
Monitors
Condition Variables

Otto J. Anshus
University of {Tromsø, Oslo}

Monitor (Hoare 1974)

• Idea by Brinch-Hansen 1973 in the textbook “Operating
System Principles”

• Structure an OS into a set of modules each implementing a
resource scheduler

• Tony Hoare
– Combine together in each module

– Mutex
– Shared data
– Access methods to shared data
– Condition synchronization
– Local code and data

Basic Components

• Monitor procedures (called by threads) are meant to be
mutually exclusive

• Conditon “variables” (declared by user)
• Wait (condition_name) (called by monitor procedures)
• Signal (condition_name) (called by monitor procedures)

The Structure of a Monitor
•After calling, threads
get blocked and are
waiting to get in and
start executing the called
monitor procedureMain Queue

Condition Queue 1

Condition Queue n

MUTEX

•Threads waiting on a
condition variable for a
condition to be true (waiting
for a signal on the condition
variable)

Local procedure 1

Local procedure m

Local variables Shared variables

Initialization executed first time the monitor starts
•Initialization of state
variables, executed ONCE at
startup of monitor

Monitor procedure k: {… signal(condvar); …}

Monitor procedure 1: {…wait(condvar); …}

Threads calling a
monitor
procedure

<More to come>

•The only way to access
shared resources is by calling
a monitor procedure

So only ONE
monitor
procedure
executes at a
time

The Monitor

Signal(): {…} Wait(): {…} System implementation
User implementation

Signal and Wait

• Wait (cond)
– Insert(caller, cond_queue)
– Block this instance of the

monitor procedure
– open MUTEX by getting

next call from Main_Queue

• Signal (cond)
– Stop monitor procedure

calling signal
– Start first in cond_queue,

or just return if empty

Implementation of the Monitor Concept

• As a primitive in a language (Mesa, Java)
• Using semaphores in any language
• As a thread or as a process

– Need a way to interact with the thread
– through shared variables to deliver the parameters and name of called

monitor procedure
– Need a way to interact with the process

– kernel support of shared variables across address spaces
– using another mechanism like message passing to pass parameters and

name of procedure
• At user level,

– use condition variables (the queues),
– wait(), signal() implemented by
– Implementred by

• the operating system kernel
• a thread package (Pthreads)

Single Resource Monitor

Reserve;

<use shared resource>

Release;

Reserve:
{
 if (busy) wait (nonbusy);
 busy:=TRUE;
}

/*Local functions, variables*/
<none needed>
/*Shared variable*/
Boolean busy;
/*Condition variable*/
Condition nonbusy;

Release:
{
 busy:=FALSE;
 signal (nonbusy);
}

/* Initialization code*/
busy:=FALSE;
nonbusy:=EMPTY;

All threads must follow the pattern:

Observe

•the shared variable

•the naming of the condition variable

•the wait and signal calls

•implements a binary semaphore (s=0,1)

What is a Condition Variable?

• No “value”
• Waiting queue
• Used to represent a condition

we need to wait for to be
TRUE

• Initial “non-value” is
EMPTY :-)

Main Queue

Condition Queue 1

Condition Queue n

Local procedure 1

Local procedure m

Local variables Shared variables

Initialization executed first time the monitor starts

Monitor procedure 1: {… signal(condvar); …}

Monitor procedure 1: {…wait(condvar); …}

<More to come>

The Monitor

Signal(): {…} Wait(): {…}

Semaphore vs. Monitor

P(s) means WAIT if s=0
And s--

Wait(cond) means unconditional WAIT

Semaphore Monitor

V(s) means start a waiting
thread and REMEMBER that a
V call was made: s++

Assume s=0 when V(s) is
called: If there is no thread to
start this time, the next thread
to call P(s) will get through P(s)

Signal(cond) means start a
waiting thread. But no memory!

Assume that the condition
queue is empty when signal() is
called. The next thread to call
Wait(cond) (by executing a
monitor procedure!) will block
because the signal() operation
did not leave any trace of the
fact that it was executed on an
empty condition waiting queue.

Bounded Buffer Monitor
out

in

Capacity: N

B

Producer

PUT (m):
r:=GET:

Consumer

One condition variable
for each condition:

•nonempty

•nonfull

•MUTEX is already
provided by the monitor

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared, so must have
mutex between Put and
Get

Put (int m):
{ if (count=n) wait (nonfull);
 B(in):=m;
 in:=in+1 MOD n;
 count++;
 signal (nonempty); }

/*Local functions, variables*/
int in, out;
/*Shared variable*/
int B(0..n-1), count;
/*Condition variable*/
Condition nonfull, nonempty;

int Get:
{ if (count=0) wait (nonempty);
 Get:=B(out);
 out:=out+1 MOD n;
 count--;
 signal (nonfull); }

/* Initialization code*/
in:=out:=count:=0;
nonfull, nonempty:=EMPTY;

/* MOD is % */

What will happen when a signal() is
executed?

• Assume we have threads in Main_Queue and in a
condition queue

• Main_Queue has lower “priority” than the signaled
condition queue:

• signal() => Take first from condition queue one and start it
from its next instruction after the wait() which blocked it

• The signaled thread now executes
– … until a wait(): block it, and take new from Main_Queue
– … until a signal():
– … until finished: take new from Main_Queue

Options of the Signaler
• Run the signaled monitor procedure (or thread) immediately (must

suspend the current one right away) (Hoare)
– If the signaler has other work to do, life gets complex
– It is difficult to make sure there is nothing more to do because the

signal implementation is not aware how it is used (where it is
called)

– It is easy (well, easier) to prove things
• Exit the monitor

– Just let signal be the last statement before return from a monitor
procedure

• Continues its execution
– Easy to implement
– But, the condition may not be true when the awaken process

actually gets a chance to run

Where to allow a
call to signal()?

• Look at the two monitors we have
analyzed! Where is the signal()
operation?

• What if we called signal somewhere
else?

• The calling function instance must
be blocked, awaiting return from
signal()

– Need a queue for the temporary
halted thread

• URGENT QUEUE

• In Hoare’s monitors the signal
operation must IMMEDIATELY
start the signaled thread in order for
the condition that it signals about
still to be guaranteed true when the
thread starts

Main Queue

Condition Queue 1

Condition Queue n

Local procedure 1

Local procedure m

Local variables Shared variables

Initialization executed first time the monitor starts

Monitor procedure 1: {… signal(condvar); …}

Monitor procedure 1: {…wait(condvar); …}

The Monitor

Signal(): {…} Wait(): {…}
URGENT Queue

Mutex between monitor procedures?

• Hoare: Yes
• But not needed if we have no shared variables

– But signal and wait must be atomic because they can access
the same condition variable

• So no gain?
– Finer granularity (is good)
– Makes life harder (is bad)

• Should be possible to Put and Get at each end of a buffer?
– Try it

Performance problems of Monitors?
• Getting in through Main_Queue

• Many can be in Main_Queue and in a condition queue waiting
for a thread to execute a monitor procedure calling a signal.

– Can take a long time before the signaler gets in
• Need one Wait_Main_Queue and one Signal_Main_Queue?

– But difficult when all procedures call both wait and signal

• The monitor is a potential bottleneck (“Bottleneck OS”??)
– Use several to avoid hot spots

• Signal must start the signaled thread immediately, so must
switch thread context and save our own

• Can have nested calls
• Even worse for process context switches

– Solution?
• Avoid starting the signaled thread immediately
• But then race conditions can happen

Mesa Style “Monitor” (Birrell’s Paper)

• Condition variables are associated with a mutex
• Wait(lock, condition)

– Atomically unlock the mutex and enqueue on the condition
variable (block the thread)

– Re-lock the lock when it is awaken
• Signal(condition)

– No-op if there is no thread blocked on the condition variable
– Wake up at some convenient time at least one (if there are

threads blocked)
• Broadcast(condition)

– Wake up all threads waiting on the condition

Is really a NOTIFY or a HINT

Bounded Buffer Mesa
Monitors

out

in

Capacity: N

B

Producer

PUT (m):
r:=GET (r):

Consumer

One condition for each
condition:

•nonempty

•nonfull

•MUTEX is locked by
LOCK and unlocked by
Wait

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared, so must have
mutex between Put and
Get

Put (int m):
LOCK bb_mutex {
 { while (count=n) wait (bb_mutex, nonfull);
 B(in):=m;
 in:=in+1 MOD n;
 count++;
 signal (nonempty); }
}

/*Local functions, variables*/
int in, out, count;
/*Shared variable*/
int B(0..n-1);
/* Mutex */
mutex_t bb_mutex;
/*Condition variable*/
Condition nonfull, nonempty;

int Get:
LOCK bb_mutex {
 { while (count=0) wait (bb_mutex, nonempty);
 Get:=B(out);
 out:=out+1 MOD n;
 count--;
 signal (nonfull); }
}

/* Initialization code*/
in:=out:=count:=0;
nonfull, nonempty:=EMPTY;

Spins to
reevaluate

Wait will
UNLOCK

Instead of LOCK and UNLOCK…

Think about the performance benefit of this solution

Programming Idiom

Implementing Semaphores with Mesa-
Monitors

P(s)
{

Acquire(s.mutex);
--s.value;
if (s.value < 0)
 wait(s.mutex, s.cond);
Release(s.mutex);

}

V(s)
{

Acquire(s.mutex);
++s.value;
if (s.value >= 0)
 signal(s.cond);
Release(s.mutex);

}

Assume that Signal wakes up exactly one awaiting thread.

Mesa-Style vs. Hoare-Style Monitor
• Mesa-style

– Signaler keeps lock and CPU
– Waiter simply put on ready queue, with no special priority

• Must then spin and reevaluate!
– No costly context switches immediately
– No constraints on when the waiting thread/process must run after a “signal”
– Simple to introduce a broadcast: wake up all

• Good when one thread frees resources, but does not know which other thread
can use them (“who can use j bytes of memory?”)

– Can easily introduce a watch dog timer: if timeout then insert waiter in
Ready_Queue and let waiter reevaluate

• Will guard a little against bugs in other signaling processes/threads causing
starvation because of a “lost” signal

• Hoare-style
– Signaler gives up lock and waiter runs immediately
– Waiter (now executing) gives lock and CPU back to signaler when it exits critical

section or if it waits again

Equivalence

• Semaphores
– Good for signaling
– Not good for mutex because it is easy to introduce a bug

• Monitors
– Good for scheduling and mutex
– Too (maybe?) costly for simple signaling

