Memory Management

Carsten Griwodz
University of Oslo

(includes slides from A. Tanenbaum and M. van Steen)

Motivation

= In project assignments so far
= Program code is linked to kernel
= Physical addresses are well-known
= Not realistic

= In the real world
= Programs are loaded dynamically

= Physical addresses it will get are not known to
program

= Program size at run-time is not known to kernel

Memory Management for Monoprogramming

= Only one user program loaded
= Program is entirely in memory
= No swapping or paging
= Three simple ways of organizing memory

Some PDAs, embedded systems

n
0x0
0x0
| OS in RAM Devs in ROM

0x0 Oxfff....

Multiprogramming

= Processes have to wait for I/O

= Goal
= Do other work while a process waits
= Give CPU to another process

= Processes may be concurrently ready
= SO
= If I/O waiting probability for all processes is p
= Probable CPU utilization can be estimated as
CPU utilization = 1 - p"

Multiprogramming
= Arrival and work requirements of 4 jobs
= CPU utilization for 1-4 jobs with 80% I/O wait

Arrival CPU use IO wait

processors

Job# * .) : Remaining CPU time % 1 2 3 4
time time time
1]1000] a4 6 1jea CPUidle 80 64 51 41
2 |10:00) 3 12 2 1oa CPUbusy 20 36 49 59
3 |1015| 2 8 3 |20
4 1020 2 8 4 | @8 CPUPEr o) 18 16 15
process
2.0
1 0.9 0.8 0.3.
5 P 0.9 0.8 0.3 0.9)‘
3 ® 0.8 0.3 0.9 ©
. . 1 07,
. 002 09 01074 .
0 10 15 20 22 27.6 31.7
28.2

= Sequence of events as jobs arrive and finish
= Note numbers show amount of CPU time jobs get each interval

Multiprogramming

_ 20% 1/O wait

+ 100 2

3

=] O, i
8 g0 |- 50% /O wait
=

s 60 80% I/O wait
©

S 40

=

T 20

@]

| | I | l l |

4 5 6 7 8 9 10
Degree of multiprogramming

CPU utilization as a function of number of processes
in memory

Multiprogramming

= Several programs
= Concurrently loaded into memory
» OS must arrange memory sharing
= Memory partitioning

= Memory
= Needed for different tasks within a process
= Shared among processes
= Process memory demand may change over time

= Use of secondary storage
= Move (parts of) blocking processes from memory
= Higher degree of multiprogramming possible
= Makes sense if processes block for long times

Memory Management for Multiprogramming

= Process may not be entirely
into memory

= Reasons

= Other processes use memory
» Their turn Registers
= Higher priority |
= Process is waiting for I/O

= Too big Cache(s) 2X
= For its share |
= For entire available memory

= Approaches Paging DRAM 100x
= Swapping Swapping |
= Paging Overlays Disk 10%x

= Overlays

Memory Management for Multiprogramming

= Swapping
= Remove a process from memory
= With all of its state and data

= Store it on a secondary medium
Disk, Flash RAM, other slow RAM, historically also Tape

= Paging How to use these
= Remove part of a process from memory with
= Store it on a secondary medium Virtual Memory
= Sizes of such parts are fixed
= Page size
= Overlays

= Manually replace parts of code and data
= Programmer’s rather than OS'’s work
= Only for very old and memory-scarce systems

Memory Management Techniques

= Before details about moving processes out
= Assign memory to processes

= Memory partitioning
= Fixed partitioning
= Dynamic partitioning
= Simple paging
= Simple segmentation
=« Virtual memory paging
= Virtual memory segmentation

Fixed Partitioning

= Divide memory
=« Into static partitions
= At system initialization time (boot or earlier)

= Advantages
= Very easy to implement
= Can support swapping process in and out

Fixed Partitioning

. e . : 0x0
= Two fixed partitioning OperagﬁBsyStem
schemes
= Equal-size partitions sMB
= Unequal-size partitions 8MB
= Equal-size partitions sMB
= Big programs can not be sMB
executed
= Unless program parts are 8MB
loaded from disk
= Small programs use entire 8MB
partition .
= A problem called “internal ox. . fff

fragmentation”

Fixed Partitioning

= Two fixed partitioning
schemes
= Equal-size partitions
= Unequal-size partitions

= Unequal-size partitions

= Bigger programs can be
loaded at once

= Smaller programs can lead to
less internal fragmentation

= Advantages require
assignment of jobs to
partitions

Operating system| |Operating system

8MB 8MB

7NB
8MB 4MB

6MB
8MB

8MB
8MB

8MB
8MB
SMB 12MB
8MB

16MB
8MB

Fixed Partitioning

= Approach

= Has been used in
mainframes

= Uses the term job for a
running program

= Jobs run as batch jobs

= Jobs are taken from a

queue of pending jobs

= Problem with unequal
partitions

= Choosing a job for a
partition

Operating system
8MB

2MB

4MB

6MB

8MB

8MB

12MB

16MB

Fixed Partitioning

= One queue per partition
« Internal fragmentation is
minimal
= Jobs wait although
sufficiently large
partitions are available

Operating system

8MB

[TITITT1+—> 7NB

TTTTTTT—> 4MB
TITTTITTH 6MB
TTTTTTT—> 8MB
TTTTTT T 8MB
TITTTITT > 12MB
TTTTTTTH—> 16MB

Fixed Partitioning

= Single queue
= Jobs are put into next
sufficiently large
partition
= Waiting time is reduced

« Internal fragmentation is
bigger

= A swapping mechanism
can reduce internal
fragmentation

= Move a job to another
partition

Operating system
8MB

2MB

4MB

6MB

8MB

8MB

12MB

16MB

Dynamic Partitioning

= Divide memory

- Partitio_ns are cr_eated
dynamically for jobs External

= Removed after jobs are fragmentation

finished N

= External fragmentation

= Problem increases with
system running time

= Occurs with swapping as

Operating system
8MB

Swapped in
Process 2
14MB

6MB free

Process 4
8MB

6MB free

Process 3
18MB

well
= Addresses of process 2 Solutions 1o address
Changed change with
Address Translation

4AMB free

Dynamic Partitioning

= Reduce external
fragmentation
« Compaction

= Compaction
= Takes time

« Consumes processing
resources

= Reduce compaction
need
= Placement algorithms

Operating system
8MB

Swapped in
Process 2
14MB

Process 4
8MB

Process 3
18MB

16MB free

Dynamic Partitioning: Placement Algorithms
First

= Use most suitable
partition for process

= Typical algorithms
= First fit
= Next fit
= Best fit

Next

16MB

I 4MB |
8MB

6MB

Best

I AMB—|
8MB

16MB

16MB

8MB

Dynamic Partitioning: Placement Algorithms

= Use most suitable
partition for process

= Typical algorithms
= First fit
= Next fit
= Best fit

First

Best

—4MB—|
[—2MB—]
16MB

10

Dynamic Partitioning: Placement Algorithms

= Comparison of First fit, Next fit and Best fit

= Example is naturally artificial

= First fit
= Simplest, fastest of the three
= Typically the best of the three

= Next fit
= Typically slightly worse than first fit
= Problems with large segments

= Best fit
= Slowest
= Creates lots of small free blocks
= Therefore typically worst

Buddy System !

Process 32kB
. . . Process
= Mix of fixed and dynamic 256KB Process
partitioning
= Partitions have sizes 2% 32kB
L<k<U ' 64kB
o . . Process
= Maintain a list of holes with 256kB
sizes
- A55|gn a process Process
= Find smallest k so that 256KkB
process fits into 2k
= Find a hole of size 2«
= If not available, split smallest
hole larger than 2k 256kB
= Split recursively into halves

until two holes have size 2k

11

Memory use within a process

= Memory needs of
known size
= Program code
= Global variables

= Memory needs of

unknown size Process

= Dynamically allocated
memory
= Stack

= Several in multithreaded
programs

Program?

Memory Addressing

= Addressing in memory

« Addressing needs are
determined during
programming

= Must work independently
of position in memory

= Actual physical address
are not known

R

program

Initialized global
variables

Uninitialized global vars

12

Memory Addressing

PCB
= Addressing in memory L program
« Addressing needs are
determined during
programming
= Must work independently
of position in memory data
« Actual physical address]
are not known
stack
Memory Management
PCB
= Addressing program
= Covered address
translation and virtual data
memory
program
= Important now data
= Translation is necessary
= Therefore possible to data
have several parts
= Pages stack
= Segments

13

Paging

= Paging
« Equal lengths
= Determined by processor

= One page moved into one
memory frames

= Process is loaded into
several frames
= Not necessarily consecutive

= No external fragmentation

= Little internal fragmentation
= Depends on frame size

Segmentation

= Segmentation
= Different lengths
= Determined by programmer
= Memory frames

= Programmer (or compiler toolchain) organizes program in
parts
= Move control
= Needs awareness of possible segment size limits
= Pros and Cons
» Principle as in dynamic partitioning
= No internal fragmentation
= Less external fragmentation because on average smaller segments

14

Paging and Segmentation

= Typical for paging and = Simple paging and segmentation

swapping = Without virtual memory and
= Address translation protection
= At execution time = Can be implemented

= by address rewriting at load time

= With processor support
= by jump tables setup at load time

oApart2n, | ...,Code part 1
LOOkUp (<] offsetin part 2)
table
Y
Simplified
Address translation . & Code part 2
Other needs
PCB
. rogram
= Protection of process program SR
from itself
_ data
= (stack grows into heap)
= Protection of processes stack
from each other data
= (write to other process) u program
data
Solutions to protection stk
with
Address Translation stack

15

Summary of Memory Management Algorithms

= Algorithms
= Paging and segmentation
= To be extended in address translation and virtual memory lectures
= Placement algorithms for partitioning strategies
= Mostly obsolete for system memory management
since hardware address translation is available
= But still necessary for managing
kernel memory
memory within a process
memory of specialized systems (esp. databases)

= Address translation solves
= Solves addressing in a loaded program
= Hardware address translation
= Supports protection from data access
= Supports new physical memory position after swapping in
= Virtual memory provides
= Provide larger logical than physical memory
= Selects process, page or segment for removal from physical memory

16

