th tick (40 ms)
p_usrpri = PUSER + [p_estcpu x ¥4a] + 2 x p_nice

— PUSER defaults to 50 (min), may be changed but here one uses only
values between 50 and 127

— p_estcpu =
e running process: [(2 x load)/(2 x load + 1)] x p_estcpu + p_nice

e blocked process: [(2 x load)/(2 x load + 1)]*-**""™ x p_estcpu

— p_nice defaults to 0

i Scheduling in Windows 2000

v Preemptive kernel Real Time (system thread)
v 32 priority levels - Round Robin (RR) in each 31
v Schedules threads individually 30
v Processor affinity ; .
v Default time slices (3 quantums = 10 ms) of 17

» 120 ms — Win2000 server 16

> 20 ms — Win2000 professional/workstation

> may vary between threads Variable (user thread)

15

v Interactive and throughput-oriented:
> “Real time” — 16 system levels 14

« fixed priority ! 1

= may run forever 1 i

> Variable — 15 user levels 2
= priority may change — thread priority = process priority + 2
= uses much CPU cycles > drops 1
= user interactions, I/O completions = increase
> Idle/zero-page thread — 1 system level Idle (system thread)
= runs whenever there are no other processes to run
= clears memory pages for memory manager 0 |

#

i Scheduling in Linux

v Preemptive kernel SHED_FIFO

v Threads and processes used to be equal, 1
but Linux uses (in 2.6) thread scheduling

v SHED_FIFO i i
» may run forever, no timeslices i i
> may use it's own scheduling algorithm 126
v SHED_RR
» each priority in RR 127
> timeslices of 10 ms (quantums)
v SHED_OTHER
> ordinary user processes SHED_RR
> uses “nice"”-values: 1< priority<40 1
> timeslices of 10 ms (quantums)

. . nice
v Threads with highest goodness are selected first: 1 220
» realtime (FIFO and RR): 126
goodness = 1000 + priority -19
» timesharing EOTHER): 127
goodness = (quantum > 0 ? quantum + priority : 0)

v’ Quantums are reset when no ready SHED OTHER 18
process has quantums left:
quantum = (quantum/2) + priority default (20) 19

#

Lottery Scheduling

e Motivations
— SRTCF does well with average response time, but unfair
— Guaranteed scheduling may be hard to implement
— Adjust priority is a bit ad hoc. For example, at what rate?

e Lottery method

— Give each job a number of tickets
Randomly pick a winning tickets
To approximate SRTCF, short jobs gets more tickets
To avoid starvation, give each job at least one ticket
Allows ticket exchange

C.A. Waldspurger and W.E. Weihl, “Lottery Scheduling: Flexible Proportional-Share Resource Management.”
Proc. of the 1st USENIX Symp. on Operating System Design and Implementation (OSDI). Nov 1994.

Fair Share

e Each PROCESS should have an equal share of the CPU
e History of recent CPU usage for each process

e Process with least recently used CPU time := highest priority
— => an editor gets a high priority
— => a compiler gets a low priority

e Each USER should have an equal share of the CPU
e Take into account the owner of a process
e History of recent CPU usage for each user

Real-Time Scheduling
delay
N

request

round-robin | process 1 | process 2 | process 3 | process 4 | | process N | RT process

request| dela
priority, lgﬁ Y

non-preemtive | process 1 | RT process |>rocess 3 | process 4 | | process N

request /only delay switching and interrupts

priority,
preemtive | p 1 | RT process | pl | process 2 | process 3 | process 4 |N| | process N

NOTE: preemption may also be limited to preemption points (fixed
points where the scheduler is allowed to interrupt a running process)
- giving larger delays

Real-Time Scheduling

v Real-time tasks are often periodic _
(e.q., fixed frame rates and audio sample frequencies)

v Time constraints for a periodic task:
» § — starting point

(first time the task require processing)

e — processing time d

d — deadline e

p — period

r —rate (r = 1/p) L time

v V V VvV

> 0<exd
(often d < p: we'll use d = p — end of period, but Zd < Zp is enough)
> the kth processing of the task

. isreadyattimes + (k—1)p
. must be finished at time s + (k- 1) p +d

» the scheduling algorithm must account for these properties

Schedulable Real-Time Systems

v Given
> m periodic events
> event /occurs within period P; and requires C; seconds

v Then the load can only be handled if " Ci

v~ Can we process 3 video streams, 25 fps,
each frame require 10 ms CPU time?

> 3 *(10ms/40ms) = 3 * 25 * 0.010 = 0.75 < 1 > YES

Earliest Deadline First (EDF)

v Preemptive scheduling based on dynamic task priorities

v Task with closest deadline has highest priority
- priorities vary with time

v Dispatcher selects the highest priority task

v Assumptions:
> requests for all tasks with deadlines are periodic

» the deadline of a task is equal to the end on its period (starting of next)

» independent tasks (no precedence)
> run-time for each task is known and constant
> context switches can be ignored

Earliest Deadline First (EDF)

v Example:
priority A < priority B

priority A > priority B

ToskA . [W [mm

_ time

Task B [IEIEN |

Dispatching I Tomi I I

deadlines

Rate Monotonic (RM) Scheduling

v Classic algorithm for hard real-time systems with one CPU

[Liu & Layland ‘73]

v Pre-emptive scheduling based on static task priorities

v~ Optimal: no other algorithms with static task priorities can
schedule tasks that cannot be scheduled by RM

v Assumptions:
> requests for all tasks with deadlines are periodic
> the deadline of a task is equal to the end on its period (starting of next)
> independent tasks (no precedence)
> run-time for each task is known and constant
» context switches can be ignored
» any non-periodic task has no deadline

Rate Monotonic (RM) Scheduling

shortest period,
highest priority

v Process priority based on task periods ° o

> task with shortest period gets ‘g
highest static priority s

> task with longest period gets {_elongest et
lowest static priority period length

> dispatcher always selects task requests with highest priority

v Example:
p 1 1 11 | | I |
1 Bl 1o | '
1

ki M m M EEE

1 1 (| 1 1o

1 P2 1 ' P1<th-h N
Task 2 W [~ P:highest priority

| : : I preémptloq :

I 1 1
Dispatching _D:D_D_[ED_D_D]:D_D_DI

i EDF Versus RM — 1

1 1 1 1 1
Task A - l:| i l:| . ----- deadlines

} }
) . time

Teskp [| [
1 1 [

I dehdline mibs ’
1 1 1 1 1
Rate morotonic o

Earliest deadline first -:_:_ RM may give some

1 1 I 1/deadline miks deadline violations
Rate monotonic which is avoided by EDF

i EDF Versus RM — 1I

v EDF
> dynamic priorities changing in time
> overhead in priority switching
> QoS calculation — maximal throughput:

2 R xP, <1, R-rate, P - processing time

‘/ RM all streams i
> static priorities based on periods
» may map priority onto fixed OS priorities (like Linux)
» QoS calculation:

2 R xP, <1In(2), R - rate, P — processing time

all streams i

Summary

Scheduling performance criteria and goals are
dependent on environment

There exists several different algorithms targeted for
various systems

Traditional OSes like Windows, UniX, Linux, ... usually uses
a priority-based algorithm

The right time slice can improve overall utilization

