
File Systems

Željko Vrba
University of Oslo

(includes content by: Carsten Griwodz, Pål Halvorsen, Kai Li,
Matija Pužar and Andrew Tannenbaum)

Files vs. disks

Disks:
block oriented
physical addressing
(legacy - CHS or
sector numbers -
LBA)
no protection among
applications
crash recovery

File system
abstraction:

(most often) byte
oriented files
provides logical
naming
ensures proper
sharing and
concurrent access
more robust to
crashes

File structures and types
Structure: provided by
the OS
Unstructured files

sequence of bytes,
uniterpreted by the OS
UNIX, Windows

Structured:
record sequence, B-tree
(key->value mapping)
MacOS (to some extent),
MVS

Type: interpretation of
the content
Multiple applications for
single data type (e.g.
audio, images, HTML,
text, etc.)
Can be interpreted by
the OS (e.g. UNIX –
directories, devices,
etc.)

Unstructured files

Most common today
Windows: text/binary distinction

Other structures: application level
Access type:

sequential read/write (mostly used with magnetic
tapes)
Random access: seek to any position within a file

Sparse files

File metadata (attributes)
standard: predefined by
the OS, common for all
files
crucial for normal OS,
file system and
application operation
owner, permissions,
access times, size, ACL,
compression,
encryption, type
(regular...), device
numbers, etc...

extended: arbitrary key
-> value mapping
attached to the file
can be used e.g. for
data indexing or
advanced security
schemes
often specific for a
single application
namespace problem
(unrelated app. using
same keys)

Naming

Each file has a name by which it is accessed
Early FS: flat or single-level
Modern FS:

files and directories
multiple-level tree hierarchy
links: single file with multiple names
files named by paths
the concept of current working directory
relative paths

A hierarchical directory system

parent-child relationship of directories (. and .. entries)

Path names
path is composed of
files and directories
file can be only the last
component of a path
multiple roots (e.g.
Windows and drive
letters; mounts
provided too)
actual syntax depends
on the OS

Links
DIR1

DIR2 FILE1

FILE2

HL

HL

DIR3

HL

SL

Hard links
file and its “original”
are indistinguishable
reference counting

Symbolic links
“pointer” to another
file
special type of file

File operations
create, delete (unlink), rename, get/set
attributes, create link

often do not require that a file is open (sometimes
even impossible on open files)

open
name+mode; returns a file descriptor

close, read, write, append, seek, memory
mapping

require open files
close mandatory
current file position

User-level API

Portable C <stdio.h>
fopen, fclose, fread, fwrite, fprintf, fscanf, fseek, ..
OS-independent, but limited in functionality
layer over the..

..OS native API
specific to each OS
POSIX and Win32 most widely used
POSIX: open, close, read, write, fcntl, lseek, ..
non-portable, but more features (sometimes
essential, e.g. network communication)

Directory operations

create, delete, rename
what if the directory is not empty?

opendir, closedir, readdir
link?

The buffer cache (1)
read(fd, buf, n)
find the disk block
corresponding to
current file position
On a hit

copy from the buffer
cache to a user buffer

On a miss
replacement if necessary
read a file into the buffer
cache

File buffer
cache

Disks

User buffer

The buffer cache (2)
write(fd, buffer, n)
find the disk block
corresponding to current file
position
On a hit

write to buffer cache
On a miss

read the file to buffer cache
if the file exists (possible
replacement)
write to buffer cache

When do you write the
buffer cache to disk?
In what order?

File buffer
cache

Disks

User buffer

The buffer cache (3)

in kernel
All processes share
the same buffer
cache
Global LRU

if moved to user
buffer:

duplications
pinning

User
process

User
process

User
process. . .

Buffer cache

Memory mapping

file mapped into two different processes

must maintain consistency with the buffer cache

On-disk layout

Free space management

units: file system
blocks (different
from disk sectors)

free list

bitmap: how large it
needs to be for a
whole disk,
depending on the
block size?

Implementing files: contiguous

file header: start sector
and # of sectors

(b): after removing D and
E

pros: fast sequential and easy random
access

cons: external fragmentation and hard to
grow files

Implementing files: linked lists

file header points to the first
block of file; each block
points to the next

pros: easy growing; free list
similar to regular file

cons: horrible random
access, unreliable (what
happens if a block is lost?)

Implementing files: FAT

A: 4, 7, 2, 10, 12; B: 6, 11, 14

allocation for a single-block file?

A section of disk for each
partition is reserved

One entry for each block

A file is a linked list of
blocks

A directory entry points
to the 1st block of the file

pros: simple

cons: always go to FAT;
wasting space

Implementing files: inode

1
2

data

data
...

11
12
13

data
...

... data
...

... data
...

...

inode contains both
the attributes and file
block addresses

direct, 1-, 2-, and 3-
level indirect blocks

in favor of small files,
can grow, lots of seeks
for large files

maximum file size?

Implementing directories (1)

(a) fixed size-entries, inline attributes

(b) each entry refers to i-node which holds all attributes (incl.
reference count)

Implementing directories (2)

Handling names:

(a) in-line

(b) in a heap

Implementing directories (3)

Association <name, inode>
Linked lists: stored linearly in a special type
of file

simple but slow for large directories (manual
hashing schemes!)

Trees (balanced); sorted by some criterion
efficient for large directories; complex; more
space and may be slower for small # of files

Hashing

Implementation: structures

file descriptors
are valid only
within a single
process

name cache
speeds up name
lookup

no duplicate
inodes

file descriptor 2 index to

file descriptor 1 index to

file descriptor 1 index to

USER SPACE

NAME CACHE

/home -> 18823

/home/zvrba -> 994

/home/zvrba/testfile -> 1172

...

/ -> 1

close, read, write, lseek...

KERNEL SPACE

open(“/home/zvrba/
testfile”,O_RDONLY)

LOOKUP NAME
LINK UP DATA STRUCTURES

RETURN FD

PROCESS2 PCB

FD0

FD1

FD2
open mode
current position
...

empty

current directory

PROCESS1 PCB

FD0

FD1

FD2

empty

empty

current directory
GLOBAL OPEN FILE

TABLE

inode 18823

inode 994

inode 1172
lock ranges...

PROCESS1

PROCESS1

Implementation: VFS

UNIX: the VFS layer
object-oriented
uniform support for multiple file
systems

Example operations

Create /home/zvrba/testfile
create directory entry and inode; ctime

Write some bytes
find inode, write bytes; mtime

Read some bytes
find inode, read bytes; atime

What about just ./testfile in CWD?

The MS-DOS file system (FAT)

directory entry

maximum partition
for different block
sizes (cluster)

empty: forbidden
combination

Win98 file system (VFAT)

Bytes

Checksum

Bytes extended directory entry

entry for (a part) of long
file name

how long file name is
stored in a backward-

compatible way

UNIX V7 file system
directory entry (max. 14 chars)

inode

looking up /usr/ast/mbox

in UNIX, (almost) everything is a file!

NTFS file system

uses 64-bit disk addressing; largest file
2^64 bytes
unicode file names
case-sensitive, but not fully supported
by Win32 API
file streams
on-the-fly compression and encryption

Log structured file systems

Motivation: slow system startup times
after crash on large file systems
Transactions and guaranteed
consistency of data and/or metadata
ReiserFS, XFS, JFS, NTFS

internally use balanced trees for directories

	File Systems
	Files vs. disks
	File structures and types
	Unstructured files
	File metadata (attributes)
	Naming
	A hierarchical directory system
	Path names
	Links
	File operations
	User-level API
	Directory operations
	The buffer cache (1)
	The buffer cache (2)
	The buffer cache (3)
	Memory mapping
	On-disk layout
	Free space management
	Implementing files: contiguous
	Implementing files: linked lists
	Implementing files: FAT
	Implementing files: inode
	Implementing directories (1)
	Implementing directories (2)
	Implementing directories (3)
	Implementation: structures
	Implementation: VFS
	Example operations
	The MS-DOS file system (FAT)
	Win98 file system (VFAT)
	UNIX V7 file system
	NTFS file system
	Log structured file systems

