
Inter-Process Communication:
Message Passing

Thomas Plagemann

With slides from Pål Halvorsen, Kai Li,
and Andrew S. Tanenbaum

Big Picture

communication?

shared memory

critical regions

rac
e c

on
dit

ion
s

muta
l e

xcl
us

ion

sleep and wakeup
mutexes

semaphores

monitors

message passing

Message Passing API

• Generic API
– send(dest, &msg)
– recv(src, &msg)

• What should the “dest” and “src” be?
– pid
– file: e.g. a (named) pipe
– port: network address, pid, etc
– no src: receive any message
– src combines both specific and any

• What should “msg” be?
– Need both buffer and size for a variable sized message

Issues

• Asynchronous vs. synchronous

• Direct vs. indirect

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between any pair?

• What is the capacity of a link?

• What is the size of a message?

• Is a link unidirectional or bidirectional?

Asynchronous vs. Synchronous

• Synchronous (blocking):

– thread is blocked until message primitive has been performed
– may be blocked for a very long time

msg
operation

block thread,
execute msg operation
in another thread/kernel

msg
operation,
unblock thread

time

Asynchronous vs. Synchronous

• Asynchronous (non-blocking):

– thread gets control back immediately
– thread can run in parallel other activities
– thread cannot reuse buffer for message before message is received
– how to know when to start if blocked on full/empty buffer?

• poll
• interrupts/signals
• …

msg operation,
resume immediately

execute msg operation
in another thread/kernel

time

Asynchronous vs. Synchronous

• Send semantic:

– Synchronous
• Will not return until data is

out of its source memory
• Block on full buffer

– Asynchronous
• Return as soon as initiating

its hardware
• Completion

– Require application to
check status

– Notify or signal the
application

• Block on full buffer

• Receive semantic:

– Synchronous
• Return data if there is a

message
• Block on empty buffer

– Asynchronous
• Return data if there is a

message
• Return null if there is no

message

Buffering

• No buffering
– synchronous
– Sender must wait until the receiver receives the message
– Rendezvous on each message

• Buffering
– asynchronous or synchronous

– Bounded buffer
• Finite size
• Sender blocks when the buffer is full
• Use mesa-monitor to solve the problem?

– Unbounded buffer
• “Infinite” size
• Sender never blocks

Direct Communication

• Must explicitly name the sender/receiver (“dest” and “src”) processes

• A buffer at the receiver
– More than one process may send messages to the receiver
– To receive from a specific sender, it requires searching through the whole

buffer

• A buffer at each sender
– A sender may send messages to multiple receivers

void producer(void)
{

while (TRUE) {

…

produce item;

…

send(consumer, item);

}

}

void consumer(void)
{

while (TRUE) {

recv(producer, item);

…

consume item;

…

}

}

Message Passing:
Producer-Consumers Problem

Message Passing:
Producer-Consumers Problem with N messages

Indirect Communication

• “dest” and “src” are a shared (unique) mailbox

• Use a mailbox to allow many-to-many communication
– Requires open/close a mailbox before using it

• Where should the buffer be?
– A buffer and its mutex and conditions should be at the mailbox

Using Message-Passing

• What is message-passing for?
– Communication across address spaces
– Communication across protection domains
– Synchronization

• Use a mailbox to communicate between a process/thread
and an interrupt handler: fake a sender

Keyboard Receive

mbox

Process Termination

• P waits for a message from Q, but Q has terminated
– Problem: P may be blocked forever
– Solution:

• P checks once a while
• Catch the exception and informs P
• Send ack message

• P sends a message to Q, but Q has terminated
– Problem: P has no buffer and will be blocked forever
– Solution:

• Check Q’s state and cleanup
• Catch the exception and informs P

Message Loss & Corruption

• Unreliable service
– best effort, up to the user to

• Detection
– Acknowledge each message sent
– Timeout on the sender side

• Retransmission
– Sequence number for each message
– Retransmit a message on timeout
– Retransmit a message on out-of-sequence acknowledgement
– Remove duplication messages on the receiver side

Linux Mailboxes

• Messages are stored as a sequence of bytes

• System V IPC messages also have a type

• Mailboxes are implemented as message queues sorting
messages according to FIFO

• Can be both blocking and non-blocking (IPC_NOWAIT)

• The next slides have some simplified (pseudo) code
– Linux 2.4.18
– several parts missing
– the shown code may block holding the queue lock
– waiting queues are more complex
– ...

OS-kernel

• Example:

...

D

C

B

A

Linux Mailboxes

msgsnd(A, , ...)

msgrcv(B, , ...)

Linux Mailboxes
• One msq_queue structure for each present queue:

• Messages are stored in the kernel using the msg_msg structure:

struct msg_queue {
struct kern_ipc_perm q_perm; /* access permissions */
time_t q_stime; /* last msgsnd time */
time_t q_rtime; /* last msgrcv time */
time_t q_ctime; /* last change time */
unsigned long q_cbytes; /* current number of bytes on queue */
unsigned long q_qnum; /* number of messages in queue */
unsigned long q_qbytes; /* max number of bytes on queue */
pid_t q_lspid; /* pid of last msgsnd */
pid_t q_lrpid; /* last receive pid */
struct list_head q_messages;
struct list_head q_receivers;
struct list_head q_senders;

};

struct msg_msg {
struct list_head m_list;
long m_type; /* message type */
int m_ts; /* message text size */
struct msg_msgseg* next; /* next pointer */

};

NOTE: the message is stored immediately after this structure - no pointer is necessary

Linux Mailboxes

• Create a message queue using the sys_msgget system call:

• To manipulate a queue, one uses the sys_msgctl system call:

long sys_msgget (key_t key, int msgflg)
{

...
create new message queue and set access permissions
...

}

long sys_msgctl (int msqid, int cmd, struct msqid_ds *buf)
{

...
switch (cmd) {

case IPC_INFO:
return info about the queue, e.g., length, etc.

case IPC_SET:
modify info about the queue, e.g., length, etc.

case IPC_RMID:
remove the queue

}
...

}

• Send a message to the queue using the sys_msgsnd system call:

Linux Mailboxes

long sys_msgsnd (int msqid, struct msgbuf *msgp, size_t msgsz, int msgflg)
{

msq = msg_lock(msqid);
...

if ((msgsz + msq->q_cbytes) > msq->q_qbytes)
insert message the tail of msq->q_messages *msgp, update msq

else
put sender in waiting senders queue (msq->q_senders)

msg_unlock(msqid);
...

}

• Receive a message from the queue using the sys_msgrcv system call:

– the msgtyp parameter and msgflg flag determine which messages to retrieve:
• = 0: return first message
• > 0: first message in queue with msg_msg.m_type = msgtyp
• > 0 & MSG_EXCEPT: first message in queue with msg_msg.m_type != msgtyp

Linux Mailboxes

long sys_msgrcv (int msqid, struct msgbuf *msgp, size_t msgsz,
long msgtyp, int msgflg)

{
msq = msg_lock(msqid);
...
search msq->q_messages for first message matching msgtype
if (msg)

store message in msgbuf *msgp, remove message from msgbuf *msgp, update msq
else

put receiver in waiting receivers queue (msq->q_receivers)

msg_unlock(msqid);
...

}

Our Mailbox

• We make it simpler than Linux
– Deliver messages in FIFO order

• Mailbox ⇒ buffer space
– Finite space

• Main purpose:
– Send
– Receive

• Maintenance:
– Init
– Open
– Close
– Statistics

• Classic IPC method under UNIX:
> ls -l | more
– shell runs two processes ls and more which are linked via a pipe
– the first process (ls) writes data (e.g., using write) to the pipe and

the second (more) reads data (e.g., using read) from the pipe

• the system call pipe(fd[2])
creates one file descriptor for reading
(fd[0]) and one for writing (fd[1])
- allocates a temporary inode and a
memory page to hold data

Linux Pipes

ls more

struct pipe_inode_info {
wait_queue_head_t wait;
char *base;
unsigned int len;
unsigned int start;
unsigned int readers, writers;
unsigned int waiting_readers, waiting_writers;
unsigned int r_counter, w_counter;

}

Linux: Mailboxes vs. Pipes

• Are there any differences between a mailbox and a pipe?

– Message types
• mailboxes may have messages of different types
• pipes do not have different types

– Buffer
• pipes – one or more pages storing messages contiguously
• mailboxes – linked list of messages of different types

– Termination
• pipes exists only as long as some have open the file descriptors
• mailboxes must often be closed

– More than two processes
• a pipe often (not in Linux) implies one sender and one receiver
• many can use a mailbox

Performance

• Performance is an important issue
(at least when sender and receiver is on one machine), e.g.:

– shared memory and using semaphores

– mailboxes copying data from source to mailbox and
from mailbox to receiver

• Can one somehow optimize the message passing?

Remote Procedure Call
• Message passing uses I/O
• Idea of RPC is to make function calls
• Small libraries (stubs) and OS take care of communication

Remote Procedure Call

Implementation Issues:

• Cannot pass pointers - call by reference becomes copy-restore

• Marshaling - packing parameters

• Weakly typed languages - client stub cannot determine size

• Not always possible to determine parameter types

• Cannot use global variables - may get moved to remote
machine/protection domain

Summary

• Many ways to perform IPC on a machine

• Direct message passing or
message passing using mailboxes

• Next: INF[34]160

