Inter-Process Communication:
Message Passing

Thomas Plagemann

With slides from P&l Halvorsen, Kai Li,
and Andrew S. Tanenbaum

Big Picture

« »




Message Passing API

e Generic API
— send( dest, &msg )
— recv( src, &msg )

e What should the “dest” and “src” be?
— pid

file: e.g. a (named) pipe

port: network address, pid, etc

no src: receive any message

src combines both specific and any

e What should “msg” be?
— Need both buffer and size for a variable sized message

Issues

Asynchronous vs. synchronous

Direct vs. indirect

How are links established?

Can a link be associated with more than two processes?
How many links can there be between any pair?

What is the capacity of a link?

What is the size of a message?

Is a link unidirectional or bidirectional?




Asynchronous vs. Synchronous

e Synchronous (blocking):

msg
msg operation,
operation unblock thread

block thread,
execute msg operation
in another thread/kernel

time

— thread is blocked until message primitive has been performed
— may be blocked for a very long time

Asynchronous vs. Synchronous

e Asynchronous (non-blocking):

msg operation,
resume immediately

execute msg operation
in another thread/kernel

time

thread gets control back immediately
thread can run in parallel other activities
thread cannot reuse buffer for message before message is received
how to know when to start if blocked on full/empty buffer?
e poll
e interrupts/signals




Asynchronous vs. Synchronous

e Send semantic: e Receive semantic:
— Synchronous — Synchronous
* Will not return until data is e Return data if there is a
out of its source memory message
» Block on full buffer * Block on empty buffer
— Asynchronous — Asynchronous
* Return as soon as initiating e Return data if there is a
its hardware message
« Completion e Return null if there is no
— Require application to message

check status

— Notify or signal the
application
« Block on full buffer

Buffering

« No buffering
— synchronous
— Sender must wait until the receiver receives the message
— Rendezvous on each message

e Buffering
— asynchronous or synchronous

— Bounded buffer
e Finite size
e Sender blocks when the buffer is full
* Use mesa-monitor to solve the problem?

— Unbounded buffer
* “Infinite” size
* Sender never blocks




Direct Communication

* Must explicitly name the sender/receiver (“dest” and “src”) processes

e A buffer at the receiver
— More than one process may send messages to the receiver

— To receive from a specific sender, it requires searching through the whole
buffer

e A buffer at each sender
— A sender may send messages to multiple receivers

Message Passing:
Producer-Consumers Problem

void producer(void) void consumer(void)

{ {
while (TRUE) { while (TRUE) {

recv( producer, item );
produce item;
consume item;

send( consumer, item );




Message Passing:
Producer-Consumers Problem with N messages

#define N 100 /* number of slots in the buffer */

void producer(void)

{
int item;
message m; /* message buffer =/

while (TRUE) {

item = produce_item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build_message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */

}

void consumer(void)
{
int item, i:
message m;

for (i = 0; i = N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract__item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume _item(item); /* do something with the item */

Indirect Communication

“dest” and “src” are a shared (unique) mailbox

Use a mailbox to allow many-to-many communication
— Requires open/close a mailbox before using it

Where should the buffer be?
— A buffer and its mutex and conditions should be at the mailbox




Using Message-Passing

e What is message-passing for?
— Communication across address spaces
— Communication across protection domains
— Synchronization

e Use a mailbox to communicate between a process/thread
and an interrupt handler: fake a sender

Keyboard —— Receive

mbox

Process Termination

e P waits for a message from Q, but Q has terminated
— Problem: P may be blocked forever
— Solution:
* P checks once a while
e Catch the exception and informs P
* Send ack message

e P sends a message to Q, but Q has terminated
— Problem: P has no buffer and will be blocked forever
— Solution:
e Check Q’s state and cleanup
« Catch the exception and informs P




Message Loss & Corruption

e Unreliable service
— best effort, up to the user to

e Detection
— Acknowledge each message sent
— Timeout on the sender side

e Retransmission

Sequence number for each message

Retransmit a message on timeout

Retransmit a message on out-of-sequence acknowledgement
Remove duplication messages on the receiver side

Linux Mailboxes

e Messages are stored as a sequence of bytes
e System V IPC messages also have a type

e Mailboxes are implemented as message queues sorting
messages according to FIFO

e Can be both blocking and non-blocking (I1PC_NOWAIT)

e The next slides have some simplified (pseudo) code
— Linux 2.4.18

several parts missing

the shown code may block holding the queue lock

waiting queues are more complex




Linux Mailboxes

e Example:

msgsnd(A, ®. .. )

O|lO|m|>

OS-kernel

Linux Mailboxes

One msq_queue structure for each present queue:

struct msg_queue {
struct kern_ipc_perm q_perm;
time_t q_stime;
time_t q_rtime;
time_t qg_ctime;
unsigned long g_cbytes;
unsigned long g_gnum;
unsigned long q_gbytes;
pid_t g_Ispid;
pid_t g_lrpid;
struct list_head g_messages;
struct list_head (_receivers;
struct list_head g_senders;
}:

Messages are stored in the kernel using the msg_msg structure:

struct msg_msg {
struct list_head m_list;

long m_type; /* message type */
int m_ts; /* message text size */
struct msg_msgseg* next; /* next pointer */

};

NOTE: the message is stored immediately after this structure - no pointer is hecessary

/*
/*
/*
/*
/>
/>
/>
/>
/*

access permissions */
last msgsnd time */
last msgrcv time */
last change time */
current number of bytes on queue */]
number of messages in queue */
max number of bytes on queue */
pid of last msgsnd */

last receive pid */




Linux Mailboxes

e Create a message queue using the sys msgget system call:

long sys_msgget (key_t key, int msgflg)
{

create new message queue and set access permissions

e To manipulate a queue, one uses the sys_msgctl system call:

long sys_msgctl (int msqid, int cmd, struct msqid_ds *buf)

{

switch (cmd) {
case IPC_INFO:
return info about the queue, e.g., length, etc.
case IPC_SET:
modify info about the queue, e.g., length, etc.
case IPC_RMID:
remove the queue

Linux Mailboxes

e Send a message to the queue using the sys_msgsnd system call:
long sys_msgsnd (int msqgid, struct msgbuf *msgp, size_t msgsz, int msgflg)

msq = msg_lock(msqid);

if ((msgsz + msq->qg_cbytes) > msq->q_gbytes)
insert message the tail of msq->qg_messages *msgp, update msq

else
put sender in waiting senders queue (msq->q_senders)

msg_unlock(msqgid);




Linux Mailboxes

* Receive a message from the queue using the sys_msgrcv system call:

long sys_msgrcv (int msqid, struct msgbuf *msgp, size_t msgsz,
long msgtyp, int msgflg)
{

msq = msg_lock(msqid);

search msqg->g_messages for first message matching msgtype
it (msg)

store message in msgbuf *msgp, remove message from msgbuf *msgp, update msq
else

put receiver in waiting receivers queue (msq->q_receivers)

msg_unlock(msqid);

— the msgtyp parameter and msgflg flag determine which messages to retrieve:
e = 0: return first message
e > 0: first message in queue with msg_msg.m_type = msgtyp
e > (0 & MSG_EXCEPT: first message in queue with msg_msg.m_type != msgtyp

Our Mailbox

We make it simpler than Linux
— Deliver messages in FIFO order

Mailbox = buffer space
— Finite space

Main purpose:
— Send
— Receive

Maintenance:
— Init

— Open

— Close

— Statistics




Linux Pipes

e Classic IPC method under UNIX:
> Is -1 | more
— shell runs two processes Is and more which are linked via a pipe

— the first process (Is) writes data (e.g., using write) to the pipe and
the second (more) reads data (e.g., using read) from the pipe

e the System Ca” pi pe( fd [2] ) struct pipe_inode_info {

wait_queue_head_t wait;

creates one file descriptor for reading char *base;

unsigned int len;

(fd[0]) and one for writing (Fd[1]) unsigned int start;

unsigned int readers, writers;

- a”ocates a temporary |n0de and a unsigned int waiting_readers, waiting_writers;

unsigned int r_counter, w_counter;

memory page to hold data ¥

Linux: Mailboxes vs. Pipes

« Are there any differences between a mailbox and a pipe?

Message types
* mailboxes may have messages of different types
< pipes do not have different types

Buffer
* pipes — one or more pages storing messages contiguously
* mailboxes — linked list of messages of different types

Termination
* pipes exists only as long as some have open the file descriptors
* mailboxes must often be closed

More than two processes
« a pipe often (not in Linux) implies one sender and one receiver
e many can use a mailbox




Performance

Performance is an important issue
(at least when sender and receiver is on one machine), e.g.:

— shared memory and using semaphores

— mailboxes copying data from source to mailbox and
from mailbox to receiver

Can one somehow optimize the message passing?

Remote Procedure Call

Message passing uses 1/0
Idea of RPC is to make function calls
Small libraries (stubs) and OS take care of communication

Client CPU Server CPU

7 Client Server,

/.\ stub stub TN

Client W crver
2 41"
erating system | Operating system
Operating syst Y A Operating syst

1
L 3 S




Remote Procedure Call

Implementation Issues:

e Cannot pass pointers - call by reference becomes copy-restore
e Marshaling - packing parameters

» Weakly typed languages - client stub cannot determine size

« Not always possible to determine parameter types

e Cannot use global variables - may get moved to remote
machine/protection domain

Summary

e Many ways to perform IPC on a machine

e Direct message passing or
message passing using mailboxes

* Next: INF[34]160




