
1

Deadlocks

Thomas Plagemann

With slides from C. Griwodz, K. Li,
A. Tanenbaum and M. van Steen

Preempting Scheduler Activations

Scheduler activations are completely
preemptable

Kernel
space

User
space

2

Preempting Scheduler Activations

Maintaining the run queue needs to be a
protected critical section
Let’s use spin locks for protection

Thread 1 Upcall

Acquire spin lock

Start queue maintenance

Interrupt Thread 1

Acquire spin lock -> block

Resources

Examples of computer resources
CPU
Memory
Disk drive
Tape drives
Printers
Plotter
Loudspeaker

3

Resources
Processes

Need access to resources in reasonable order

Typical way to use a resource
Request
Use
Release

Suppose a process holds resource A and requests
resource B

At same time another process holds B and requests A
Both are blocked and remain so

Resources
Active resource

Provides a service
E.g. CPU, network adaptor

Passive resource
System capabilities that are required by active resources
E.g. memory, network bandwidth

Exclusive resource
Only one process at a time can use it
E.g. loudspeaker, processor

Shared resource
Can be used by multiple processes
E.g. memory, bandwidth

4

Resources
Single resource

Exists only once in the system
E.g. loudspeaker

Multiple resource
Exists several time in the system
E.g. processor in a multiprocessor system

Preemptable resource
Resource that can be taken away from a process
E.g. CPU can be taken away from processes in user space

Non-preemptable resource
Taking it away will cause processes to fail
E.g. Disk, files

Resources
Process must wait if
request is denied

Requesting process may
be blocked
May fail with error code

Deadlocks
Occur only when
processes are granted
exclusive access to
resources

blockacquire

use

acquire

use

5

Deadlocks
Formal definition :

A set of processes is deadlocked
if each process in the set is waiting for an event
that only another process in the set can cause

Usually the event is release of a currently held
resource
None of the processes can …

Run
Release resources
Be awakened

Four Conditions for Deadlock
1. Mutual exclusion condition

Each resource assigned to 1 process or is available

2. Hold and wait condition
Process holding resources can request additional

3. No preemption condition
Previously granted resources cannot forcibly taken away

4. Circular wait condition
Must be a circular chain of 2 or more processes
Each is waiting for resource held by next member of the
chain

6

Deadlock Modeling
Modeled with directed graphs

Resource R assigned to process A
Process B is requesting/waiting for resource S
Process C and D are in deadlock over resources T and U

A

R B

S C

U D

T

Deadlock Example
A utility program

Copies a file from a tape
to disk
Prints the file to a
printer

Resources
Tape
Disk
Printer

A deadlock

tape disk printer

A

B

7

Deadlock Modeling
How deadlock occurs

A
Requests R
Requests S
Releases S
Releases R

B
Requests S
Requests T
Releases T
Releases S

C
Requests T
Requests R
Releases R
Releases T

A requests R
B requests S
C requests T
A requests S
B requests T
C requests R

Resources

Processes A B C

R S T

Deadlock Modeling
How deadlock can be avoided

A
Requests R
Requests S
Releases S
Releases R

B
Requests S
Requests T
Releases T
Releases S

C
Requests T
Requests R
Releases R
Releases T

A requests R
C requests T
A requests S
B requests S
B requests T
C requests R
A releases S
A releases R
C releases R
C releases T

Resources

Processes A B C

R S T

8

Deadlocks: Strategies

Ignore the problem
It is user’s fault

Detection and recovery
Fix the problem afterwards

Dynamic avoidance
Careful allocation

Prevention
Negate one of the four conditions

The Ostrich Algorithm

Pretend there is no problem

Reasonable if
Deadlocks occur very rarely
Cost of prevention is high

UNIX and Windows take this approach
It is a trade-off between

Convenience
Correctness

9

Deadlock Detection and Recovery
One Resource of Each Type

A cycle can be found within the graph,
denoting deadlock

A B

C

R

S TD E

F

G

U V

W

init notebook L

add current node CN to L

is CN two times in L?
cycle detected

is an unmarked
outgoing arc at CN?

follow the arc
CN = next node

backtracking
CN = previous node

Deadlock Detection and Recovery
One Resource of Each Type

10

Deadlock Detection and Recovery
Multiple Resources of Each Type

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nmnnn

m

m

CCCC

CCCC
CCCC

...
...............

...

...

321

2232221

1131211

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nmnnn

m

m

RRRR

RRRR
RRRR

...
...............

...

...

321

2232221

1131211

Existing resources Available resources

()mEEEE ,...,,, 321 ()mAAAA ,...,,, 321

Current allocation matrix Request matrix

Deadlock Detection and Recovery
Multiple Resources of Each Type

4 2 3 1 2 1 0 0

0 0 1 0
2 0 0 1
0 1 2 0

2 0 0 1
1 0 1 0
2 1 0 0

E=(

Current allocation matrix Request matrix

Tap
e d

riv
ers

Plot
ter

s

CD-R
om

s

Sca
nn

ers

A=())
Tap

e d
riv

ers

Plot
ter

s

CD-R
om

s

Sca
nn

ers

R=C=

11

Deadlock Detection and Recovery
Recovery

Recovery through preemption
Take a resource from some other process
Depends on nature of the resource

Recovery through rollback
Checkpoint a process periodically
Use this saved state
Restart the process if it is found deadlocked

Recovery through killing processes
Crudest but simplest way to break a deadlock
Kill one of the processes in the deadlock cycle
The other processes get its resources
Choose process that can be rerun from the beginning

Deadlock Avoidance
Resource Trajectories

finished

request releaserequest release

Printer

Plotter

A

P
rin

te
r

release

release

request

request

P
lo

tte
r

B

start

Two process
resource trajectories

12

Deadlock Avoidance
Safe and Unsafe States

state is safe

A
B
C

3
2
2

9
4
7

Free: 3

has max
A
B
C

3
4
2

9
4
7

Free: 1

has max
A
B
C

3
0
2

9

7
Free: 5

has max
A
B
C

3
0
7

9

7
Free: 0

has max
A
B
C

3
0
0

9

Free: 7

has max

Deadlock Avoidance
Safe and Unsafe States

state is safe

A
B
C

3
2
2

9
4
7

Free: 3

has max
A
B
C

4
2
2

9
4
7

Free: 2

has max
A
B
C

3
0
2

9

7
Free: 4

has max
A
B
C

4
4
2

9
4
7

Free: 0

has max

13

Deadlock Avoidance
Banker’s Algorithm for a Single Resource

Each process has a credit
System knows how many resources a process
requests at most before releasing resources

Total resources may not satisfy all credits
Keep track of resources assigned and needed
Check on each allocation whether it is safe

Safe: there exists a sequence of other states that
all processes can terminate correctly

Deadlock Avoidance
Banker's Algorithm for a Single Resource

Free: 10

has max

0
0
0
0

6
5
4
7

Free: 2

has max

1
1
2
4

6
5
4
7

Free: 1

has max

1
2
2
4

6
5
4
7

6
50 5
0 6

40 4
70 7

42 4

A
B
C
D

3
3
5
51 5
61 6

74 7

A
B
C
D

1
2
2
4

A
B
C
D

Free: 4Free: 5Free: 6Free: 2

Resource allocation state

14

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 3 0 1
B 0 1 0
C 1 1 1

Assigned resources Resources still needed

6 3 4 2
5 3 2 2

E=(
Tap

e d
riv

ers

Plot
ter

s

CD-R
om

s

Sca
nn

ers

P=(
)
)

1 0 2 0A=()
1
0
0

D 1 1 0 1
E 0 0 0 0

A 1 1 0
B 0 1 1
C 3 1 0

0
2
0

D 0 0 1 0
E 2 1 1 0

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 3 0 1
B 0 1 0
C 1 1 1

6 3 4 2
4 2 2 1

E=(
Tap

e d
riv

ers

Plot
ter

s

CD-R
om

s

Sca
nn

ers

P=(
)
)

2 1 2 1A=()
1
0
0

D 0 0 0 0
E 0 0 0 0

A 1 1 0
B 0 1 1
C 3 1 0

0
2
0

D - - - -
E 2 1 1 0

Assigned resources Resources still needed

15

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 0 0 0
B 0 1 0
C 1 1 1

6 3 4 2
1 2 1 0

E=(
Tap

e d
riv

ers

Plot
ter

s

CD-R
om

s

Sca
nn

ers

P=(
)
)

5 1 3 2A=()
0
0
0

D 0 0 0 0
E 0 0 0 0

A - - -
B 0 1 1
C 3 1 0

-
2
0

D - - - -
E 2 1 1 0

Assigned resources Resources still needed

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 0 0 0
B 0 0 0
C 1 1 1

6 3 4 2
1 1 1 0

E=(
Tap

e d
riv

ers

Plot
ter

s

CD-R
om

s

Sca
nn

ers

P=(
)
)

5 2 3 2A=()
0
0
0

D 0 0 0 0
E 0 0 0 0

A - - -
B - - -
C 3 1 0

-
-
0

D - - - -
E 2 1 1 0

Assigned resources Resources still needed

16

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 0 0 0
B 0 0 0
C 0 0 0

6 3 4 2
0 0 0 0

E=(
Tap

e d
riv

ers

Plot
ter

s

CD-R
om

s

Sca
nn

ers

P=(
)
)

6 3 4 2A=()
0
0
0

D 0 0 0 0
E 0 0 0 0

A - - -
B - - -
C - - -

-
-
-

D - - - -
E 2 1 1 0

Assigned resources Resources still needed

Deadlock Detection and Recovery
Banker’s Algorithm for Multiple Resources

An example for the deadlock
detection algorithm

A 3 0 1
B 0 1 0
C 1 1 1

6 3 4 2
5 3 2 2

E=(
Tap

e d
riv

ers

Plot
ter

s

CD-R
om

s

Sca
nn

ers

P=(
)
)

1 0 2 0A=()
1
0
0

D 1 1 0 1
E 0 0 0 0

A 1 1 0
B 0 1 1
C 3 1 0

0
2
0

D 0 0 1 0
E 2 1 1 0

SAFE

Assigned resources Resources still needed

17

Deadlock Avoidance
Practical Avoidance

Two Phase Locking
Phase I

Process tries to lock all resources it needs, one at a time
If needed resources found locked, start over
(no real work done in phase one)

Phase II
Run
Releasing locks

Note similarity to requesting all resources at once
Algorithm works where programmer can arrange

Deadlock Prevention
R: Conditions for Deadlock

1. Mutual exclusion condition
Each resource assigned to 1 process or is available

2. Hold and wait condition
Process holding resources can request additional

3. No preemption condition
Previously granted resources cannot forcibly taken away

4. Circular wait condition
Must be a circular chain of 2 or more processes
Each is waiting for resource held by next member of the
chain

18

Deadlock Prevention
Mutual Exclusion Condition

Some resources are not sharable
Printer, tape, etc

Some resources can be made sharable
Some resources can be made virtual

Spooling - Printer
Does spooling apply to all non-sharable resources?

Mixing - Soundcard

Principle:
Avoid assigning resource when not absolutely necessary
A few processes as possible actually claim the resource

Deadlock Prevention
Hold and Wait Condition

Require processes to request resources before
starting

A process never has to wait for what it needs
Telephone companies do this

Problems
May not know required resources at start of run
Also ties up resources other processes could be using

Variation:
Process must give up all resources
Then request all immediately needed

19

Deadlock Prevention
No Preemption Condition

This is not a viable option
Consider a process given the printer

Halfway through its job
No forcibly take away printer
!!??

Deadlock Prevention
Circular Wait Condition

A

1 5432

Normally ordered resources
A resource graph

1. CD Rom drive
2. Tape drive
3. Plotter
4. Scanner
5. Imagesetter

20

Deadlock Prevention
Circular Wait Condition

Impose an order of requests for all resources
Method

Assign a unique id to each resource
All resource requests must be in an ascending
order of the ids
Release resources in a descending order

Can you prove this method has no circular
wait?
Is this generally feasible?

Deadlock Prevention
Overview

Order resources numericallyCircular wait
Take resources awayNo preemption
Request all resource initiallyHold and wait
Spool everythingMutual exclusion

ApproachCondition

21

Non-resource Deadlocks

Possible for two processes to deadlock
Each is waiting for the other to do some task

Can happen with semaphores
Each process required to do a down() on two
semaphores (mutex and another)
If done in wrong order, deadlock results

Preempting Scheduler Activations

So how do they handle this deadlock?

Thread 1 Upcall

Acquire spin lock

Start queue maintenance

Interrupt Thread 1

Acquire spin lock -> block

22

Preempting Scheduler Activations
Detection and recovery (like in Mach)
Basic idea:

Upcall handler checks first the state of each interrupted
thread
If it is in a critical section allow it to finish this

Implementation:
Protect critical sections with spin locks
Acquire_spin_lock() increments a counter in the
thread’s descriptor
Upcall handler checks spin lock count of all interrupted
threads
If there are threads that hold spin locks set flag
Switch to the context of these threads
Afterwards switch back to upcall handler

Summary

Resource
Introduction to deadlocks
Strategies

Ostrich algorithm
Deadlock detection and recovery
Deadlock avoidance
Deadlock prevention

Non-resource deadlocks

