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Preemptive Scheduling

• Scheduler select a READY process and sets it up to run for a 
maximum of some fixed time (time-slice)

• Scheduled process computes happily, oblivious to the fact that a 
maximum time-slice was set by the scheduler

• Whenever a running process exhausts its time-slice, the
scheduler needs to suspend the process and select another
process to run (assuming one exists)

• To do this, the scheduler needs to be running! To make sure 
that no process computes beyond its time-slice, the scheduler
needs a mechanism that guarantees that the scheduler itself is 
not suspended beyond the duration of one time-slice. A “wake-
up” call is needed



Interrupts and Exceptions

• Interrupts and exceptions suspend the execution of
the running thread of control, and activates some
kernel routine

• Three categories of interrupts:
– Software interrupts
– Hardware interrupts
– Exceptions

Software Interrupts

• INT instruction
• Explicitly issued by program
• Synchronous to program execution
• Example: INT 10h



Hardware Interrupts

• Set by hardware components (for example timer), 
and peripheral devices (for example disk)
– Timer component, set to generate timer-interrupt at 

any specified frequency! Separate unit or integral part 
of interrupt controller

• Asynchronous to program execution
• Non-maskable (NMI), and maskable interrupts.

– NMI are processed immediately once current
instruction is finished.

– Maskable interrupts may be permanently or temporarily
masked

Maskable Interrupt Request

• Some IO devices generate an interrupt request to 
signal that:
– An action is required on the part of the program in order to continue

operation
– A previously-initiated operation has been completed with no errors

encountered
– A previously-initiated operation has encountered an error condition

and cannot continue



Non-maskable Inerrupt Requests

• In the PC-compatible world, the processor’s non-
maskable interrupt request input (NMI) is used to 
report catastrophic HW failures to the OS

Exceptions

• Initiated by processor
• Three types:

– Fault: Faulting instruction causes exception without
completing. When thread resumes (after IRET), the faulting
instruction is re-issued. For example page-fault

– Trap: Exception is issued after instruction completes. When
thread resumes (after IRET), the immediately following
instruction is issued. May be used for debugging

– Abort: Serious failure. May not indicate address of offending
instruction

• Have used Intel terminology in this presentation. Classification, 
terminology, and functionality varies among manufacturers and 
authors



I/O and Timer Interrupts

• Overlapping computation and I/O:
– Within single thread: Non-blocking 

I/O
– Among multiple threads: Also 

blocking I/O with scheduling
• Sharing CPU among multiple threads

– Set timer interrupt to enforce 
maximum time-slice

– Ensures even and fair progression 
of concurrent threads

• Maintaining consistent kernel 
structures
– Disable/enable interrupts 

cautiously in kernel

CPU

Memory Interrupt

When to Schedule?

• Process created
• Process exits
• Process blocks
• I/O interrupt
• Timer



Process State Transitions
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KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping
(“true paralellism”)
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Transparent vs. Non-transparent 
Interleaving and Overlapping

• Non-preemptive scheduling (“Yield”)
– Current process or thread has control, no other 

process or thread will execute before current says 
Yield

• Access to shared resources simplified 
• Preemptive scheduling (timer and I/O interrupts)

– Current process or thread will loose control at any time 
without even discovering this, and another will start 
executing

• Access to shared resources must be synchronized 

Implementation of Synchronization 
Mechanisms

Concurrent 
Applications

Locks Semaphores   Monitors

Load/Store    Interrupt disable   Test&Set

High-Level
Atomic API

Low-Level
Atomic Ops

Interrupt (timer or I/O completion), Scheduling, Multiprocessor

Send/Receive
Shared Variables Message Passing



Hardware Support for Mutex

• Atomic memory load and store
– Assumed by Dijkstra (CACM 1965): Shared memory

w/atomic R and W operations
– L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM 

Trans. on Computer Systems, 5(1):1-11, Feb 1987.
• Disable Interrupts
• Atomic read-modify-write

– IBM/360: Test And Set proposed by Dirac (1963)
– IBM/370: Generalized Compare And Swap (1970)

A Fast Mutual Exclusion Algorithm
(Fischer)

Repeat 
await <x=0>;
<x := i>;
<delay>;

until <x = i>;
use shared resource

<x := 0>;

Entry:

Exit

Critical 
Region

”While x ≠ 0 do skip;”

Or could block? How?

Executed by process no. i.

X is shared memory.

<op> is an Atomic Operation.

We are assuming that COMMON CASE will be fast and that all processes will get through eventually



Disable Interrupts

• CPU scheduling
– Internal events

• Threads do something to relinquish the CPU
– External events

• Interrupts cause rescheduling of the CPU
• Disabling interrupts

– Delay handling of external events
• and make sure we have a safe ENTRY or EXIT

Does This Work?

• Kernel cannot let users disable interrupts
• Kernel can provide two system calls, Acquire and 

Release, but need ID of critical region
• Remember: Critical sections can be arbitrary long (no 

preemption!)
• Used on uni-processors, but won’t work on 

multiprocessors

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

User Level



Disabling Interrupts with Busy Wait

• We are at Kernel Level!: So why do we need to 
disable interrupts at all?

• Why do we need to enable interrupts inside the loop 
in Acquire?

• Would this work for multiprocessors?
• Why not have a “disabled” Kernel?

Acquire(lock) {
disable interrupts;
while (lock != FREE){
enable interrupts;
disable interrupts;
}

lock = BUSY;
enable interrupts;

}

Release(lock) {
disable interrupts;
lock = FREE;
enable interrupts;

}

Using Disabling Interrupts with Blocking

• When must Acquire re-enable interrupts in going to 
sleep?
– Before insert()?
– After insert(), but before block? 

• Would this work on multiprocessors?

Acquire(lock) {
disable interrupts;
while (lock == BUSY) {
insert(caller, lock_queue);
BLOCK;

} else 
lock = BUSY;

enable interrupts;
}

Release(lock) {
disable interrupts;
if (nonempty(lock_queue)) {
out(tid, lock_queue);
READY(tid);

} 
lock = FREE;
enable interrupts;

}



Atomic Read-Modify-Write Instructions
• What we want: Test&Set(lock):

– Returns TRUE if lock is TRUE (closed), else returns FALSE and 
closes lock.

• Exchange (xchg, x86 architecture)
– Swap register and memory

• Compare and Exchange (cmpxchg, 486 or Pentium)
– cmpxchg d,s: If Dest = (al,ax,eax), Dest = SRC;

else  (al,ax,eax) = Dest

• LOCK prefix in x86
• Load link and conditional store (MIPS, Alpha)

– Read value in one instruction, do some operations
– When store, check if value has been modified.  If not, ok; otherwise, 

jump back to start
• The Butterfly multiprocessor

– atomicadd: one processor can read and increment a memory 
location while preventing other processors from accessing the 
location simultaneously

A Simple Solution with Test&Set

• Waste CPU time (busy waiting by all threads)
• Low priority threads may never get a chance to run 

(starvation possible because other threads always 
grabs the lock, but can be lucky…): No Bounded 
Waiting ( a MUTEX  criteria)

• No fairness, no order, random who gets access

Acquire(lock) {
while (TAS(lock))
;

}

Release(lock) {
lock = FALSE;

}

{TAS := lock; 
lock := TRUE;}

INITIALLY: Lock := FALSE;  /* OPEN */

Spin until 
lock = open

TAS (lock):



Test&Set with Minimal Busy Waiting

• Two levels: Get inside a mutex, then check resource 
availability (and block (remember to open mutex!) or 
not).

• Still busy wait, but only for a short time
• Works with multiprocessors

Acquire(lock) {
while (TAS(lock.guard))
;

if (lock.value) {
enqueue the thread;
block and lock.guard:=OPEN;
%Starts here after a Release()

}
lock.value:=CLOSED;
lock.guard:=OPEN;

}

Release(lock) {
while (TAS(lock.guard))
;

if (anyone in queue) {
dequeue a thread;
make it ready;

} else lock.value:=OPEN;
lock.guard:=OPEN;

}

CLOSED = TRUE
OPEN = FALSE

A Solution without Busy Waiting?

• BUT: No mutual exclusion on the thread queue for 
each lock: queue is shared resource

• Need to solve another mutual exclusion problem
• Is there anything wrong with using this at the user 

level?
• Performance
• “Block”??

Acquire(lock) {
while (TAS(lock)) {
enqueue the thread;
block;

}
}

Release(lock) {
if (anyone in queue) {
dequeue a thread;
make it ready;

} else 
lock:=OPEN;

}



Different Ways of Spinning

• Perform TAS only when 
lock.guard is likely to 
be cleared
– TAS is expensive

while (TAS(lock.guard))
;

while (TAS(lock.guard)) {
while (lock.guard)
;

}

• Always execute TAS

Using System Call Block/Unblock

• Block/Unblock are implemented as system calls
• How would you implement them?

– Minimal waiting solution

Acquire(lock) {
while (TAS(lock))
Block( lock );

}

Release(lock) {
lock = 0;
Unblock( lock );

}



Block and Unblock

Block (lock) {
insert (current, lock_queue, last);
goto scheduler (;

}

Unblock (lock) {
insert (out (lock_queue, first), Ready_Queue, last);
goto scheduler;

}

Ready_Queue

lock_queue

Current


