
Processes and
Non-Preemptive Scheduling

Otto J. Anshus

8/30/05 2

An aside on concurrency
• Timing and sequence of events are key concurrency issues
• We will study classical OS concurrency issues, including implementation and use of

classic OS mechanisms to support concurrency
• A course on parallel programming may revisit this material
• In a course on distributed systems you may/may not want to use (formal?) tools to

understand and model timing and sequencing better
• Single CPU computers are designed to uphold a simple and rigid model of

sequencing and timing. ”Under the hood,” even single CPU systems are distributed
in nature, and are carefully organized to uphold strict external requirements

• Emerging CPUs (2005) are set to be increasingly multi core, multi threaded dies
across market segments.
– Challenges and opportunities to design cost-effective high-performance systems.

Kernel

Processes

Threads

Processes

8/30/05 3

Process
• An instance of a program under execution

– Program specifying (logical) control-flow (thread)
– Data
– Private address space
– Open files
– Running environment

• The most important operating system concept
• Used for supporting the concurrent execution of independent or

cooperating program instances
• Used to structure applications and systems

Kernel

Processes

Threads

Processes

8/30/05 4

Processes (II)

• Classical processes were, using today’s terminology;
“Single Threaded”

• Sequential program: Single process
• Parallel program: Multiple cooperating processes

8/30/05 5

Processes (III)

• “Modern” process: “Process” and “Thread” are
separated as concepts

• Process—Unit of Resource Allocation—Defines the
context

• Thread—Control Thread—Unit of execution,
scheduling

• Every process must contain one or more threads
• Every (?) thread exists within the context of a process

8/30/05 6

Revisit Monolithic OS Structure
• All processes share the same kernel
• Kernel comprises

– Interrupt handler & Scheduler
– Key drivers
– Threads “doing stuff”
– Process & thread abstraction

realization
– Boot loader, BIOS

• Scheduler
– Use a ready queue to hold all

ready threads (==“process” if
single-threaded)

– Schedule a thread in
• current
• or a new context

8/30/05 7

User- and Kernel-Level Thread Support

• User-level threads within a process are
– Indiscernible by OS
– Scheduled by (user-level) scheduler in process

• Kernel-level threads
– Maintained by OS
– Scheduled by OS

8/30/05 8

User vs. Kernel-level Threads

• Question
– What is the difference between user-level and kernel-level threads?

• Discussions
– User-level threads are scheduled by a scheduler in their process at user-level

• Co-routines
• Timer interrupt to get preemption

– Kernel-level threads are scheduled by kernel scheduler
– Implications

• when a user-level thread is blocked on an I/O event, the whole process is
blocked

• A context switch of kernel threads is more expensive than for user threads
• A smart scheduler (two-level) can avoid both drawbacks. But is more

complex
– Do we like complexity?

8/30/05 9

Threads & Stack

• Private: Each user thread has its own kernel stack
• Shared: All threads of a process share the same kernel

stack

8/30/05 10

Supporting and Using Processes
• Multiprogramming

– Supporting concurrent execution (overlapping or transparently
interleaved) of multiple processes (or multiple threads if only one
process per program.)

– Achieved by process- or context switching, switching the CPU(s) back
and forth among the individual processes (threads), keeping track of
each process’ (threads) progress

• Concurrent programs
– Programs that exploit multiprogramming for some purpose (e.g.

performance, structure)
– Independent or cooperating
– Operating systems is important application area for concurrent

programming. Many others (event driven programs, servers, ++)

Kernel

Processes

Threads

Processes

8/30/05 11

Implementing processes

• OS (kernel) needs to keep track of all processes
– Keep track of it’s progress
– (Parent process, if such a concept has been added)
– Metadata (priorities etc.) used by OS
– Memory management
– File management

• Process table with one entry (Process Control Block)
per process

• Will also align processes in queues

8/30/05 12

Primitives of Processes

• Creation and termination
– fork, exec, wait, kill

• Signals
– Action, Return, Handler

• Operations
– block, yield

• Synchronization
– We will talk about this later

8/30/05 13

fork (UNIX)

• Spawns a new process (with new PID)
• Called in parent process
• Returns in parent and child process
• Return value in parent is child’s PID
• Return value in child is ’0’
• Child gets duplicate, but separate, copy of parent’s

user-level virtual address space
• Child gets identical copy of parent’s open file

descriptors

8/30/05 14

fork, exec, wait, kill

• Return value tested for error, zero, or positive
• Zero, this is the child process

– Typically redirect standard files, and
– Call Exec to load a new program instead of the old

• Positive, this is the parent process
• Wait, parent waits for child’s termination

– Wait before corresponding exit, parent blocks until exit
– Exit before corresponding wait, child becomes zombie (un-dead) until

wait

• Kill, specified process terminates

8/30/05 15

When may OS switch contexts?

• Only when OS runs
• Events potentially causing a context switch:

– (User level) system calls
• Process created (fork)
• Process exits (exit)
• Process blocks implicitly (I/O calls, block/wait, IPC calls)
• Process enters state ready explicitly (yield)

– System Level Trap
• By HW
• By SW exception

– Kernel preempts current process
• Potential scheduling decision at “any of above”
• +“Timer” to be able to limit running time of processes

Preemptive
scheduling

Non-Preemptive
scheduling

User
process

Syscall/Exception

TIMER
INTERRUPT
(100ms)

Interrupt handler: Start service or Handle exception

Interrupt
Hardware

Operating
System
Kernel

Service
Service

Service
Service

Scheduler
(i) Select next process to run
(ii) Restore context
(iii) Run it

I/O
INTERRUPT
(from keyboard,
floppy, other)

User
process

8/30/05 16

Context Switching Issues
• Performance

– Should be no more than a few microseconds
– Most time is spent SAVING and RESTORING the context of processes

• Less processor state to save, the better
– Pentium has a multitasking mechanism, but SW can be faster if it saves

less of the state
• How to save time on the copying of context state?

– Re-map (address) instead of copy (data)

• Where to store Kernel data structures “shared” by all processes
• Memory

• How to give processes a fair share of CPU time
• Preemptive scheduling, time-slice defines maximum time interval

between scheduling decisions

8/30/05 17

Example Process State Transitions

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true
paralellism”)

PC

PCB’s

Memory resident part

Running

BlockedReady

Resource becomes available
(move to ready queue)

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

8/30/05 18

Process State Transition of
Non-Preemptive Scheduling

Running

BlockedReady

Resource becomes available
(move to ready queue)

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

8/30/05 19

Scheduler

• Non-preemptive scheduler invoked by syscalls (to OS Kernel)
– block
– yield
– (fork and exit)

• The simplest form
Scheduler:

save current process state (store to PCB)
choose next process to run
dispatch (load PCB and run)

• Does this work?
• PCB (something) must be resident in memory
• Remember the stacks

8/30/05 20

Stacks
• Remember: We have only one copy of the Kernel in memory

=> all processes “execute” the same kernel code
=> Must have a kernel stack for each process

• Used for storing parameters, return address, locally created
variables in frames or activation records

• Each process
– user stack
– kernel stack

• always empty when process is in user mode executing
instructions

• Does the Kernel need its own stack(s)?

8/30/05 21

More on Scheduler

• Should the scheduler use a special stack?
– Yes,

• because a user process can overflow and it would require another
stack to deal with stack overflow

• (because it makes it simpler to pop and push to rebuild a process’s
context)

• (Must have a stack when booting…)

• Should the scheduler simply be a “kernel process” (kernel
thread)?
– You can view it that way because it has a stack, code and its data

structure
– This thread always runs when there is no user process

• “Idle” process
– In kernel or at user level?

8/30/05 22

Win NT Idle

• No runable thread exists on the processor
– Dispatch Idle Process (really a thread)

• Idle is really a dispatcher in the kernel
– Enable interrupt; Receive pending interrupts; Disable interrupts;
– Analyze interrupts; Dispatch a thread if so needed;
– Check for deferred work; Dispatch thread if so needed;
– Perform power management;

8/30/05 23

Threads and Processes

Process

Threads

Kernel threads

Kernel
Address
Space

Kernel Level

User Level

Project OpSysTrad. Threads
Processes in individual address spaces

8/30/05 24

Where Should PCB Be Saved?

• Save the PCB on user stack
– Many processors have a special instruction to do it

efficiently
– But, need to deal with the overflow problem
– When the process terminates, the PCB vanishes

• Save the PCB on the kernel heap data structure
– May not be as efficient as saving it on stack
– But, it is very flexible and no other problems

8/30/05 25

Job swapping

• The processes competing for resources may have combined
demands that results in poor system performance

• Reducing the degree of multiprogramming by moving some
processes to disk, and temporarily not consider them for
execution may be a strategy to enhance overall system
performance
– From which states(s), to which state(s)? Try extending the following

examples using two suspended states.

• The term is also used in a slightly different setting, see MOS
Ch. 4.2 pp. 196-197

8/30/05 26

Job Swapping

Partially executed
swapped-out processes

Ready Queue CPU

I/O Waiting
queues

I/O

Terminate

Swap outSwap in

8/30/05 27

Add Job Swapping to
State Transition Diagram

Running

BlockedReady

Create
a process

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Resource becomes available
(move to ready queue) Swap out

Swap in
Swapped

Swap out

8/30/05 28

Concurrent Programming w/ Processes

• Clean programming model
– User address space is private

• Processes are protected from each other
• Sharing requires some sort of IPC (InterProcess

Communication)
• Overhead (slower execution)

– Process switch, process control expensive
– IPC expensive

8/30/05 29

I/O Multiplexing:
More than one State Machine per Process

• select blocks for any of multiple events
• Handle (one of the events) that unblocks select

– Advance appropriate state machine
• Repeat

8/30/05 30

Concurrent prog. w/ I/O Multiplexing

• Establishes several control flows (state machines) in
one process

• Uses select
• Offers application programmer more control than

processor model (How?)
• Easy sharing of data among state machines
• More efficient (no process switch to switch between

control flows in same process)
• Difficult programming

