
1

Protection and System Calls

Otto J. Anshus

Recall the Protection Issues

• I/O protection
– Prevent users from performing illegal I/O’s

• Memory protection
– Prevent users from modifying kernel code and data structures
– …and each others code and data

• CPU protection
– Prevent a user from using the CPU for too long

• Throughput of jobs, and response time to events (incl. user
interactive response time)

Architecture Support: Privileged Mode

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Interrupts and Exceptions

• Interrupt sources
– HW (from external devices)
– SW: int n

• Exceptions
– Program errors: faults, traps, aborts
– SW generated: int 3
– Machine-check exceptions

• See Intel doc Vol. 3 for details

Interrupts and Exceptions

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Interrupts and Exceptions

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

2

Privileged Instruction Examples

• Memory address mapping
• Cache flush or invalidation
• Invalidating TLB entries
• Loading and reading system registers
• Changing processor mode from kernel to user
• Changing the voltage and frequency of the processor
• Halting a processor
• I/O operations

IA32 Protection Rings

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

I/O
• I/O ports:

• created in system HW for com. w/peripheral devices
• Examples

– connects to a serial device
– connects to control registers of a disk controller

• I/O address space
• I/O instructions

– in, out: between ports and registers
– ins, outs: between ports and memory locations

• I/O protection mechanism
– I/O Privilege Level (IOPL): I/O instr. only from Ring Level 0 or

1 (typical)
– I/O permission bit map: Gives selective control of individual

ports

Will look at this and
memory mapped I/O
later

2^16=0-FFFFh
8-bit ports
2*8=16 bit port
4*16=32 bit port System Calls

• Operating System API
– Interface between a process and OS kernel

• Categories
– Process management
– Memory management
– File management
– Device management
– Communication

3

System Calls
• Process management

• end, abort , load, execute, create, terminate, set, wait

• Memory management
• mmap & munmap, mprotect, mremap, msync, swapon &

off,

• File management
• create, delete, open, close, R, W, seek

• Device management
• res, rel, R, W, seek, get & set atrib., mount, unmount

• Communication
• get ID’s, open, close, send, receive

System Call Mechanism
• User code can be arbitrary
• User code cannot modify kernel

memory
• Makes a system call with

parameters
• The call mechanism switches

code to kernel mode
• Execute system call
• Return with results

Kernel in
protected memory

entry

User
program

User
program

call

return

But HOW in a
secure way?

System Call Implementation

• Use an “interrupt”
• Hardware devices (keyboard, serial port, timer, disk,…)

and software can request service using interrupts
• The CPU is interrupted
• ...and a service handler routine is run
• …when finished the CPU resumes from where it was

interrupted (or somewhere else determined by the OS
kernel)

OS Kernel: Trap Handler

HW Device
Interrupt

HW exceptions

SW exceptions

System Call

Virtual address
exceptions

HW implementation of the boundary

System
service
dispatcher System

services

Interrupt
service
routines

Exception
dispatcher

Exception
handlers

VM manager’s
pager

Sys_call_table

Passing Parameters

• Pass by registers
– Simple, but limited

• #registers
• #usable registers
• #parameters in syscall

• Pass by memory vector
– A register holds the address of

a location in users memory
• Pass by stack

– Push: done by library
– Pop: done by Kernel

frame

frame

Top

Kernel has access to callers
address space, but not vice
versa

The Stack
•Many stacks possible, but only
one is “current”: the one in the
segment referenced by the SS
register

•Max size 4 gigabytes

•PUSH: write (--ESP);

•POP: read(ESP++);

•When setting up a stack
remember to align the stack
pointer on 16 bit word or 32 bit
double-word boundaries

4

Library Stubs for System Calls
• User process: read(fd, buf, size)

int read(int fd, char * buf, int size)
{

move READ to R0

move fd, buf, size to R1, R2, R3

int $0x80
load result code from Rresult

}

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memoryReturns here

when work
is done Could be an error

code

32-255 available
to user

Win NT: 2E

Linux: 80

System Call Entry Point

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

• Assume passing parameters in
registers
OS Kernel EntryPoint:

switch to kernel stack;
save all registers;
if legal(R0) call
sys_call_table[R0];
restore user registers;
switch to user stack;
iret;

int 0x80

SW
interrupt

Kernel
Mode:
Total
control.
All
interrupts
are
disabled

System Call Entry Point

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

• Assume passing parameters in
registers
EntryPoint:

switch to kernel stack;
save user context;
if legal(R0) call service;
restore user context;
switch to user stack;
iret;

int 0x80

SW
interrupt

Has put results into buf Or: User stack

Or: some register

Change to user
mode and return

Kernel
Mode:
Total
control.
All
interrupts
are
disabled

System Call Entry Point
• Assume passing parameters

in registers
EntryPoint:

switch to kernel stack;
save all registers;
if legal(R0) call
sys_call_table[R0];
restore user registers;
switch to user stack;
iret;

int 0x80

SW
interrupt

Save/Restore Context?

If this code takes a long time: should
ENABLE interrupts

READ returns with result and
handler must return them to user

Or SCHEDULE to run another

Polling instead of Interrupt?

• OS kernel could check a request queue instead of using
an interrupt?

• Waste CPU cycles checking
• All have to wait while the checks are being done
• When to check?

– Non-predictable
– Pulse every 10-100ms?

» too long time

• Same valid for HW Interrupts vs. Polling
• However, spinning can give good performance (more

later)

But used for Servers

Design Issues for Syscall
• We used only one result reg, what if more results?
• In kernel and in called service: Use caller’s stack or a

special stack?
– Use a special stack

• Quality assurance
– Use a single entry or multiple entries?

• Simple is good?
– Then a single entry is simpler, easier to make robust

• Can kernel code call system calls?
– Yes, but should avoid the entry point mechanism

5

System calls vs. Library calls

• Division of labor (a.k.a. Separation of Concerns)
• Memory management example

– Kernel
• Allocates “pages” (w/HW protection)
• Allocates many “pages” to library
• Big chunks, no “small” allocations

– Library
• Provides malloc/free for allocation and deallocation of memory
• Application use malloc/free to manage its own memory at fine

granularity
• When no more memory, library asks kernel for a new chunk of pages

User process vs. kernel

• User process -> kernel
– syscalls

• Kernel -> user process
– Kernel is all powerful

• Can write into user memory
• Can terminate, block and activate user processes

