Protection and System Calls

Otto J. Anshus

Recall the Protection Issues

* /O protection
— Prevent users from performing illegal 1/0’s

» Memory protection
— Prevent users from modifying kernel code and data structures
— ...and each others code and data

» CPU protection

— Prevent a user from using the CPU for too long

« Throughput of jobs, and response time to events (incl. user
interactive response time)

Architecture Support: Privileged Mode

Interrupts and Exceptions

* Interrupt sources
— HW (from external devices)
- SW:intn
 Exceptions
— Program errors: faults, traps, aborts
— SW generated: int 3
— Machine-check exceptions
* See Intel doc Vol. 3 for details

Interrupts and Exceptions

Q
TIFF (Uncor
are noed

Interrupts and Exceptions

Privileged Instruction Examples

» Memory address mapping

* Cache flush or invalidation

* Invalidating TLB entries

 Loading and reading system registers

» Changing processor mode from kernel to user

» Changing the voltage and frequency of the processor
 Halting a processor

* 1/O operations

Table 2-2. of System

Usetful to Protected from

Instruction Dascription Applieation? Applieation?
Lot Load LOT Rogister No Yeos
8LDT Store LDT Raglater No No
LGoT Load GODT Register No Yo
SG0OT ‘Stors GDT Register No Mo
LTR Load Task Registar L] o5
8TR Store Task Regster Ko No
LIoT Load IDT Aegister L Yes
SIDT Store 10T Register Mo Mo

MOV CRA Load and stors control registers Yos Yos {load only)
SMEW Store MEW s L
LMSW Load MSW Ko Yea
CLTS Cloar TS flag in CRO Mo Yos
ARPL Adpst RPL Yos' No
LAR Load Access Rights Yea Mo
LsL Load Ssgment Limit Yea Mo

Tabile 2-2. of System {Contd.)
Useful to Protected from
Instruction Description Application? Application?
VERR Vertly for Reading Yes N
VERW Vit for Writing You [
MOV D8 Load and store debug registars No Yos
VD Irvalddate cache, no writeback. L Yes
WEINVD Invaldate cache, with writeback L) Yes
INVLPG Invalidate TLE entry No Yo
HLT Halt Processor Mo Yos
LOCK {Prefix) Bus Lock Yes L
=T Featurm from system management made Mo Yes
RADMSRT Read Moded-Spacific Reglstars Na Yos
WHMSH? Wiite Modal-Spectic Ragisiars No Yeos
ADPMC* Read Parfomance-MonBoring Counter Yes Yeat
AOTSCY Read Time-Siamg Courter Was Yo'

IA32 Protection Rings

QuickTime™ and a
TIFF (Uncompressed) decompressor
‘e needed o See ths LS.

2M6=0-FFFFh
8-bit ports
2*8=16 bit port

1/0

* 1/O ports: 4+16=32 bit port
« created in system HW for com. w/peripheral devices
» Examples

— connects to a serial device
— connects to control registers of a disk controller

« |/O address space

* /O instructions
— in, out: between ports and registers
— ins, outs: between ports and memory locations
* 1/0 protection mechanism
— 1/O Privilege Level (IOPL): I/O instr. only from Ring Level 0 or
1 (typical)
— 1/0 permission bit map: Gives selective control of individual
ports

Will look at this and
memory mapped 1/0|
later

System Calls

 Operating System API

— Interface between a process and OS kernel
« Categories

— Process management

— Memory management

— File management

— Device management

— Communication

System Calls
* Process management
 end, abort , load, execute, create, terminate, set, wait

« Memory management
* mmap & munmap, mprotect, mremap, msync, swapon &
off,

* File management
« create, delete, open, close, R, W, seek
« Device management
« res, rel, R, W, seek, get & set atrib., mount, unmount

« Communication
« get ID’s, open, close, send, receive

System Call Mechanism

« User code can be arbitrary
User User
* User code cannot modify kernel | program program
memory %, -
» Makes a system call with NG
parameters
« The call mechanism switches \eitry)
code to kernel mode Kernel in
* Execute system call protected memory

Return with results
ButHOW ina
secure way?

System Call Implementation

* Use an “interrupt”

« Hardware devices (keyboard, serial port, timer, disk;,...)
and software can request service using interrupts

« The CPU is interrupted

« ...and a service handler routine is run

« ...when finished the CPU resumes from where it was
interrupted (or somewhere else determined by the OS
kernel)

OS Kernel: Trap Handler

[——
Interrupt
service

HW Device Sys_call_table L routines
Interrupt

System Call System
service — System
HW exceptions dispatcher services
SW exceptions
Exception

N dispatcher N
Virtual address Exception
exceptions handlers

VM manager’s
/ pager

HW implementation of the boundary

Passing Parameters

« Pass by registers Kernel has access to callers
. P address space, but not vice
— Simple, but limited versa

* #registers
« #usable registers
* #parameters in syscall
« Pass by memory vector Top

— A register holds the address of
a location in users memory frame

* Pass by stack
— Push: done by library
— Pop: done by Kernel

frame

The Stack

o — -Mapy stacks possible, byt only
[one— one is “current”: the one in the
™ finhind EBP Valuo) segment referenced by the SS
register

T *Max size 4 gigabytes
i Galing Tho Biadk Gan Bo . - wri .
Procwdhum Tho Stk Gan Do PUSH: write (--ESP);

T *POP: read(ESP++);

Parnetrs. *When setting up a stack
Pamedte ;"‘ Wx:;: remember to align the stack
Procaars .,‘.,_"m pointer on 16 bit word or 32 bit

f— | peindor. double-word boundaries
Fistun kuction EBP Fci#
Top ol Rack
Pushas Mova tha Fope Mo tha
Top Of Biack bo Top Oi Bimsklo
Luvwes Ackronsen Highwe Addresses

Flgure 2-1. Btaok Swuoturs:

Library Stubs for System Calls

« User process: read(fd, buf, size)
int read(int fd, char * buf, int size) User
c User memory
stack

move READ to R, ’m‘
32-255 available Move fd, buf, size to Ry, R,, Ry
Registers

rom R

result

fo user |—int $0x80
Kernel

load result code
Returns here| memory
when work

is done Could be an error
code Win NT: 2E
Linux: 80

_
System Call Entry Point

« Assume passing parameters in
registers User
. User memory
OS Kernel EntryPoint: Kernel stack
sw switch to kernel stack; Mode: .
interrupt . " ot Registers
nterrup save all registers; cg;fml

if legal(R,) call All -
sys_call_table[Ry]; interrupts | Registers |

are

restore user registers; | disabled Kernel

switch to user stack; stack Kernel
i memo
iret; ry

_
System Call Entry Point

« Assume passing parameters in
®isters Vet User
P, memon
EntryPoint: Kermel stack Yy
sw switch to kernel stack; || Mode: -
interrupt Total Registers

save user context; control. e
if legal(R,) call service; JAll

interrupts Registers
restore user context; are i 9
switch to user stack; i

Kernel

stack Kernel

_
System Call Entry Point

« Assume passing parameters
%n registers
EntryPoint:

Save/Restore Context?

sw switch to kernel stack;

interrupt .
save all registers; —
if legal(R,) call If this code takes a long time: should
sys_call_table[R,]; *? ENABLE interrupts

restore user registers;

iret;

N

memory

mode and return

Has put results into buf

Or: User stack

switch to user stack;
iret;

READ returns with result and
handler must return them to user

Or SCHEDULE to run another

Change to user ‘

Polling instead of Interrupt?

» OS kernel could check a request queue instead of using
an interrupt?
« Waste CPU cycles checking
« All have to wait while the checks are being done
« When to check?
— Non-predictable
— Pulse every 10-100ms?

» too long time
» Same valid for HW Interrupts vs. Polling

» However, spinning can give good performance (more
later)

Design Issues for Syscall

» We used only one result reg, what if more results?
In kernel and in called service: Use caller’s stack or a
special stack?
— Use a special stack
Quality assurance
— Use a single entry or multiple entries?

« Simple is good?

— Then asingle entry is simpler, easier to make robust

Can kernel code call system calls?
— Yes, but should avoid the entry point mechanism

System calls vs. Library calls User process vs. kernel

Division of labor (a.k.a. Separation of Concerns)

* User process -> kernel
Memory management example — syscalls
— Kernel
« Allocates “pages” (w/HW protection) ° Kernel -> user pfOCGSS
. A!Iocates many “pages” to I|br_ary — Kernel is all powerful
« Big chunks, no “small” allocations o
_ Library » Can write into user memory
« Provides malloc/free for allocation and deallocation of memory + Can terminate, block and activate user processes
« Application use malloc/free to manage its own memory at fine
granularity

« When no more memory, library asks kernel for a new chunk of pages

