
Operating System Overview

Otto J. Anshus

A Typical Computer

CPU

ChipsetMemory
I/O bus

CPU. . .

NetworkKeyboard

ROM

A Typical Computer System

Application(s)

Operating System

MemoryCPU

CPU

...

OS
Apps
Data

Network

Keyboard

ROM

Moving data around in the machine

• The processor has entry/exit points for moving data in and out of the
processor.

• A ”bus” is a set of wires upon which devices can connect and communicate
over.

• The conceptually simplest way of connecting everything together would be
to extend the wires in/out of the processor, and have everything else hook
onto that

• For our systems, that would be impractical and expensive

Buses

• In/out of processor should be very fast
– You can make it wide (more parallell wires)
– You can increase the rate on each wire while still making sure that

corresponding bits on each line arrive at same time
– You can do other tricks
– For achieving this you will trade a combination of cost, distance, robustness,

power, etc.
– Not needed nor practical for your diskette, keyboard, mouse and many other

devices
• We need a range of bus’es (or highways) from the super-wide, super-fast bus

between CPU, Memory and cache, to narrow but robust footpaths to ”legacy” devices

Chip-set

• Commercially standardized circuitry that ”surround” the
processor and provides a set of buses and some other
functionality

• Also has a programmable timer that you will set to interrupt the
processor regularly

• PC chip-sets traditionally have two exit/entry areas
– North-bridge (fast and furios)

• CPU, Memory, AGP-port (?), now also Gb Ethernet
– South-bridge

• Everything else, including ”legacy buses”
• Used to be limited by PCI-bus speed, now is much faster

Wrap-up: The Processor

• Von Neumann architecture, stored program, instruction pointer,
sequential execution ”one-at-a-time”

• Control section
– Decodes intructions and controls the datapath

• Datapath including ALU
– Register file, paths for moving data around internally and

out/in of processor, operational units (ALU)

Wrap-up: OS-HW agreement

• We agreed with processor architect that whenever processor
couldn’t proceed meaningfully, it should note the exception and
proceed fetching instructions from a predermined location in
memory. We, the OS-writers, will make sure appropriate code
resides at that location in memory

• To allow other HW to request the attention of the OS, the
processor architect provides the processor with an ”interupt
line.” The processor checks the line once every instruction-
cycle. Whenever the line is set, the processor faults and gets it’s
next instruction at a predetermined location, where we, the OS-
writers, will make sure …

Interrupts and Traps

• Interrupts
– Raised by external events
– CPU can resume from the

interrupt handler
– iret instruction: returns by

popping return address from
stack, and enable interrupts
(IA32 instruction set)

• Traps
– Internal events
– System calls (syscalls)
– Also return by iret

User level vs. Kernel level

• Kernel (a.k.a. supervisory or privileged) level
• All instructions are available
• Total control possible so OS must say “Mine, all mine” (Daffy Duck)

• User level
• Some instructions are not available any more
• Programs can be modified and substituted by user

In theory, but not always in practice

Typical Unix OS Structure

Typical Unix OS Structure

Application

Portable OS Layer

Libraries

Machine-dependent layer

•Low-level system initialization and
bootstrap

•Fault, trap, interrupt and exception
handling

•Memory management: hardware
address translation

•Low-level kernel/user-mode process
context switching

•I/O device driver and device
initialization code

C

Assembler

System Call Interface

•...have to

•Performance

Software “Onion”

Linux Kernel version 2.0

• 500,000 lines of C code and 8000 lines of assembler
• “Micro kernel” (process & memory management): 5%
• Device drivers: 90%
• Network, file systems, initialization, etc.: 5%

The Application: A process

• Four segments
– Code/text: instructions
– Data: variables
– Stack
– Heap

• Why?
– Separate code and data
– Stack and heap grow toward

each other

The Application

• Stack
– Layout by compiler
– Allocate at process creation (fork)
– Deallocate at process termination

• Heap
– Linker and loader specify the starting address
– Allocate/deallocate by library calls such as malloc() and free() called by

application
• Data

– Compiler allocate statically
– Compiler specify names and symbolic references
– Linker translate refs and relocate addresses
– Loader finally lay them out in memory

OS Service Examples

• Examples of services not provided at user level
– System calls

• File open, close, read and write
– Control the CPU so that users can’t take over by doing

• while (1) ;

– Protection:
• Keep user programs from crashing OS
• Keep user programs from crashing each other

• Examples of services running at user level
– Read time of the day
– Protected user level stuff

Processor Management

• Goals
– Overlap between I/O and

computation
– Time sharing
– Multiple CPU allocations

• Issues
– Do not waste CPU resources
– Synchronization and mutual

exclusion
– Fairness and deadlock free

CPU I/O CPU

CPU

I/O

CPU

CPU
I/O

CPU

CPU

CPU

Memory Management

• Goals
– Support programs to run
– Allocation and management
– Transfers from and to

secondary storage
• Issues

– Efficiency & convenience
– Fairness
– Protection

IA32 Architecture Registers

Memory

Address 0-255 byte word
byte

Instructions
Data

Intel
architecture is

“little
endian”: little

end in first

Power PC
(and Sun

SPARC) is
“biendian”,
but Apple is
using it as a
“big endian”

Java: big
endian (most
significant

byte)

IA32 Memory

Hexadecimal

• 16 decimal is base
• 0, 1, 2,…,9, A, B, C, D, E, F

• C4AFh=50351d
• C*163+ 4*162+A*161+ F*160

• 12*163+ 4*162+10*161+ 15*160 = 50351d
• 28-1=11111111b =255d =FFh
• 216-1=1111111111111111b =65535d =FFFFh
• 232-1=1111111111111111…1b =4294967295d =FFFFFFFFh

I/O Device Management

• Goals
– Interactions between devices

and applications
– Ability to plug in new devices

• Issues
– Efficiency
– Fairness
– Protection and sharing

User 1 User n. . .

Library support

I/O
device

I/O
device. . .

Driver Driver

Window Systems

• All in the kernel (Windows)
– Pro: efficient
– Con: difficult to develop new services

• All at user level
– Pro: easy to develop new services
– Con: protection

• Split between user and kernel (Unix)
– Kernel: display driver and mouse driver
– User: the rest

File System

• A typical file system
– Open a file with

authentication
– Read/write data in files
– Close a file

• Can the services be moved to
user level?

User 1 User n. . .

File system services

File File. . .

User level FS?

• Yes: Minix
• FS as a “server” at user level

• almost a user process...
• ...but booted together with OS
• …and never terminates
• …and gets higher CPU priority
• …and a new server means recompiling the kernel

• disk drivers at Kernel level

• NO: Unix and Windows NT
• File system at Kernel level

