
8/30/05 1

Operating Systems Structure
and

Processes

Otto J. Anshus

8/30/05 2

The Architecture of an OS

• Monolithic
• Layered
• Virtual Machine, Library, Exokernel
• Micro kernel and Client/Server
• Hybrids

8/30/05 3

Goals of the architecture

• OS as Resource Manager
• OS as Virtual Machine (abstractions)
• Efficiency, flexibility, size, security, … as

discussed earlier

8/30/05 4

User
process

Call a service in OS

Services

Data from
network, disk,
keyboard,…

Interrupt handler:

Interrupt
Hardware

Operating
System
Kernel

Service
Service

Service
Service

Start requested service

Start (next?) user program

Overhead

•UL -> KL

•UL address space -> UL addr. space

8/30/05 5

Monolithic
• All kernel routines are

together
• A system call interface
• Examples:

– Linux, BSD Unix
– Windows NT (hybrid)

• Pro
– Performance
– Shared kernel space

• Cons
– Stability
– Flexibility

Kernel
many many things

entry

User
program

User
program

call

return

8/30/05 6

Layered Structure
• Hiding information at each

layer
• Develop a layer at a time
• Examples

– THE (6 layers, semaphores,
Dijkstra 1968)

– MS-DOS (4 layers)
• Pros

– Separation of concerns
– Elegance

• Cons
– Protection boundary crossings
– Performance

Hardware

Level 1

Level 2

Level N
...

8/30/05 7

Microkernel and Client/Server

• Micro-kernel is “micro”
• Services are implemented

as user level processes
• Micro-kernel get services

on behalf of users by
messaging with the
service processes

• Example: L4, (Nucleus),
Taos, Mach, OS-X

• Pros et Cons?

µ−kernel
entry

User
program Services

call

return

8/30/05 8

Microkernel Pros et Cons

• Pros
– Easier to

• extend or customize
• Port to a new platform

– Fault isolation
• Cons

– Many protection boundary crossings
• How many?

– Difficult to share resources for the system services
themselves

8/30/05 9

Virtual Machine
"A running program is often referred to as a virtual machine - a machine that doesn't
exist as a matter of actual physical reality. The virtual machine idea is itself one of
the most elegant in the history of technology and is a crucial step in the evolution of
ideas about software. To come up with it, scientists and technologists had to
recognize that a computer running a program isn't merely a washer doing laundry. A
washer is a washer whatever clothes you put inside, but when you put a new
program in a computer, it becomes a new machine.... The virtual machine: A way of
understanding software that frees us to think of software design as machine design."

From David Gelernter's "Truth, Beauty, and the Virtual Machine," Discover
Magazine, September 1997, p. 72.

8/30/05 10

Virtual Machine

• Virtual machine monitor
– provide multiple virtual

“real” hardware
– run different OS codes

• Example
– IBM VM/370: Started in

the 70’s. Check out
– virtual 8086 mode
– Java VM
– VMware

Bare hardware

Small kernel

VM1 VMn
. . .

OS1 OSn

user user

Exact copies of
the bare hardware

Syscall
trapped

Privileged
instructions
trapped

Virtual Kernel
Mode

Kernel
Mode

User Mode

Virtual User
Mode

8/30/05 11

8/30/05 12

Virtual 8086

8/30/05 13

Java VM

8/30/05 14

Virtual Machine Hardware Support

• What is the minimal support?
• 2 modes
• Exception and interrupt trapping

• Can virtual machine be protected without such
support?

• Yes, emulation instead of executing on real machine

8/30/05 15

Pro et Contra
Monolithic Layered VM C/S Micro kernel

•Many virtual
computers with
different OS’es

•Test of new OS
while production
work continues

•All in all:
flexibility

•Performance
issues?

•Complexity
issues?

•Performance

•More
unstructured

•Performance
issues?

•Clean, less bugs

•Clear division of
labour

•More flexible

•Small means less
bugs+manageable

•Distributed systems

•Failure isolation of
services at Kernel Level

•Flexibility issues?

•Performance issues?

•Clear division of
labour

•Performance
issues?

8/30/05 16

“Truths” on Micro Kernel Flexibility and
Performance

• A micro kernel restricts application level flexibility.
• Switching overhead kernel-user mode is inherently expensive.
• Switching address-spaces is costly.
• IPC is expensive.
• Micro kernel architectures lead to memory system degradation.
• Kernel should be portable (on top of a small hardware-

dependent layer).

Taken from J. Liedtke, SOSP 15 paper:
”On micro kernel construction”

NO: Can be <50 cycles

NO: 6-20 microsec round-trip,
53-500 cycles/IPC one way

8/30/05 17

Concurrency and Process

• Problem to solve
– A shared CPU, many I/O devices and lots of

interrupts
– Users feel they have machine to themselves

• Answer
– Decompose hard problems into simple ones
– Deal with one at a time
– Process is such a unit

8/30/05 18

Flow of Execution

Kernel Mode

User Mode

“Input finished” interrupt

P1: Input syscall

P1: CPU bound

P2: CPU bound

Trap handling;
Scheduler;
Dispatch;

Trap handling;
Scheduler;
Dispatch;

Trap handling;
Scheduler;
Dispatch;

Int0x80

Timer 10-100ms

(Could have started
another process than P1)

(Assume R to disk
=> long wait 10-
100’s ms)

8/30/05 19

Procedure, Co-routine, Thread, Process

• Procedure, Function, (Sub)Routine
• Call-execute all-return nesting

• Co-routine
• Call-resumes-return

• Thread (more later)
• Process

– Single threaded
– Multi threaded

User level non preemptive
“scheduler” in user code

8/30/05 20

Procedure and Co-routine

Call A;
Call B;

Call B;

1

1

2
2

Main A B

Call A;
Call B; Resume A;

Resume B;

Main A B

Resume A;

Return

Return

Never executed

“User Yield when finished”

“User Yield during execution
to share CPU”

Return

8/30/05 21

Process

• Sequential execution of operations
– No concurrency inside a (single threaded) process
– Everything happens sequentially

• Process state
– Registers
– Stack(s)
– Main memory
– Files in UNIX
– Communication ports
– Other resources

8/30/05 22

Program and Process

main()
{
...
foo()
...
}

foo()
{
 ...
}

Program

main()
{
...
foo()
...
}

foo()
{
 ...
}

Process

heap
stack
main
foo

registers
PC

Resources:
comm. ports,

files,
semaphores

PID

For at least one
thread of execution

The
context

8/30/05 23

Process vs. Program

• Process > program
– Program is just part of process state
– Example: many users can run the same program

• Process < program
– A program can invoke more than one process
– Example: Fork off processes to lookup webster

8/30/05 24

Process State Transitions

Running

BlockedReady
Sc

he
du

ler

dis
pa

tch W
ait for

resource

Resource becomes
available

Create
a process

terminate

P4P3P2P1

P2

P1

ReadyQueue P4P3

BlockedQueue

Scheduler

Dispatcher

Trap
Handler

Service

Current

Trap Return
Handler

U s e r L e v e l P r o c e s s e s

KERNEL

MULTIPROGRAMMING

•Uniprocessor: Interleaving
(“pseudoparallelism”)

•Multiprocessor: Overlapping (“true
paralellism”)

PCB’s

Memory resident part

Instruction Pointer
(program counter) in the
EIP register

8/30/05 25

Process State Transition

Running

BlockedReady

Sc
he

du
ler

dis

pa
tch W

ait for

resource

Resource becomes
available

Create
a process

terminate

8/30/05 26

Process Control Block (Process Table)

• What
– Process management info

• State (ready, running, blocked)
• Registers, PSW, parents, etc

– Memory management info
• Segments, page table, stats, etc

– I/O and file management
• Communication ports, directories, file descriptors, etc.

8/30/05 27

Discussion: What needs to be saved and
restored on a context switch?

• Volatile state
• Program counter (Program Counter (PC) also called Instruction

Pointer (Intel: EIP))
• Processor status register
• Other register contents
• User and kernel stack pointers
• A pointer to the address space in which the process runs

• the process’s page table directory

8/30/05 28

…and how?

• Save(volatile machine state, current process);
• Load(another process’s saved volatile state);
• Start(new process);

8/30/05 29

Threads and Processes

Process

Threads

Kernel threads

Kernel
Address
Space

Kernel Level

User Level

Project OpSysTrad. Threads
Processes in individual address spaces

8/30/05 30

Some Links

• Virtual machine
• http://whatis.techtarget.com/definition/0,,sid9_gci213305,00.html

• Exokernel
• http://pdos.lcs.mit.edu/exo/

• THE
• http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD196.PDF

• L4
• http://os.inf.tu-dresden.de/L4/

• VM
• http://www.vm.ibm.com/

