Operating System Overview

Otto J. Anshus

A Typical Computer

CPU e CPU

I/O bus

ROM

Keyboard

= N

Network

A Typical Computer System

CPU Memory

Application(s)

Operating System

CPU

OS

Apps

\

Network

Data Keyboard

Moving data around in the machine

The processor has entry/exit points for moving data in and out of the
processor.

A ”’bus” is a set of wires upon which devices can connect and communicate
over.

The conceptually simplest way of connecting everything together would be
to extend the wires in/out of the processor, and have everything else hook
onto that

For our systems, that would be impractical and expensive

Buses

In/out of processor should be very fast
— You can make it wide (more parallell wires)

— You can increase the rate on each wire while still making sure that
corresponding bits on each line arrive at same time

— You can do other tricks

— For achieving this you will trade a combination of cost, distance, robustness,
power, etc.

— Not needed nor practical for your diskette, keyboard, mouse and many other
devices

We need a range of bus’es (or highways) from the super-wide, super-fast bus
between CPU, Memory and cache, to narrow but robust footpaths to ”legacy” devices

Chip-set

* Commercially standardized circuitry that surround” the
processor and provides a set of buses and some other
functionality

* Also has a programmable timer that you will set to interrupt the
processor regularly
* PC chip-sets traditionally have two exit/entry areas

— North-bridge (fast and furios)
« CPU, Memory, AGP-port (?), now also Gb Ethernet
— South-bridge
« Everything else, including “’legacy buses”
« Used to be limited by PCI-bus speed, now is much faster

. pentium’ &
@
N
—

' 800/533/400 MHz
or. VGA

875P
2GB/s Family’
(5 6.4GB/s DDR 400/333/266

-~

intel 266MB/s! [gyvicH
GbE '

Intel® PRO/1000 CT 266 MB/s 2 SATA 150 ports

‘ SERIAL

60MB/s intel 150MB/s Lm
82801EB —

. (ICH5/R) “150MB/fs Lm

= ; = —‘-

!

Full-Surround

Soundsupport 5 pbATA-100 Channels

Wrap-up: The Processor

Von Neumann architecture, stored program, instruction pointer,
sequential execution “one-at-a-time”

Control section

— Decodes intructions and controls the datapath
Datapath including ALU

— Register file, paths for moving data around internally and
out/in of processor, operational units (ALU)

Wrap-up: OS-HW agreement

* We agreed with processor architect that whenever processor
couldn’t proceed meaningfully, it should note the exception and
proceed fetching instructions from a predermined location in
memory. We, the OS-writers, will make sure appropriate code
resides at that location in memory

* To allow other HW to request the attention of the OS, the
processor architect provides the processor with an ”interupt
line.” The processor checks the line once every instruction-
cycle. Whenever the line is set, the processor faults and gets 1it’s
next instruction at a predetermined location, where we, the OS-
writers, will make sure ...

Interrupts

Traps

Interrupts and Traps

— Raised by external events

— CPU can resume from the
interrupt handler

- O

— iret instruction: returns by
popping return address from

h J

stack, and enable interrupts

r' 3

Interrupt
handler

(IA32 instruction set) i+1:

— Internal events N:

— System calls (syscalls)

— Also return by iret

User level vs. Kernel level

Kernel (a.k.a. supervisory or privileged) level
 All instructions are available

 Total control possible so OS must say “Mine, all mine” (Daffy Duck)
User level

« Some instructions are not available any more

« Programs can be modified and substituted by user

T~

In theory, but not always in practice

Typical Unix OS Structure

[Usar function calls

wrilian by programmers and
Application L compiled by programmers. |
Libraries
Portable O35 Layer
Application
Libraries
Portable 05 Layer - | “Guts” of system ealls

/"« Writlen by elves

= Objects pre-compled
» Defined in headers
. * Ingut to bnker
Application "= Inwoked like funchons
A =May be ‘resolved”
L s ==, when program s loaded J
Portable O3 Layer
.. 7+ Boot lnader
Application | + System initialization
* Interrupt and
: ; excaption
Libraries « /0 device driver

———————————————— * Memaory management
* Mode switching

Portable OS Layer e * Frocessor
e "._ manageamaent

Typical Unix OS Structure

Application

»...have to

Assembler |&— |«Performance

Libraries

Portable OS L
ortable k ayeAr//

Machine-deS@ndent layer

\

System Call Interface

b

*Low-level system initialization and
bootstrap

*Fault, trap, interrupt and exception
handling

*Memory management: hardware
address translation

*Low-level kernel/user-mode process
context switching

[/O device driver and device
nitialization code

Software “Onion”

User and Kernel
boundary

Linux Kernel version 2.0

500,000 lines of C code and 8000 lines of assembler

* “Micro kernel” (process & memory management): 5%
« Device drivers: 90%
* Network, file systems, initialization, etc.: 5%

Four segments
— Code/text:

— Data: variables

— Stack
— Heap
Why?

— Separate code and data

— Stack and heap grow toward

each other

The Application: A process

instructions

o

Heap

Initialized data

Code

2" -1

The Application

« Stack
— Layout by compiler
— Allocate at process creation (fork)
— Deallocate at process termination
 Heap
— Linker and loader specify the starting address

— Allocate/deallocate by library calls such as malloc() and free() called by
application

 Data
— Compiler allocate statically
— Compiler specify names and symbolic references
— Linker translate refs and relocate addresses
— Loader finally lay them out in memory

OS Service Examples

« Examples of services not provided at user level
— System calls
 File open, close, read and write
— Control the CPU so that users can’t take over by doing
- while (1) ;
— Protection:
» Keep user programs from crashing OS
» Keep user programs from crashing each other
« Examples of services running at user level
— Read time of the day
— Protected user level stuff

Processor Management

Goals

— QOverlap between 1/0 and
computation

— Time sharing

— Multiple CPU allocations
Issues

— Do not waste CPU resources

— Synchronization and mutual
exclusion

— Fairness and deadlock free

CPU

I/O

CPU

CPU

CPU

CPU

I/O

I/O

CPU

CPU

CPU

Memory Management

Goals
— Support programs to run g
— Allocation and management ‘ e ‘
— Transfers from and to ‘ L2 cache: ~10x ‘

secondary storage

L3 cache: ~50x ‘

Issues

DRAM: ~200-500x

— Efficiency & convenience

Disks: ~30M x

— Fairness

— Protection Disks: >1000M x

IA32 Architecture Registers

31 15 87 o 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH CL CX ECX
DH DL DX EDX
BP EBP
Sl ESI
DI EDI
SP ESP

General-purpose registers

15 0

CS

DS

SS

ES

FS

GS

Segment registers

.

EFLAGS register

EIP (Instruction Pointer register)

Intel
architecture 1s
“little

Memory

Address

endian”’; little
end 1n first

Power PC
(and Sun
SPARC) 1s
“biendian”,
but Apple is
using it as a
“big endian”

Java: big
endian (most
significant
byte)

> 0-255 bvte
y word
byte
/_>
Instructions — |
Data —
Data Struclure
Address 4 24 23 1615 8 7 0 ~=t— it offset
-4
24
20
6
12
R
4
3 - . ywast
Byle3 | Bute?2 Byle 1 Byte 0 | © hrl;-;::sz
Byta Ofiset

Figure 1-1. Bit and Byte Order

2321

IA32 Memory

31 24 23 16 15

87

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte O

Byte order is little endian

Hexadecimal

16 decimal is base

« 0,1,2,...9,A,B,C,D,E, F
C4AFh=50351d

e C*16°+4*16°+A*16"F*16Y

o 12*163+ 4*16°+10*16'" 15*16°=50351d
28-1=11111111b =255d =FFh
216.1=1111111111111111b =65535d =FFFFh
232-1=1111111111111111...1b =4294967295d =FFFFFFFFh

I/O Device Management

Goals User 1 Usern
— Interactions between devices
and applications
— Ability to plug in new devices Library support
Issues
_ Efficiency Driver Driver
— Fairness 1/0 I/0
— Protection and sharing device device

Window Systems

* All in the kernel (Windows)
— Pro: efficient
— Con: difficult to develop new services
« All at user level
— Pro: easy to develop new services
— Con: protection
» Split between user and kernel (Unix)
— Kernel: display driver and mouse driver
— User: the rest

File System

A typical file system

— Open a file with
authentication

— Read/write data in files

— Close a file

Can the services be moved to
user level?

User 1

Usern

File system services

File

File

User level FS?

* Yes: Minix
« FS as a “server” at user level
 almost a user process...

* ...but booted together with OS

e ...and never terminates
e ...and gets higher CPU priority

e ...and a new server means recompiling the kernel
« disk drivers at Kernel level

e NO: Unix and Windows NT

 File system at Kernel level

