Operating Systems Structure
and
Processes

Otto J. Anshus

8/30/05

The Architecture of an OS

 Monolithic
« Layered
e Virtual Machine, Library, Exokernel

 Micro kernel and Client/Server
* Hybrids

8/30/05

Goals of the architecture

* OS as Resource Manager
* OS as Virtual Machine (abstractions)

« Efficiency, flexibility, size, security, ... as
discussed earlier

8/30/05

User g
process S

Service

Interrupt
Hardware

8/30/05

Operating
System

Interrupt handler:
Kernel

Start requested service

Start (next?) user program

Services

Overhead

'\ Data from UL -> KL

network, disk,

¢ ->
keyboard,... UL address space -> UL addr. space

Monolithic

* All kernel routines are
together User User
* A system call interface program program
« Examples: %
— Linux, BSD Unix C <
— Windows NT (hybrid) I\
* Pro —
— Performance entry
— Shared kernel space Kernel
* Cons many many things
— Stability
— Flexibility

8/30/05 5

Layered Structure

* Hiding information at each
layer

* Develop a layer at a time Level N

« Examples
— THE (6 layers, semaphores,

Dijkstra 1968)

— MS-DOS (4 layers) Level 2
* Pros
. Level 1
— Separation of concerns
— Elegance
e Cons Hardware

— Protection boundary crossings
— Performance
8/30/05

Microkernel and Client/Server

Micro-kernel 1s “micro” User .
Services

Services are implemented program

as user level processes

Micro-kernel get services
on behalf of users by
messaging with the
SErvice processes

Example: L4, (Nucleus),
Taos, Mach, OS-X

Pros et Cons?

8/30/05 7

Microkernel Pros et Cons

e Pros

— Easier to
e extend or customize
 Port to a new platform

— Fault 1solation

e Cons

— Many protection boundary crossings
 How many?

— Difficult to share resources for the system services
themselves

8/30/05

Virtual Machine

"A running program is often referred to as a virtual machine - a machine that doesn't
exist as a matter of actual physical reality. The virtual machine idea is itself one of
the most elegant in the history of technology and is a crucial step in the evolution of
ideas about software. To come up with it, scientists and technologists had to
recognize that a computer running a program isn't merely a washer doing laundry. A
washer is a washer whatever clothes you put inside, but when you put a new
program in a computer, it becomes a new machine.... The virtual machine: A way of
understanding software that frees us to think of software design as machine design."

From David Gelernter's "Truth, Beauty, and the Virtual Machine," Discover
Magazine, September 1997, p. 72.

8/30/05 9

Virtual Machine

e Virtual machine monitor

— provide multiple virtual
“real” hardware

— run different OS codes

* Example

— IBM VM/370: Started in
the 70’s.

— virtual 8086 mode
— Java VM
— VMware

User Mode

Virtual Kernel
Mode

Virtual User

Mode/

UusScCr

0S,

VM,

/

usScr

oS,

:
VM

n

Syscall
trapped

Privileged
instructions

trapped
Small kernel

Bare hardware

Exact copies of

8/30/05 the bare hardware

Kernel
Mode

10

S
ST
L S lionaeits

Input/ Output 1
|

- - ¢ wum

Figure 1. IBM System/360 Model 40 Data Processing System

8/30/05 11

8/30/05

Virtual 8086

ANEW OLD IDEA PENTIUM VIRTUAL 8086 MODE

= -

+ Virtual 8086 mode on the Pentium makes it possible to
run old 16-bit DOS applications on a wirtnal machine

12

8/30/05

Java VM

Programmer writes
the JAVA program.
JAVA Source
jz,;z:g:;nc ode —_— The JAVA compiler generates
JAVA Compiler the byte codes that correspond
to the instructions in the program.
Byte Codes
The JVM interprets the
JAVA Virtual Machine stream of bytecodes and
executes the instructions.
Output Instructions

o ___ | Harwars Piaitorin and

Operating System

The system receives
instructions from JVM
and displays desired
informationfoutput.

Figure 1.1: Diagram of Java Program Execution

13

Virtual Machine Hardware Support

* What is the minimal support?

* 2 modes

« Exception and interrupt trapping

* (Can virtual machine be protected without such
support?

* Yes, emulation instead of executing on real machine

8/30/05

14

Monolithic

ePerformance

*More
unstructured

Layered

*Clean, less bugs

*Clear division of
labour

*Performance
1ssues?

VM

*Many virtual
computers with
different OS’es

*Test of new OS

while production
work continues

*All 1n all:
flexibility

ePerformance
1ssues?

*Complexity
1ssues?

Pro et Contra

C/S

*Clear division of
labour

*Performance
1ssues?

Micro kernel

*More flexible

*Small means less
bugs+manageable

Distributed systems

*Failure isolation of
services at Kernel Level

*Flexibility issues?

*Performance issues?

“Truths” on Micro Kernel Flexibility and

Performance

* A micro kernel restricts application level flexibil

« Switching overhead kernel-user mode 1s

* Switching address-spaces 1s costly.

NO: Can be <50 cycles

ently expensive.

* [PC is expensive.

]

NO: 6-20 microsec round-trip,
53-500 cycles/IPC one way

* Micro kernel architectures lead to memory system degradation.

» Kernel should be portable (on top of a small hardware-

dependent layer).

Taken from J. Liedtke, SOSP 15 paper:
”’On micro kernel construction”

8/30/05

16

Concurrency and Process

 Problem to solve

— A shared CPU, many I/O devices and lots of
interrupts

— Users feel they have machine to themselves
e Answer

— Decompose hard problems into simple ones

— Deal with one at a time

— Process 1s such a unit

8/30/05 17

Flow of Execution

(Assume R to disk
‘ _ . .
P1: Input syscall <« => long wait 10-
e Int0x80 100’s ms)
Trap handling;
Scheduler;
Dispatch;
P2: CPU bound “Input finished” interrupt
Kernel Mode
Traphandling; | (Could have started
sl o=——== another process than P1)
User Mode Dispatch;
P1: CPU bound
___—{Timer [* 10-100ms
Trap handling;
Scheduler;
Dispatch;
8/30/05 18

Procedure, Co-routine, Thread, Process

* Procedure, Function, (Sub)Routine

 Call-execute all-return nesting
. User level non preemptive
¢ CO‘TOUtlne /“scheduler” in user code
* Call-resumes-return

* Thread (more later)

 Process
— Single threaded l
— Multi threaded |||

8/30/05 19

Procedure and Co-routine

Main A B
| ’/v 1
Call A; Call B: -] “User Yield when finished”
AN ™
l Return
Call B; /] 2
1
Return
Main A B
'
Call A; +—1 | - |
\ Call B; /Resume A; “User Yield during execution
l l // \ to share CPU”
ResuTe Bl IResume A;
- < Never executed
Return

8/30/05 20

Process

* Sequential execution of operations
— No concurrency inside a (single threaded) process
— Everything happens sequentially
e Process state
— Registers
— Stack(s)
— Main memory
— Files in UNIX
— Communication ports
— Other resources

8/30/05

21

For at least one
thread of execution

-
-

Program and Process

P e e i il

v
e 5 L = s
- wc.lotc S R 4.
= |3 E A_Oua %mfm
& S | @
e 5! s n
P
&
=]
B
=N
n ~— ~—
- @) O
© O O
" <
i S !
! o0
" e
| =
" R
"._I_ O O 1
_ © O O)
/ m{ U — U — — \

S e =

B

8/30/05

Process vs. Program

* Process > program
— Program 1s just part of process state
— Example: many users can run the same program

* Process < program
— A program can invoke more than one process

— Example: Fork off processes to lookup webster

8/30/05

23

Instruction Pointer
(program counter) in the

L reglster Process State Transitions

User Level Processes

‘ ‘ ‘ MULTIPROGRAMMING

*Uniprocessor: Interleaving
KERNEL (“pseudoparallelism”)

Trap » Service *Multiprocessor: Overlapping (“true

Handler / paralellism”)
Trap Return .

BlockedQueue
Handler Q

|

Scheduler ReadyQueue

v S

X
- \ S
Dispatcher Current Fl)

Create
a process

terminate

Memory resident part Blocked

Resource becomes
8/30/05 available 24

Create
a process

8/30/05

Process State Transition

terminate

Blocked

Resource becomes
available

25

Process Control Block (Process Table)

« What

— Process management info
« State (ready, running, blocked)
* Registers, PSW, parents, etc

— Memory management info

e Segments, page table, stats, etc

— I/0 and file management

« Communication ports, directories, file descriptors, etc.

8/30/05

26

Discussion: What needs to be saved and
restored on a context switch?

 Volatile state

* Program counter (Program Counter (PC) also called Instruction
Pointer (Intel: EIP))

* Processor status register

Other register contents

User and kernel stack pointers

A pointer to the address space in which the process runs
* the process’s page table directory

8/30/05

27

...and how?

« Save(volatile machine state, current process);
* Load(another process’s saved volatile state);

* Start(new process);

8/30/05

28

Threads and Processes

Trad. Threads

Process

!

Threads

VARV, N

8/30/05

Project OpSys

Processes in individual address spaces

o O O

User Level

Kernel threads

Kernel v
Address l l l
Space

Kernel Level

Some Links

e Virtual machine

 Exokernel

e THE

. 14

* VM

* http://www.vm.ibm.com/

8/30/05 30

