File Systems

Zeljko Vrba

University of Oslo

(includes content by: Carsten Griwodz, Pal Halvorsen, Kai Li,
Matija Puzar and Andrew Tannenbaum)

i Files vs. disks

s Disks:

block oriented
physical addressing
(legacy - CHS or
sector numbers -
LBA)

no protection among
applications

crash recovery

= File system
abstraction:

= (most often) byte
oriented files

= provides logical
naming

= ensures proper
sharing and
concurrent access

= more robust to
crashes

i File structures and types

= Structure: provided by = Type: interpretation of

the OS the content
= Unstructured files = Multiple applications for
= sequence of bytes, single data type (e.g.
uniterpreted by the OS audio, images, HTML,
= UNIX, Windows text, etc.)
= Structured: = Can be interpreted by
= record sequence, B-tree the OS (e.g. UNIX —
(key->value mapping) directories, devices,
= MacOS (to some extent), etc.)

MVS

i Unstructured files

= Most common today
= Windows: text/binary distinction

= Other structures: application level

= Access type:

= sequential read/write (mostly used with magnetic
tapes)
= Random access: seek to any position within a file

= Sparse files

the OS, common for all
files

crucial for normal OS,
file system and
application operation

owner, permissions,
access times, size, ACL,
compression,
encryption, type
(regular...), device
numbers, etc...

i File metadata (attributes)

= Standard: predefined by

extended: arbitrary key
-> value mapping
attached to the file

can be used e.g. for
data indexing or
advanced security
schemes

often specific for a
single application
namespace problem

(unrelated app. using
same keys)

i Naming

= Each file has a name by which it is accessed
= Early FS: flat or single-level

= Modern FS:

= files and directories

= Mmultiple-level tree hierarchy

= links: single file with multiple names

= files named by paths

= the concept of current working directory
= relative paths

i A hierarchical directory system

—~—Root directory

User
directory_ |

parent-child relationship of directories (. and .. entries)

Path names

= path is composed of /

bin |=— Root directory

files and directories -
= file can be only the last /(%\
component of a path

bin etc lib usr tmp

= Mmultiple roots (e.qg. =
Windows and drive
letters; mounts (
provided too) = g

= actual syntax depends
on the OS

s Hard links

HL

DIR2

« file and its “original”
are indistinguishable

e = reference counting
= Symbolic links

SL

DIR3

FILE2 HL—

L = “pointer” to another
file
= special type of file

i File operations

= Create, delete (unlink), rename, get/set
attrlbutes create link

= often do not require that a file is open (sometimes
even impossible on open files)

= Open
= hame-+mode; returns a file descriptor
= close, read, write, append, seek, memory
mapping
= require open files
= close mandatory

= current file position

i User-level API

= Portable C <stdio.h>
= fopen, fclose, fread, fwrite, fprintf, fscanf, fseek, ..
« OS-independent, but limited in functionality
= layer over the..

= ..0S native API
= specific to each OS
= POSIX and Win32 most widely used
= POSIX: open, close, read, write, fcntl, Iseek, ..

= hon-portable, but more features (sometimes
essential, e.g. network communication)

i Directory operations

= Ccreate, delete, rename
= what if the directory is not empty?

= opendir, closedir, readdir
m lINk?

i The buffer cache (1)

read(fd, buf, n)

find the disk block
corresponding to
current file position

On a hit
= copy from the buffer
cache to a user buffer
On a miss
= replacement if necessary

= read a file into the buffer
cache

User buffer

|

File buffer
cache

|

Disks

The buffer cache (2)

= write(fd, buffer, n)

s find the disk block
corresponding to current file User buffer
position
= Onahit y
= write to buffer cache File buffer
= On amiss cache
= read the file to buffer cache
if the file exists (possible

replacement) i
= write to buffer cache Disks

= When do you write the
buffer cache to disk?

= In what order?

i The buffer cache (3)

= 1IN kernel

= All processes share User User User
the same buffer process| |process| *** |process
cache

= Global LRU = —mmmmmmmmmmmm—mmm—m——-

= If moved to user
buffer:

= duplications
= pinning

Buffer cache

Memory mapping

file mapped into two different processes
Process A Physical memory Process B
Stack pointer —>-| ::::u.u_ —'_,::: ‘} l<— Stack pointer
7777777777
B } Mapped file
Mapped file { v
Unused .
memory ;/;//ff//
\f//// o
. \
20K —pss—] 777777 EeEm 24K
Data _¢:=::—’-‘_, e "'-..__‘\: ——-b.._a.ié_,__
2i Ll —"/'“ 2 -““\\ Text 2E

must maintain consistency with the buffer cache

i On-disk layout

- Entire disk -
Partition table Disk partition \
MBR
Boot block | Super block | Free space mgmt |-nodes Root dir Files and directories

i Free space management

Free disk blocks: 16, 17, 18

42

/‘

136

210

97

41

63

21

48

262

310

516

|/

A 1 KB disk block can hold 256

32-bit disk block numbers

1001101101101100

01101101111101M

1010110110110110

0110110110111011

1110111011101111

1101101010001111

0000111011010111

1011101101101111

1100100011101111

0111011101110111

230 Vam 86
162 234
612 897
342 422
214 140
160 223
664 223
216 160
320 126
180 142
482 141

1101111101110111

(@

A bit map

()

units: file system
blocks (different
from disk sectors)

free list

bitmap: how large it
needs to be for a
whole disk,
depending on the
block size?

Implementing files: contiguous

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
r—% r—"% r k] r—Aﬁ
EEEEEEEEEEEEESEESSEEEEEEEEEEEEEEEEEEEEEEN
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)
% e ———— I s 5 —e—sy
EEEEEENEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
File B 5 Free blocks 6 Free blocks
(b)
file header: start sector pros: fast sequential and easy random
and # of sectors access
(b): after removing D and cons: external fragmentation and hard to

E grow files

i Implementing files: linked lists

File A

file header points to the first
File File File File File bIOCk Of f||e, eaCh blOCk

block block block block block

Y
Y
Y
Y
o

g 1 2 : ‘ points to the next
Physical 4 s 2 10 12
block . .
File B pros: easy growing; free list

S g N, I S g . similar to regular file
File File File File
block block block block]
. 1 : ° cons: horrible random

Physical 6 3 11 14

bl access, unreliable (what
happens if a block is lost?)

Implementing files: FAT

Physical
block

0

0~ o O W N =

w

10
11
12
13
14
15

10

11

- File A starts here

—-—— File B starts here

12

14

——— Unused block

A 4,7, 2,10, 12; B: 6, 11, 14

allocation for a single-block file?

A section of disk for each
partition is reserved

One entry for each block

A file is a linked list of
blocks

A directory entry points
to the 1st block of the file

pros: simple

cons: always go to FAT,;
wasting space

i Implementing files: inode

Inode contains both

data the attributes and file
/ block addresses
Tz data direct, 1-, 2-, and 3-
%%: - -~ level indirect blocks
FERWAN ' ala In favor of small files,
\ , can grow, lots of seeks
data for large files

maximum file size?

data

i Implementing directories (1)

] | /
games | attributes games | o
mail | attributes mail ! a4
I ' |
news i attributes news i |
work | attributes work | \\
(a) (b) Data structure
containing the
attributes

(a) fixed size-entries, inline attributes

(b) each entry refers to i-node which holds all attributes (incl.
reference count)

‘L Implementing directories (2)

File 1 entry length - Pointer to file 1's name Entry . .
— — oo Handling names:
File 1 attributes File 1 attributes file
Entry - S - - —
for one P " J Pointer to file 2's name . .
fil € ¢ = I
e b u d 9 File 2 attributes (a) I n I n e
L e t X . Pointer to file 3's name
File 2 entry length b . h
File 3 attributes (I n a eap
File 2 attributes
p 2 r
o n n e

-

' X
File 3 entry length

File 3 attributes

Heap

-+ |J|=|—~|lCcC |0
oo v |Klal~|o
o|—|o|o|a

m% olo|oc|e|o

i Implementing directories (3)

s Association <name, inode>
= Linked lists: stored linearly in a special type
of file

= simple but slow for large directories (manual
hashing schemes!)

= Trees (balanced); sorted by some criterion

= efficient for large directories; complex; more
space and may be slower for small # of files

= Hashing

i Implementation: structures

USER SPACE

open(“/home/zvrba/
testfile”,0_RDONLY)

«——RETURN FD———

—{ close, read, write, Iseek... ‘

——PROCESS1—

KERNEL SPACE

LOOKUP NAME

LINK UP DATA STRUCTURES

PROCESS1 PCB

[

NAME CACHE

/->1

/home -> 18823

/home/zvrba -> 994

/home/zvrbaltestfile -> 1172

current position

empty

GLOBAL OPEN FILE
current directory TABLE
FDO inode 18823
—» file descriptor 1 index to FD1 inode 994
—» file descriptor 2 index to FD2 > inode 1172
empty lock ranges...
empty
—PROCESS1—
PROCESS2 PCB
current directory
FDO
ﬂ file descriptor 1 index to FD1 —
FD2
open mode

file descriptors
are valid only
within a single
process

name cache
speeds up name
lookup

no duplicate
Inodes

i Implementation: VFS

= UNIX: the VES layer
= Object-oriented

= uniform support for multiple file
systems

i Example operations

= Create /home/zvrba/testfile
= Create directory entry and inode; ctime

= Write some bytes

= find inode, write bytes; mtime
= Read some bytes

= find inode, read bytes; atime

= What about just ./testfile in CWD?

i The MS-DOS file system (FAT)

Bytes

directory entry

8 3 1 10 2 2 2 4
File name /, \//////{/% T \ \\ Size
Extension Attributes Reserved Time Date First
block
number
Block size | FAT-12 FAT-16 FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1TB
8 KB 512 MB 21TB
16 KB 1024 MB 21TB
32 KB 2048 MB 2 TB

maximum partition
for different block
sizes (cluster)

empty: forbidden
combination

i Win98 file system (VFAT)

ByteS s 8 3 111 4 2 2 4 2 4
moname | en | [N] [Gomen [1] [imwie] [ress| extended directory entry
Alirbolss Sec Upper 16 bits Lower 16 bits
of starting of starting
block block
Bytes 10 11 1 12 2 4 . .
5 characters 0 6 characters 0 |2 characters entry Or_ (a part) 0 Ong
N / file name
Seguence Attributes
Checksum
c . .
68| d o g Alo|g 0 how long file name is
Cc i -
il « alolel + h e Coalol|z stored in a backward
G compatible way
2| w n f o |A[O|k| x j u m p 0 s
c
11 T h e q [A[O0|k]|] u i c k b 0 r o
N Creation |Last Last)
TIHEQU | =~ 1 AlT]S time acc | Upp write Low Size
Bytes N I Y B B LI L L IO L L L L LB

UNIX V7 file system

directory entry (max. 14 chars) | Blgei 152 IFncEei2 Block 402
-node 6 is /usr is for is /usr/ast
By-te s 2 14 Root directory is for fusr directory /usr/ast directory
1. 6|~ 26 |
Mode Mode
File name 1] .. size 1] e size 6| -
ti ti
; 4 | bin mes 19 | dick e 64 | grants
T 7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
|-node 9 | efc 26 | ast 81 | minix
number 6 | usr 45 | bal 17 | src
: 8 | tm
I:ode . P I-node 6 |-node 26
Attributes | . Single |n0de Looking up says that Jusr/ast says that /usr/ast/mbox
T, indirect usr yields lusris in is i-node lusr/astis in is i-node
8 fe— Hok " i-node 6 block 132 26 block 406 60
o 7 Double dress
o - i - data blocks
] indirect 3 .
g block 1. looking up /usr/ast/mbox
2

=g ‘
_=
\\ Triple 4
indirect [~ 3+

block

_/ 4

'

In UNIX, (almost) everything is a file!

i NTFS file system

= uses 64-bit disk addressing; largest file
2764 bytes

= unicode file names

= case-sensitive, but not fully supported
by WIin32 API

= file streams
= on-the-fly compression and encryption

i Log structured file systems

= Motivation: slow system startup times
after crash on large file systems

= Transactions and guaranteed
consistency of data and/or metadata

s ReiserFS, XFS, JFS, NTFS
= Iinternally use balanced trees for directories

	File Systems
	Files vs. disks
	File structures and types
	Unstructured files
	File metadata (attributes)
	Naming
	A hierarchical directory system
	Path names
	Links
	File operations
	User-level API
	Directory operations
	The buffer cache (1)
	The buffer cache (2)
	The buffer cache (3)
	Memory mapping
	On-disk layout
	Free space management
	Implementing files: contiguous
	Implementing files: linked lists
	Implementing files: FAT
	Implementing files: inode
	Implementing directories (1)
	Implementing directories (2)
	Implementing directories (3)
	Implementation: structures
	Implementation: VFS
	Example operations
	The MS-DOS file system (FAT)
	Win98 file system (VFAT)
	UNIX V7 file system
	NTFS file system
	Log structured file systems

