
1

File Systems

Carsten Griwodz
University of Oslo

(includes slides from Pål Halvorsen, Kai Li, A.
Tanenbaum and M. van Steen)

File Examples
Tags Tables
===========
A "tags table" is a description of how a multi-file program is

broken up into files. It lists the names of the component
files and the names and positions of the functions (or other
named subunits) in each file. Grouping the related files
makes it possible to search or replace through all the files
with one command. Recording the function names and positions
makes possible the `M-.' command which finds the definition of
a function by looking up which of the files it is in.

Tags tables are stored in files called "tags table files". The
conventional name for a tags table file is `TAGS'.

Each entry in the tags table records the name of one tag, the name
of the file that the tag is defined in (implicitly), and the
position in that file of the tag's definition.

Just what names from the described files are recorded in the tags
table depends on the programming language of the described
file. They normally include all functions and subroutines, and
may also include global variables, data types, and anything
else convenient. Each name recorded is called a "tag".

* Menu:
* Tag Syntax:: Tag syntax for various types of code

and text files.
* Create Tags Table:: Creating a tags table with `etags'.
* Select Tags Table:: How to visit a tags table.
* Find Tag:: Commands to find the definition of a

specific tag.
* Tags Search:: Using a tags table for searching and

replacing.
* List Tags:: Listing and finding tags defined in a

file.

File: emacs, Node: Tag Syntax, Next: Create Tags Table, Up: Tags

! Text file
! Example ASCII

2

File Examples
! Text file

! Example ASCII

! Program file
! Example ELF

ELF header
Program header
Table (optional)

Section 1

…

Section n

…

…

Section header
table

ELF header
ident
type

machine
version
entry
phoff
shoff
flags

ehsize
phentsize

phnum
shentsize

shnum
shstrndx

Section header
name
type
flags
addr
offset
size
link
info

addralign
entsize

S
ec

tio
n

he
ad

er

S
ec

tio
n

he
ad

er

4D 4D 00 2A 00 00 00 14

File Examples
! Text file

! Example ASCII

! Program file
! Example ELF

! Image file
! Example TIFF

00 00 00 00 00 00 00 00
00 00 00 00 00 0C 00 FE
00 04 00 00 00 01 00 00
00 00 01 00 00 04 00 00
00 01 00 00 07 D0 01 01
00 04 00 00 00 01 00 00
0B B8 01 03 00 03 00 00
00 01 80 05 00 00

…

Endianess

Magic number

Offset of Image File Directory

IFD entries

struct IFDEntry {
_u16 tag;
_u16 type;
_u32 count;
_u32 value;

};

{ NewSubfileType, LONG, 1, 0 }

{ ImageWidth, LONG, 1, 0x7d0 }

{ ImageLength, LONG, 1, 0xbb8 }

{ Compression, SHORT, 1, Runlength }

3

File Examples
! Text file

! Example ASCII
! Program file

! Example ELF
! Image file

! Example TIFF
! Archive file

! Example tar
! Video file

! Example MPEG
! Database

! Example Berkeley DB format

! Files have types and
structure

Files
! Unstructured files

! Low-level files

! Structured files

4

Files
! Unstructured files

! Low-level files

! Structured files
! Record-oriented

sequential files

Files
! Unstructured files

! Low-level files

! Structured files
! Record-oriented

sequential files
! Indexed sequential files

12

7

51

4

11

654231
981485
957613
258496

Index in application

5

Files
! Unstructured files

! Low-level files

! Structured files
! Record-oriented

sequential files
! Indexed sequential files
! Inverted files

12

7

51

4

ab

ge

hk

fa

11 aa

4
7

12
51

ab
fa
ge
hk

Indices in file

Files
! Unstructured files

! Low-level files

! Structured files
! Record-oriented

sequential files
! Indexed sequential files
! Inverted files

12

7

51

4

ab

ge

hk

fa

11 aa

4
7
11
12
51

aa
ab
fa
ge
hk

Indices in file

6

Files

! Unstructured files
! Unix
! Windows

! Structured files
! MacOS (to some extent)
! MVS

! In this course we consider unstructured files

Open

O
pe

ra
ti

ng
 S

ys
te

m

open(name, mode)

sys_open() " vn_open():

1. Check if valid call

2. Allocate file descriptor

3. If file exists, open for read. Otherwise, create a new file.

Must get directory inode. May require disk I/O.

4. Set access rights, flags and pointer to vnode

5. Return index to file descriptor table

fd

7

Read
O

pe
ra

ti
ng

 S
ys

te
m

bufferread(fd, buf*, len)

sys_read() " dofileread() " (*fp_read==vn_read)():

1. Check if valid call and mark file as used

2. Use file descriptor as index in file table

to find corresponding file pointer

3. Use data pointer in file structure to find vnode

4. Find current offset in file

5. Call local file system
VOP_READ(vp,len,offset,..)

Read

O
pe

ra
ti

ng
 S

ys
te

m

VOP_READ(...) is a pointer to a read function in the

corresponding file system, e.g., Fast File System (FFS)

READ():

1. Find corresponding inode

2. Check if valid call - file size vs. len + offset

3. Loop and find corresponding blocks

• find logical blocks from inode, offset, length

• do block I/O, fill buffer structure

e.g., bread(...) " bio_doread(...) " getblk()

• return and copy block to user

VOP_READ(vp,len,offset,..)

getblk(vp,blkno,size,...)

8

Read
O

pe
ra

ti
ng

 S
ys

te
m

LKJIHGFEDCBA

M

getblk(vp,blkno,size,...)

1. Search for block in buffer cache, return if found

(hash vp and blkno and follow linked hash list)

2. Get a new buffer (LRU, age)

3. Call disk driver - sleep or do something else

4. Return buffer

VOP_STRATEGY(bp)

Read

O
pe

ra
ti

ng
 S

ys
te

m

VOP_STRATEGY(bp)

VOP_STRATEGY(...) is a pointer to the corresponding

driver depending on the hardware,

e.g., SCSI - sdstrategy(...) " sdstart(...)

1. Check buffer parameters, size, blocks, etc.

2. Convert to raw block numbers

3. Sort requests according to SCAN - disksort_blkno(...)

4. Start device and send request

9

Read

...

...
data pointer
data pointer
data pointer
data pointer
data pointer

...
file attributes

O
pe

ra
ti

ng
 S

ys
te

m

M

Read

O
pe

ra
ti

ng
 S

ys
te

m

LKJIHGFEDCBA

1. Search for block in buffer cache, return if found

(hash vp and blkno and follow linked hash list)

2. Get a new buffer (LRU, age)

3. Call disk driver - sleep or do something else

4. Return buffer M

M

Interrupt to notify end of disk IO

Kernel may awaken sleeping process

10

Read
O

pe
ra

ti
ng

 S
ys

te
m

READ():

1. Find corresponding inode

2. Check if valid call - file size vs. len + offset

3. Loop and find corresponding blocks

• find logical blocks from inode, offset, length

• do block I/O,

e.g., bread(...) " bio_doread(...) " getblk()

• return and copy block to user

buffer

M

Files

! Regular files
! Special files

! Directories
! Hard links
! Soft links
! …

11

File Systems
! Handle files on disk

! Directly
! Diskettes, CDs

! In partitions
! Typical

! In logical volumes
! Abstraction layer between

! One or more disks
! Partitions

! Have representations in
! User space
! Kernel space

! User space representation
! File system API

! E.g. VFS
! File handle
! Function calls

! File: Create, delete, read,
write, open, close, seek

! Directory: Create, delete, list

! Kernel space representation
! Map of file handle to file

information
! File attributes
! Buffers in memory
! Information about placement

on disk

Management of File Blocks

...

...
data pointer
data pointer
data pointer
data pointer
data pointer

...
file attributes

12

Management of File Blocks

! Many files consist of several blocks
! Relate blocks to files
! Maintain order of blocks

! Approaches
! Chaining in the media
! Chaining in a map
! Table of pointers
! Extent-based allocation

Chaining in the Media

! Metadata points to
chain of used file blocks

! Free blocks may also be
chained

Metadata

File blocks

13

Chaining in a Map
Metadata File blocksMap

FAT Example
! FAT: File Allocation Table
! Versions FAT12, FAT16, FAT32

! Number indicates number of bits used for identifying blocks in
partition (212, 216, 232)

! FAT12: Block sizes 512 bytes – 8 KB: max 32 MB partition size
! FAT16: Block sizes 512 bytes – 64 KB: max 4 GB partition size

Boot
sector

FAT1
FAT2

(backup)
Root

directory
Other directories and files

…
0000
0003
0004
FFFF
0006
0008
FFFF
FFFF
0000

…

File1 File1 File1empty File2File2

File2File3 emptyempty empty empty

emptyempty empty empty empty empty

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009

14

Table of Pointers
Metadata File blocksTable of pointers

Unix Examples
mode
owner

…
Direct block 0
Direct block 1

…
Direct block 10
Direct block 11
Single indirect
Double indirect
Triple indirect

Data block
Data block

Data block
Data block

index

Data block
Data block

Data block
Data block

index

index

indexindex

indexindex

Data block
Data block

Data block
Data block

index

index Data block

inode Flexible block size
e.g. 4KB

ca. 1000 entries
per index block

Data block

15

Extent-based Allocation
Metadata File blocksList of extents

1

3

2

Finding Files

O
pe

ra
ti

ng
 S

ys
te

m

open(name, mode)

sys_open() " vn_open():

1. …

2. …

3. If file exists, open for read. Otherwise, create a new file.

Must get directory inode. May require disk I/O.

4. …

5. …

16

Arrangement of Directories

! Single-level directory systems
! Hierarchical directory systems
! Shared files

! Hard links
! Soft links

Single-level Directory Systems

! CP/M
! Microcomputers
! Single user system

! VM
! Host computers
! “Minidisks”: one partition per user

Root directory

Four files

17

Hierarchical Directory Systems

! Tree structure
! Nodes = directories, root node = root directory
! Leaves = files Root directory

Files

Subdirectories

Hierarchical Directory Systems
! Directories

! Are stored on disk
! Need attributes just like files
! Subdirectories need names

! To access a file
! Must test all directories in path for

! Existance
! Being a directory
! Permissions

18

Hierarchical Directory Systems
! Windows: one tree per partition or device

\

Device D

Complete filename example:
C:\WinNT\EXPLORER.EXE

\

Device C

WINNT

EXPLORER.EXE

Hierarchical Directory Systems

! Unix: single acyclic graph
spanning several devices

/

cdrom

Complete filename example:
/cdrom/doc/Howto

/

doc

Howto

19

Directories
! Map names to file indices

! Data structures
! Linear list
! Trees
! Hash tables

! Trade-off
! Complexity
! Efficiency

Linear list
! Method

! Store (filename, I-node) pairs linearly in a file
! Create, delete a file

! Search for the file name
! Add a file (to the unused slot of the end)
! Remove a file from the directory (with or without compaction)

! Pros
! Relatively simple
! Create effort is O(1)

! Cons
! Linear search effort is O(n)

20

Tree data structures
! Method

! Sort the file by name
! Store in a tree data structure such as B-tree
! Create, delete, search in the tree data structure

! Pros
! Efficient for a large number of files
! Worst case effort is O(log n)

! Cons
! Complex
! Not necessarily efficient for a small number of files
! Requires more space
! Create effort is O(log n)

Hashing
! Method

! A linear list stores the directory entries
! A hash table hashing a name to an i-node (standard

implementation plus space management for directory
entries)

! Pros
! Fast searching and relatively simple
! Hash function and few files make average search effort

O(1) possible
! Create effort is O(1)

! Cons
! Not as efficient as trees for very large directory
! Worst case search effort is O(n)

21

First blk
First blk
First blk
First blk
First blk
First blk
First blk

Naming and Attributes
! Directory entries must

! Allow fast name matching
! Refer to attributes

! Attributes
! File type
! Ownership
! Access rights
! Sizes: Current size, max size
! Flags: System, hidden,

temporary, archived (dirty)
! Times: Creation, last modified,

last accessed

! Attributes
! Stored as part of the file itself
! Stored in additional structure

r

s

d

r
d

d
d

etc
tmp
boot

netbsd
var
usr
sys

attributes
attributes
attributes
attributes
attributes
attributes
attributes

etc
tmp
boot

netbsd
var
usr
sys

ptr
ptr
ptr
ptr
ptr
ptr
ptr

First blk

First blk

First blk

First blk

First blk

First blk

First blk

d

d

r

r

d

d

s

attributes

attributes

attributes

attributes

attributes

attributes

attributes

Naming and Attributes
! Two ways of handling long file name in directory

! In-line

D
a

o c u m e n t
s n d e t
t i n g s

File 1 entry length

File 1 attributes

File 2 entry length

File 2 attributes

P r o g r a m
F i l e s

File 3 entry length

File 3 attributes

22

Naming and Attributes
! Two ways of handling long file name in directory

! In-line
! In a heap

D
a

o c u m e n t
s n d e t
t i n g s

Ptr to File 1 name

File 1 attributes

Ptr to File 2 name

File 2 attributes

P r
o g r a m F i
l e s

Ptr to File 3 name

File 3 attributes

D
a

o c u m e n t
s n d e t
t i n g s

File 1 entry length

File 1 attributes

File 2 entry length

File 2 attributes

P r o g r a m
F i l e s

File 3 entry length

File 3 attributes

Naming and Attributes
! Windows FAT file names

! Example file name
“The quick brown fox jumps over the lazy dog”

Base name Ext SNTA Creat time Acc. Upp Write time Low File size

Attributes
Sec

Creation time
Last access time

Upper/lower 16 bits of
Starting block

(Index into FAT)Last write time

T H ~ 1E Q U I SNTA Creat time Acc. Upp Write time Low File size

T H ~ 1E Q U I SNTA Creat time Acc. Upp Write time Low File size

23

Naming and Attributes
! Windows FAT file names

! Example file name
“The quick brown fox jumps over the lazy dog”

5 characters 0 6 chars 0 2 chars

T H ~ 1E Q U I SNTA Creat time Acc. Upp Write time Low File size

Attributes
Checksum

Sequence

Ck0A 0

1 Ck0A 0 r oT h e u i c k bq
2 Ck0A 0 sw n f x j u m po
3 Ck0A 0 z yo v e r t h e l a
68 Ck0A 0d o g

Add file’s long name directory entries
before its short name entry in directory table

(Partial) entry for long file name

Naming and Attributes
! Windows FAT file names

! Example file name
“Documents and Settings”

Base name Ext SNTA Creat time Acc. Upp Write time Low File size

Attributes
Sec

Creation time
Last access time

Upper/lower 16 bits of
Starting block

(Index into FAT)Last write time

D O ~ 1C U M E SNTA Creat time Acc. Upp Write time Low File size

D O ~ 1C U M E SNTA Creat time Acc. Upp Write time Low File size

24

Naming and Attributes
! Windows FAT file names

! Example file name
“Documents and Settings”

5 characters 0 6 chars 0 2 chars

D O ~ 1C U M E SNTA Creat time Acc. Upp Write time Low File size

Attributes
Checksum

Sequence

Ck0A 0

1 Ck0A 0 n dD o c u e n t s am
68 Ck0A 0S e t i n g st

Add file’s long name directory entries
before its short name entry in directory table

(Partial) entry for long file name

Naming and Attributes
! Linux EXT2

! Inode are similar to standard Unix inodes
! Access to file of subdirectory requires access to data block

_u16 i_mode;
_u16 i_uid;
_u32 i_size;
_u32 i_atime;
_u32 i_ctime;
_u32 i_mtime;
_u32 i_dtime;
_u16 i_gid;
_u16 i_links_count;
_u32 i_blocks;
_u32 i_flags;
…
_u32 i_block[15];
…

Access, creation, modification,
deletion time

Owner uid

Group id

Size in bytes (4GB limit)

File mode

Number of hard links
Number of blocks

Flags: sync. write, compressed file, …

12 direct and 3 1/2/3-indirect blocks

25

Naming and Attributes
! Linux EXT2

! Directory inodes refer to data blocks containing
linear list of entries

_u32 inode;
_u16 rec_len;
_u8 name_len;
_u8 file_type;
char name[255];

File’s (or subdirectory’s) inode

File’s name
max filename length is 255 bytes

Entry size (aligned)

File’s type, such as
regular file, directory,
symbolic link, …

Shared Files: Hard Link

! Hard Link
! Break tree structure - maintain acyclic graph

Root directory

Files

1

1

1 1

1

1 1 1

11 1 1

1 1 1

1 1

Subdirectories

Hard link

22Increase reference count

26

Shared Files: Hard Link

! Hard Link
! Files remain until all hard links are deleted

Root directory

File owner

R,1

A,1

A,1 B,1

R,1

R,1 A,1 B,1

B,1B,2 B,1 B,1

A,1 A,1 B,1

B,1 B,1

B,1

Reference Count

A creates link

B deletes files
A deletes file

Shared Files: Soft Link

! Soft Link
! Tree structure not broken
! Soft links are files Root directory

1

1

1 1

1

1 1 1

11 1 1

1 1 1

1 1
Create soft link

Delete file

?

27

Virtual File System Operations
! Many OSes support

several file systems
! Windows

! FAT, NTFS, UFS, …

! Linux
! Ext2, Ext3, ReiserFS, JFS,

XFS, FAT, …

! Same user space
functions for all
! POSIX API
! Win32 API

file_operations {
llseek
read
write
readdir
poll
ioctl
mmap
open
flush

...
};

inode_operations {
create
lookup
link
unlink
symlink
mkdir
rmdir
mknod
rename
readlink
follow_link
truncate
permission

...
};

Summary
! File types

! Unstructured and structured files

! Abstraction layers
! User space
! System call layer
! Virtual file system layer
! Local file system layer
! Disk driver

! File structures

! Directories
! Naming and attributes
! links

28

Directory examples
! Flat (CP/M)

! All files are in one directory

! Hierarchical (Unix)
! /home/inf3160/prosjekter
! Directory is stored in a file containing (name,i-node) pairs
! The name can be either a file or another directory

! Hierarchical (MS-DOS, NT)
! C:\windows\temp\foo
! Use the extension to indicate whether the entry is a

directory

Example file system implementations

! CP/M
! Windows
! Linux VFS
! Specific Linux file systems

! Ext2
! JFS

29

File systems on disk

! Partitioning
! Logical volume management

superblock?

30

Memory mapped files?

Buffer cache?

31

File Caching

! Cache files in main
memory

! read(fd, buf, n)
! On a hit

! copy from the buffer
cache to a user buffer

! On a miss
! replacement if

necessary
! read a file into the

buffer cache

File buffer
cache

Disks

User buffer

Maintain Consistency

! write(fd, buffer, n)
! On a hit

! write to buffer cache

! On a miss
! read the file to buffer

cache if the file exists
(possible replacement)

! write to buffer cache

! When do you write
the buffer cache to
disk?

! In what order?

File buffer
cache

Disks

User buffer

32

What to Cache and Replace?

! Things to consider
! I-nodes and indirect blocks of directories
! Directory files
! I-nodes and indirect blocks of files
! Files

! A reasonable strategy?
! Cache i-nodes and indirect blocks if they

are in use
! Cache only the i-nodes and indirect blocks

of the current directory

Where Is the Buffer Cache?

! Kernel
! All processes share

the same buffer cache
! Global LRU
! Each process use a

different replacement
strategy

! Can we move the
buffer cache to the
user level?
! Duplications

User
process

User
process

User
process. . .

Buffer cache

33

Relationship with Virtual Memory

! Memory mapped file
! Use the file as the backing store for mapped

pages

! Should we do this for all files?
! Difficult to tell the size of the file
! VM typically don’t care about writing back

frequently
! Huge files require huge VM space

