
Preemptive Scheduling and
Mutual Exclusion with Hardware Support

Thomas Plagemann

With slides from
Otto J. Anshus & Tore Larsen (University of
Tromsø) and Kai Li (Princeton University)

Preemptive Scheduling

• Scheduler select a READY process and sets it up to run for a
maximum of some fixed time (time-slice)

• Scheduled process computes happily, oblivious to the fact that a
maximum time-slice was set by the scheduler

• Whenever a running process exhausts its time-slice, the
scheduler needs to suspend the process and select another
process to run (assuming one exists)

• To do this, the scheduler needs to be running! To make sure
that no process computes beyond its time-slice, the scheduler
needs a mechanism that guarantees that the scheduler itself is
not suspended beyond the duration of one time-slice. A “wake-
up” call is needed

Interrupts and Exceptions

• Interrupts and exceptions suspend the execution of
the running thread of control, and activates some
kernel routine

• Three categories of interrupts:
– Software interrupts
– Hardware interrupts
– Exceptions

Software Interrupts

• INT instruction
• Explicitly issued by program
• Synchronous to program execution
• Example: INT 10h

Hardware Interrupts

• Set by hardware components (for example timer),
and peripheral devices (for example disk)
– Timer component, set to generate timer-interrupt at

any specified frequency! Separate unit or integral part
of interrupt controller

• Asynchronous to program execution
• Non-maskable (NMI), and maskable interrupts.

– NMI are processed immediately once current
instruction is finished.

– Maskable interrupts may be permanently or temporarily
masked

Maskable Interrupt Request

• Some IO devices generate an interrupt request to
signal that:
– An action is required on the part of the program in order to continue

operation
– A previously-initiated operation has been completed with no errors

encountered
– A previously-initiated operation has encountered an error condition

and cannot continue

Non-maskable Inerrupt Requests

• In the PC-compatible world, the processor’s non-
maskable interrupt request input (NMI) is used to
report catastrophic HW failures to the OS

Exceptions

• Initiated by processor
• Three types:

– Fault: Faulting instruction causes exception without
completing. When thread resumes (after IRET), the faulting
instruction is re-issued. For example page-fault

– Trap: Exception is issued after instruction completes. When
thread resumes (after IRET), the immediately following
instruction is issued. May be used for debugging

– Abort: Serious failure. May not indicate address of offending
instruction

• Have used Intel terminology in this presentation. Classification,
terminology, and functionality varies among manufacturers and
authors

I/O and Timer Interrupts

• Overlapping computation and I/O:
– Within single thread: Non-blocking

I/O
– Among multiple threads: Also

blocking I/O with scheduling
• Sharing CPU among multiple threads

– Set timer interrupt to enforce
maximum time-slice

– Ensures even and fair progression
of concurrent threads

• Maintaining consistent kernel
structures
– Disable/enable interrupts

cautiously in kernel

CPU

Memory Interrupt

When to Schedule?

• Process created
• Process exits
• Process blocks
• I/O interrupt
• Timer

Process State Transitions

Running

Blocked
Ready

I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Timer Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Process State Transitions (cont.)

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping
(“true paralellism”)

PC

PCB’s

Memory resident part

(Process Table)

Running

BlockedReady

I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Timer Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Syscall

Transparent vs. Non-transparent
Interleaving and Overlapping

• Non-preemptive scheduling (“Yield”)
– Current process or thread has control, no other

process or thread will execute before current says
Yield

• Access to shared resources simplified
• Preemptive scheduling (timer and I/O interrupts)

– Current process or thread will loose control at any time
without even discovering this, and another will start
executing

• Access to shared resources must be synchronized

Implementation of Synchronization
Mechanisms

Concurrent
Applications

Locks Semaphores Monitors

Load/Store Interrupt disable Test&Set

High-Level
Atomic API

Low-Level
Atomic Ops

Interrupt (timer or I/O completion), Scheduling, Multiprocessor

Send/Receive
Shared Variables Message Passing

Hardware Support for Mutex

• Atomic memory load and store
– Assumed by Dijkstra (CACM 1965): Shared memory

w/atomic R and W operations
– L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM

Trans. on Computer Systems, 5(1):1-11, Feb 1987.
• Disable Interrupts
• Atomic read-modify-write

– IBM/360: Test And Set proposed by Dirac (1963)
– IBM/370: Generalized Compare And Swap (1970)

A Fast Mutual Exclusion Algorithm
(Fischer)

Repeat
await <x=0>;
<x := i>;
<delay>;

until <x = i>;
use shared resource

<x := 0>;

Entry:

Exit

Critical
Region

”While x ≠ 0 do skip;”

Or could block? How?

Executed by process no. i.

X is shared memory.

<op> is an Atomic Operation.

We are assuming that COMMON CASE will be fast and that all processes will get through eventually

Disable Interrupts

• CPU scheduling
– Internal events

• Threads do something to relinquish the CPU
– External events

• Interrupts cause rescheduling of the CPU
• Disabling interrupts

– Delay handling of external events
• and make sure we have a safe ENTRY or EXIT

Does This Work?

• Kernel cannot let users disable interrupts
• Kernel can provide two system calls, Acquire and

Release, but need ID of critical region
• Remember: Critical sections can be arbitrary long (no

preemption!)
• Used on uni-processors, but won’t work on

multiprocessors

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

User Level

Disabling Interrupts with Busy Wait

• We are at Kernel Level!: So why do we need to
disable interrupts at all?

• Why do we need to enable interrupts inside the loop
in Acquire?

• Would this work for multiprocessors?
• Why not have a “disabled” Kernel?

Acquire(lock) {
disable interrupts;
while (lock != FREE){
enable interrupts;
disable interrupts;
}

lock = BUSY;
enable interrupts;

}

Release(lock) {
disable interrupts;
lock = FREE;
enable interrupts;

}

Using Disabling Interrupts with Blocking

• When must Acquire re-enable interrupts in going to
sleep?
– Before insert()?
– After insert(), but before block?

• Would this work on multiprocessors?

Acquire(lock) {
disable interrupts;
while (lock == BUSY) {
insert(caller, lock_queue);
BLOCK;

} else
lock = BUSY;

enable interrupts;
}

Release(lock) {
disable interrupts;
if (nonempty(lock_queue)) {
out(tid, lock_queue);
READY(tid);

}
lock = FREE;
enable interrupts;

}

Atomic Read-Modify-Write Instructions
• What we want: Test&Set(lock):

– Returns TRUE if lock is TRUE (closed), else returns FALSE and
closes lock.

• Exchange (xchg, x86 architecture)
– Swap register and memory

• Compare and Exchange (cmpxchg, 486 or Pentium)
– cmpxchg d,s: If Dest = (al,ax,eax), Dest = SRC;

else (al,ax,eax) = Dest

• LOCK prefix in x86
• Load link and conditional store (MIPS, Alpha)

– Read value in one instruction, do some operations
– When store, check if value has been modified. If not, ok; otherwise,

jump back to start
• The Butterfly multiprocessor

– atomicadd: one processor can read and increment a memory
location while preventing other processors from accessing the
location simultaneously

A Simple Solution with Test&Set

• Waste CPU time (busy waiting by all threads)
• Low priority threads may never get a chance to run

(starvation possible because other threads always
grabs the lock, but can be lucky…): No Bounded
Waiting (a MUTEX criteria)

• No fairness, no order, random who gets access

Acquire(lock) {
while (TAS(lock))
;

}

Release(lock) {
lock = FALSE;

}

{TAS := lock;
lock := TRUE;}

INITIALLY: Lock := FALSE; /* OPEN */

Spin until
lock = open

TAS (lock):

Test&Set with Minimal Busy Waiting

• Two levels: Get inside a mutex, then check resource
availability (and block (remember to open mutex!) or
not).

• Still busy wait, but only for a short time
• Works with multiprocessors

Acquire(lock) {
while (TAS(lock.guard))
;

if (lock.value) {
enqueue the thread;
block and lock.guard:=OPEN;
%Starts here after a Release()

}
lock.value:=CLOSED;
lock.guard:=OPEN;

}

Release(lock) {
while (TAS(lock.guard))
;

if (anyone in queue) {
dequeue a thread;
make it ready;

} else lock.value:=OPEN;
lock.guard:=OPEN;

}

CLOSED = TRUE
OPEN = FALSE

A Solution without Busy Waiting?

• BUT: No mutual exclusion on the thread queue for
each lock: queue is shared resource

• Need to solve another mutual exclusion problem
• Is there anything wrong with using this at the user

level?
• Performance
• “Block”??

Acquire(lock) {
while (TAS(lock)) {
enqueue the thread;
block;

}
}

Release(lock) {
if (anyone in queue) {
dequeue a thread;
make it ready;

} else
lock:=OPEN;

}

Different Ways of Spinning

• Perform TAS only when
lock.guard is likely to
be cleared
– TAS is expensive

while (TAS(lock.guard))
;

while (TAS(lock.guard)) {
while (lock.guard)
;

}

• Always execute TAS

Using System Call Block/Unblock

• Block/Unblock are implemented as system calls
• How would you implement them?

– Minimal waiting solution

Acquire(lock) {
while (TAS(lock))
Block(lock);

}

Release(lock) {
lock = 0;
Unblock(lock);

}

Block and Unblock

Block (lock) {
insert (current, lock_queue, last);
goto scheduler (;

}

Unblock (lock) {
insert (out (lock_queue, first), Ready_Queue, last);
goto scheduler;

}

Ready_Queue

lock_queue

Current

