
Thread Packages

Thomas Plagemann

With slides from O. Anshus, C. Griwodz,
M. van Steen, and A. Tanenbaum

Overview

• What are threads?
• Why threads?
• Example: Da CaPo 1.0
• Thread implementation

– User level
– Kernel level
– Scheduler activation
– Example: Scheduler activations in NetBSD
– Pop-up threads

Threads
The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads

The Thread Model (2)

Accounting information

Items private to each threadItems shared by all threads in a
process

Signals and signal handlers
Pending alarms

StateChild processes
StackOpen files
RegistersGlobal variables
Program counterAddress space
Per thread itemsPer process items

The Thread Model (3)

Each thread has its own stack

Thread Usage (1)

A word processor with three threads

Thread Usage (2)

A multithreaded Web server

Thread Usage (3)

• Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

Thread Usage (4)

Three ways to construct a server

Why Threads? A lesson from
Da CaPo (Dynamic Configuration of Protocols)

• General goal: flexible protocol support for multimedia
applications
– Quality-of-Service (QoS)
– functional behaviour

• Principles:
– decomposition of complex protocols into fine-granular

micro-protocols
– selection of optimal protocol configuration

• Related approaches: F-CSS, Adaptive, Ensemble
• Da CaPo V.1 developed for SunOS 4.1.3

End-to-end
communication

support

Da CaPo - Dynamic Configuration of
Protocols

Application Application

Network

Da CaPo - Dynamic Configuration of
Protocols

Application Application

Network

QoS Requirements

Da CaPo - Dynamic Configuration of
Protocols

Application Application

Network

- check resources
- check available
modules

- select and negotiate
optimal protocol
confirguration

Da CaPo - Dynamic Configuration of
Protocols

Application Application

Network

- install module graph
MPEP

FEC

Flow Cntr.

MPEP

FEC

Flow Cntr.

Da CaPo - Dynamic Configuration of
Protocols

Application Application

Network

- install module graph
- exchange data

MPEP

FEC

Flow Cntr.

MPEP

FEC

Flow Cntr.

Da CaPo Runtime environment

• One Process per connection
• How to listen to the network

and handle other modules
at the same time?

• Do non-blocking reads
• Install handlers for SIGIO in

T-modules
• ”Preempt” modules and

”schedule” T-module on packet
arrival

module 1

module 6

module 2

module 3

module 4

module 7

module 5

T-module

application

Simple Example for Signal Handling

#include <stdio.h>
#include <signal.h>

void INThandler(int);

void main(void) {
signal(SIGINT, INThandler);
while (1)

pause();
}

void INThandler(int sig) {
char c;

signal(sig, SIG_IGN);
printf("OUCH, did you hit Ctrl-C?\n“

"Do you really want to quit? [y/n] ");
c = getchar();
if (c == 'y' || c == 'Y')

exit(0);
else

signal(SIGINT, INThandler);
}

Lessons learned from this example

• Use of blocking system calls and threads can make
programming much easier

• But you have to protect critical regions!

• Another reason: Performance!

Implementation of Thread Packages

• Two main approaches to implement threads
– In user space
– In kernel space

Kernel

Run-time system

Kernel

User-level thread package Thread package managed by
the kernel

Thread Package Performance

Operation User level threads Kernel-level threads Processes
Null fork

Signal-wait
34µs

37µs

948µs

441µs

11,300µs

1,840µs

Taken from Anderson et al 1992

Why?
•Thread vs. Process Context
switching

•Cost of crossing protection
boundary

•User level threads less general, but
faster

•Kernel level threads more general,
but slower

•Can combine: Let the kernel
cooperate with the user level
package

Observations
•Look at relative numbers as computers are faster in 1998 vs. 1992

•Fork: 1:30:330

•Time to fork off around 300 user level threads ~time to fork off one
single process

•Assume a PC year 2003, ‘92 relative numbers = ‘03 actual numbers
in µs

•Fork off 5000 threads/processes: 0.005s:0.15s:1,65s. OK if long
running application. BUT we are now ignoring other overheads when
actually running the application.

•Signal/wait: 1:12:50

•Assume 20M signal/wait operations: 0,3min:4 min:16,6min. Not OK.

Implementation of Thread Packages

• Two main approaches to implement threads
– In user space
– In kernel space

• Hybrid solutions: cooperation between user level and kernel
– Scheduler activation
– Pop-up threads

Kernel

Run-time system

Kernel

User-level thread package Thread package managed by
the kernel

Implementation of Threads

User level

•If a thread blocks in a system call,
user process blocks

•Can have a wrapper around
syscalls preventing process block

Kernel level

•Support for one single CPU

User level

•If a thread blocks in a system call,
user process does not

•Can schedule threads
independently

Kernel level

•Support for multiple CPUs

Kernel

Run-time system

Kernel

User-level thread package Thread package managed by
the kernel

Implementing Threads in User Space

A user-level thread package

User Level Thread Packages

• Implementing threads in user space
– Kernel knows nothing about them, it is managing single-

threaded applications
– Threads are switched by runtime system, which is much

faster than trapping the kernel
– Each process can use its own customized scheduling

algorithm
– Blocking system calls in one thread block all threads of the

process (either prohibit blocking calls or write jackets around
library calls)

– A page fault in one thread will block all threads of the
process

– No clock interrupts can force a thread to give up CPU, spin
locks cannot be used

– Designed for applications where threads make frequently
system calls

User Level Thread Packages

• Implementation options
– Libraries

• Basic system libraries (“invisible”)
• Additional system libraries
• Additional user libraries

– Language feature
• Java (1.0 – 1.2 with “green threads”)
• ADA
• …

Implementing Threads in the Kernel

A threads package managed by the kernel

Kernel Level Thread Packages

• Implementing threads in the kernel
– When a thread wants to create a new thread or destroy

an existing thread, it makes a kernel call, which then
does the creation or destruction (optimization by
recycling threads)

– Kernel holds one table per process with one entry per
thread

– Kernel does scheduling, clock interrupts available,
blocking calls and page faults no problem

– Performance of thread management in kernel lower

Hybrid Implementations

Multiplexing user-level threads onto kernel- level
threads

Scheduler Activations

• Scheduler activation
– Goals: combine advantages of kernel space implementation

with performance of user space implementations
– Avoid unnecessary transitions between user and kernel

space, e.g., to handle local semaphore
– Kernel assigns virtual processors to each process and

runtime system allocates threads to processors
– The kernel informs the process’s runtime system via an

upcall when one of its blocked threads becomes runnable
again

– Runtime system can schedule
– Runtime system has to keep track when threads are in or are

not in critical regions
– Upcalls violate the layering principle

User-level threads on top of
Scheduler Activations

User-level threads

User-level scheduling

Scheduler activation
blocked active

user

kernel

blocked active

Kernel-level scheduling

Physical processor

Scheduler Activations - I

User program

(1) (2) (1) (2) (3) (4)

Ready list

OS Kernel

User-level

Runtime

System

(B)(A)

add
processor

add
processor

Scheduler Activations - II

User program

(1) (2) (3) (4)

Ready list

OS Kernel

User-level

Runtime

System

(A) (B)

(3)

(C)

A’s thread has
blocked

Blocking I/O

Scheduler Activations - III

User program

(1) (2) (1) (2)(4)

Ready list

OS Kernel

User-level

Runtime

System

(A) (B)

(3)

(C)

I/O Completed

(D)

A’s thread and B’s
thread can
continue

Scheduler Activations - IV

User program

(4) (2)

Ready list

OS Kernel

User-level

Runtime

System

(3)

(C)

(1)

(D)

Scheduler Activations in NetBSD

• Nathan J. Williams: ”An Implementation of Scheduler
Activations on the NetBSD Operating Systems”, in
Proceedings of Freenix/Usenix 2002

• CVS branch nathanw_sa; integration into NetBSD-
current in 2003

• Earlier implementations of scheduler activations in
Taos, Mach 3.0, BSD/OS, Digital Unix (now Compaq
Tru64 Unix)

Kernel Interface - I

• Application → scheduler activation system, i.e., by
system calls:
– sa_register()
– sa_setconcurrency()
– sa_enable()
– sa_yield ()
– sa_prevent()

• Scheduler activation → application, i.e., by upcall:
– void sa_upcall(int type,

struct sa_t *sas[],
int events,
int interrupted,
void *arg);

Kernel Interface - II

• Events that generated upcalls:
– SA_UPCALL_NEWPROC
– SA_UPCALL_PREEMPTED
– SA_UPCALL_BLOCKED
– SA_UPCALL_UNBLOCKED
– SA_UPCALL_SIGNAL
– SA_UPCALL_USER

• Low level upcall mechanism is similar to signal
delivery

Kernel Interface - III

• Stacks:
– Any upcall code needs to store local variables, return

address, etc.
– Using stack of preempted thread?

• New processor allocations
• Makes thread management more difficult

– Each upcall got its own stack
– System call sa_stack()

• Signals:
– Support the POSIX signal model
– Kernel does not know about specific threads
– Signals are handed to the application with an upcall

Kernel Implementation - I

• NetBSD kernel has a monolithic process structure
including execution context

• First task: separation of process context from
execution context
– Old NetBSD process states

Kernel Implementation - II
New process states

New LWP states

Kernel Implementation - III

• NetBSD manages all process data in struct proc
• Move all execution related data into a new struct
lwp

• Update all code parts with variables of type struct
proc

• Scheduler must handle LWPs, fork()

Thread Implementation

• Goal: become the supported POSIX compatible
library for NetBSD

• Scheduler activations can always be preempted
– Violation of atomicity of critical sections of code
– Example maintenance of ru queue in thread library

• Normally spin lock are used
• Upcall handler might try to get the same lock
• Deadlock (we discuss this later in more detail!)

Some Performance Numbers

• HBench-OS on
500 MHz Digital Alpha
21164 system

• Apple iBook
500 MHz G3 CPU
256 L2 cache

1.3151.345sigaction
0.6870.722sbrk
1.9111.627timeofday
4.3324.053getrusage
0.6010.631getpid

after SAbefore SA

82 µs166 µs225 µsContext

0.6 µs0.3 µs0.4 µsMutex

90 µs96 µs15 µsThread

LinuxPTHSA

Pop-Up Threads

• Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives

Pop-Up Threads

• Fast reacting to external events possible
– Packet processing is meant to last a short time
– Packets may arrive frequently

• Questions with pop-up threads
– How to guarantee processing order without loosing

efficiency?
– How to manage time slices? (process accounting)
– How do schedule these threads efficiently?

Existing Thread Packages

• All have
– Thread creation and destruction
– Switching between threads

• All specify mutual exclusion mechanisms
– Semaphores, mutexes, condition variables, monitors

• Why do they belong together?

Some existing thread packages

• POSIX Pthreads (IEEE 1003.1c) for all/most platforms
– Some implementations may be user level, kernel level or

hybrid
• GNU PTH
• Linux
• JAVA for all platforms

– User level, but can use OS time slicing
• Win32 for Win95/98 and NT

– kernel level thread package
• OS/2

– kernel level

• Basic idea in most packages
– Simplicity, fancy functions can be built using simpler ones

Summary

• Today:
– What are threads?
– Why threads?
– Example: Da CaPo 1.0
– Thread implementation

• User level
• Kernel level
• Scheduler activation
• Example: Scheduler activations in NetBSD
• Pop-up threads

• Tomorrow: CPU Scheduling

