
1

Memory Management

Carsten Griwodz
University of Oslo

(includes slides from A. Tanenbaum and M. van Steen)

Motivation
! In project assignments so far

! Program code is linked to kernel
! Physical addresses are well-known
! Not realistic

! In the real world
! Programs are loaded dynamically
! Physical addresses it will get are not known to

program
! Program size at run-time is not known to kernel

2

Memory Management for Monoprogramming

! Only one user program loaded
! Program is entirely in memory
! No swapping or paging

! Three simple ways of organizing memory

OS in ROM
0x0 0xfff….

User program

OS in RAM
0x0 0xfff….

User program

OS in RAM
0x0 0xfff….

User program Devs in ROM
MS-DOS, …

Old mainframes and minicomputers

C64, ZX80, …Some PDAs, embedded systems

Multiprogramming
! Processes have to wait for I/O
! Goal

! Do other work while a process waits
! Give CPU to another process

! Processes may be concurrently ready
! So

! If I/O waiting probability for all processes is p
! Probable CPU utilization can be estimated as

CPU utilization = 1 - pn

3

Multiprogramming

8210:204

8210:153

12310:102

16410:001

IO wait
time

CPU use
time

Arrival
time

Job#

! Sequence of events as jobs arrive and finish
! Note numbers show amount of CPU time jobs get each interval

processors

18

36

64

2

151620
CPU per
process

594920CPU busy

415180CPU idle

431%

2.0 0.9

0.9

0.7

0.8

0.8

0.8

0.3

0.3

0.3

0.3

0.9

0.9

0.9

2

3

4

1

0.1

0.1

22 27.6
28.2

31.7

time

10 15 200

! Arrival and work requirements of 4 jobs
! CPU utilization for 1-4 jobs with 80% I/O wait

1
2
3
4

2.0
3.0
1.1
2.1
2.0

0.3
1.2
1.1
2.0

1.0
0.9
1.70.7

0.1

0.8

Remaining CPU time

Multiprogramming

! CPU utilization as a function of number of processes
in memory

Degree of multiprogramming

4

Multiprogramming
! Several programs

! Concurrently loaded into memory
! OS must arrange memory sharing
! Memory partitioning

! Memory
! Needed for different tasks within a process
! Shared among processes
! Process memory demand may change over time

! Use of secondary storage
! Move (parts of) blocking processes from memory
! Higher degree of multiprogramming possible
! Makes sense if processes block for long times

Memory Management for Multiprogramming

! Process may not be entirely
into memory

! Reasons
! Other processes use memory

! Their turn
! Higher priority
! Process is waiting for I/O

! Too big
! For its share
! For entire available memory

! Approaches
! Swapping
! Paging
! Overlays

Registers

Cache(s)

DRAM

Disk

2x

100x

109x

Paging
Swapping
Overlays

5

Memory Management for Multiprogramming

! Swapping
! Remove a process from memory

! With all of its state and data
! Store it on a secondary medium

! Disk, Flash RAM, other slow RAM, historically also Tape

! Paging
! Remove part of a process from memory

! Store it on a secondary medium
! Sizes of such parts are fixed
! Page size

! Overlays
! Manually replace parts of code and data

! Programmer�s rather than OS�s work
! Only for very old and memory-scarce systems

How to use these
with

Virtual Memory

Memory Management Techniques
! Before details about moving processes out

! Assign memory to processes

! Memory partitioning
! Fixed partitioning
! Dynamic partitioning
! Simple paging
! Simple segmentation
! Virtual memory paging
! Virtual memory segmentation

6

Fixed Partitioning

! Divide memory
! Into static partitions
! At system initialization time (boot or earlier)

! Advantages
! Very easy to implement
! Can support swapping process in and out

Fixed Partitioning
! Two fixed partitioning

schemes
! Equal-size partitions
! Unequal-size partitions

! Equal-size partitions
! Big programs can not be

executed
! Unless program parts are

loaded from disk

! Small programs use entire
partition

! A problem called �internal
fragmentation�

Operating system
8MB

8MB

8MB

8MB

8MB

8MB

8MB

8MB

0x0

0x…fff

7

Fixed Partitioning
! Two fixed partitioning

schemes
! Equal-size partitions
! Unequal-size partitions

! Unequal-size partitions
! Bigger programs can be

loaded at once
! Smaller programs can lead to

less internal fragmentation
! Advantages require

assignment of jobs to
partitions

Operating system
8MB

8MB

8MB

8MB

8MB

8MB

8MB

8MB

Operating system
8MB

8MB

8MB

2MB
4MB

6MB

12MB

16MB

Fixed Partitioning
! Approach

! Has been used in
mainframes

! Uses the term job for a
running program

! Jobs run as batch jobs
! Jobs are taken from a

queue of pending jobs
! Problem with unequal

partitions
! Choosing a job for a

partition

Operating system
8MB

8MB

8MB

2MB
4MB

6MB

12MB

16MB

8

Fixed Partitioning
! One queue per partition

! Internal fragmentation is
minimal

! Jobs wait although
sufficiently large
partitions are available

Operating system
8MB

8MB

8MB

2MB
4MB

6MB

12MB

16MB

Fixed Partitioning
! Single queue

! Jobs are put into next
sufficiently large
partition

! Waiting time is reduced
! Internal fragmentation is

bigger

! A swapping mechanism
can reduce internal
fragmentation

! Move a job to another
partition

Operating system
8MB

8MB

8MB

2MB
4MB

6MB

12MB

16MB

9

Dynamic Partitioning
! Divide memory

! Partitions are created
dynamically for jobs

! Removed after jobs are
finished

! External fragmentation
! Problem increases with

system running time
! Occurs with swapping as

well
! Addresses of process 2

changed

Operating system
8MB

56MB free

Process 1
20MB

36MB free

22MB free

Process 2
14MB

4MB free

Process 3
18MB

14MB free

Process 4
8MB

6MB free

20MB free

Process 5
14MB

6MB

External
fragmentation

Swapped in
Process 2

14MB

6MB free

Solutions to address
change with

Address Translation

Operating system
8MB

Dynamic Partitioning
! Reduce external

fragmentation
! Compaction

! Compaction
! Takes time
! Consumes processing

resources

! Reduce compaction
need
! Placement algorithms

4MB free

Process 3
18MB

Process 4
8MB

6MB free

Swapped in
Process 2

14MB

6MBProcess 4
8MB

6MB free
Process 3

18MB

6MB free

6MB free

16MB free

10

Dynamic Partitioning: Placement Algorithms

! Use most suitable
partition for process

! Typical algorithms
! First fit
! Next fit
! Best fit

128MB 128MB 128MB

16MB 16MB16MB

4MB 4MB 4MB
8MB 8MB 8MB
6MB 6MB 6MB

16MB 16MB 16MB

8MB 8MB 8MB

4MB

4MB

4MB

8MB
8MB

8MB

6MB

6MB

6MB

8MB

8MB

8MB

16MB

16MB

16MB

32MB 32MB

32MB

First Next Best

Dynamic Partitioning: Placement Algorithms

! Use most suitable
partition for process

! Typical algorithms
! First fit
! Next fit
! Best fit

128MB 128MB

4MB 4MB

16MB 16MB

4MB

4MB

8MB

6MB

6MB

8MB

32MB 32MB

12MB

12MB

12MB

12MB

10MB

10MB

16MB 16MB

8MB
8MB

First Best

11

Dynamic Partitioning: Placement Algorithms

! Comparison of First fit, Next fit and Best fit
! Example is naturally artificial

! First fit
! Simplest, fastest of the three
! Typically the best of the three

! Next fit
! Typically slightly worse than first fit
! Problems with large segments

! Best fit
! Slowest
! Creates lots of small free blocks
! Therefore typically worst

Buddy System
! Mix of fixed and dynamic

partitioning
! Partitions have sizes 2k,

L ≤ k ≤ U

! Maintain a list of holes with
sizes

! Assign a process
! Find smallest k so that

process fits into 2k

! Find a hole of size 2k

! If not available, split smallest
hole larger than 2k

! Split recursively into halves
until two holes have size 2k

Process
128kB

1MB

512kB

512kB

256kB

256kB

128kB

128kB

Process
128kB

Process
256kB

256kB

Process
256kB

256kB
Process
256kB

Process 32kB

64kB
64kB

32kB
32kBProcess 32kB

12

Memory use within a process
! Memory needs of

known size
! Program code
! Global variables

! Memory needs of
unknown size
! Dynamically allocated

memory
! Stack

! Several in multithreaded
programs

program

Initialized global
variables (data)

Uninitialized global vars

Program

PCB

Uninitialized global
variablesdata

stack

Possibly stacks for more threads

Process

Memory Addressing
! Addressing in memory

! Addressing needs are
determined during
programming

! Must work independently
of position in memory

! Actual physical address
are not known

program

Initialized global
variables

Uninitialized global vars

13

Memory Addressing
! Addressing in memory

! Addressing needs are
determined during
programming

! Must work independently
of position in memory

! Actual physical address
are not known

program

PCB

data

stack

Memory Management
! Addressing

! Covered address
translation and virtual
memory

! Important now
! Translation is necessary
! Therefore possible to

have several parts
! Pages
! Segments

program

PCB

stack

data

data

data

program

14

Paging
! Paging

! Equal lengths
! Determined by processor
! One page moved into one

memory frames

! Process is loaded into
several frames
! Not necessarily consecutive

! No external fragmentation
! Little internal fragmentation

! Depends on frame size

Process 1Process 2Process 3Process 4Process 5Process 1

Segmentation
! Segmentation

! Different lengths
! Determined by programmer
! Memory frames

! Programmer (or compiler toolchain) organizes program in
parts
! Move control
! Needs awareness of possible segment size limits

! Pros and Cons
! Principle as in dynamic partitioning
! No internal fragmentation
! Less external fragmentation because on average smaller segments

15

Paging and Segmentation
! Typical for paging and

swapping
! Address translation
! At execution time
! With processor support

! Simple paging and segmentation
! Without virtual memory and

protection
! Can be implemented

! by address rewriting at load time
! by jump tables setup at load time

Code part 1

Code part 2

(“part 2”,
offset in part 2)Lookup

table

+
Simplified
Address translation

Other needs
! Protection of process

from itself
! (stack grows into heap)

! Protection of processes
from each other
! (write to other process)

program

PCB

data

stack

program

data

stack

program

data

stack
Solutions to protection

with
Address Translation

16

Summary of Memory Management Algorithms

! Algorithms
! Paging and segmentation

! To be extended in address translation and virtual memory lectures
! Placement algorithms for partitioning strategies

! Mostly obsolete for system memory management
! since hardware address translation is available

! But still necessary for managing
! kernel memory
! memory within a process
! memory of specialized systems (esp. databases)

! Address translation solves
! Solves addressing in a loaded program

! Hardware address translation
! Supports protection from data access
! Supports new physical memory position after swapping in

! Virtual memory provides
! Provide larger logical than physical memory
! Selects process, page or segment for removal from physical memory

