
1

1

Memory Management

• Basic memory management:
• Mono- and multi-programming
• Fixed and varaible memory partitioning

• Swapping
• Paging
• Segmentation 
• Virtual memory (paging)
• Page replacement algorithms
• Design issues for paging systems
• Implementation issues

Vera Goebel
Department of Informatics, University of Oslo

with slides from: C. Griwodz (Ifi/UiO), P. Halvorsen
(Ifi/UiO), K. Li (Princeton), A. Tanenbaum (VU 
Amsterdam), and M. van Steen (VU Amsterdam)

2

Motivation
• In project assignments so far

– Program code is linked to kernel
– Physical addresses are well-known
– Not realistic

• In the real world
– Programs are loaded dynamically
– Physical addresses it will get are not known to 

program
– Program size at run-time is not known to kernel

3

Memory Management

• Ideally programmers want memory that is
– large
– fast
– non volatile

• Memory hierarchy
– small amount of fast, expensive memory – cache 
– some medium-speed, medium price main memory
– gigabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy
4

Computer Hardware Review 

• Typical memory hierarchy
– numbers shown are rough approximations

5

Memory Management for Monoprogramming

• Only one user program loaded
– Program is entirely in memory
– No swapping or paging

• Three simple ways of organizing memory

OS in ROM
0x0 0xfff….

User program

OS in RAM
0x0 0xfff….

User program

OS in RAM
0x0 0xfff….

User program Devs in ROM
MS-DOS, …

Old mainframes and minicomputers

C64, ZX80, …Some PDAs, embedded systems

6

Basic Memory Management
Monoprogramming without Swapping or Paging

Three simple ways of organizing memory
- an operating system with one user process



2

7

Multiprogramming

• Processes have to wait for I/O
• Goal

– Do other work while a process waits
– Give CPU to another process

• Processes may be concurrently ready
• So

– If I/O waiting probability for all processes is p
– Probable CPU utilization can be estimated as

CPU utilization = 1 - pn

8

Multiprogramming

8210:204

8210:153

12310:102

16410:001

IO 
wait
time

CPU 
use
time

Arriv
al

time
Job#

• Sequence of events as jobs arrive and finish
– Note numbers show amount of CPU time jobs get each interval

# processors

18

36

64

2

151620
CPU per
process

594920CPU busy

415180CPU idle

431%

2.0 0.9

0.9

0.7

0.8

0.8

0.8

0.3

0.3

0.3

0.3

0.9

0.9

0.9

2

3

4

1

0.1

0.1

22 27.6
28.2

31.7

time

10 15 200

• Arrival and work requirements of 4 jobs
• CPU utilization for 1-4 jobs with 80% I/O wait

1
2
3
4

2.0
3.0
1.1
2.1
2.0

0.3
1.2
1.1
2.0

1.0
0.9
1.70.7

0.1

0.8

Remaining CPU time

9

Analysis of Multiprogramming System 
Performance

• Arrival and work requirements of 4 jobs
• CPU utilization for 1 – 4 jobs with 80% I/O wait
• Sequence of events as jobs arrive and finish

– note numbers show amout of CPU time jobs get in each interval 10

Multiprogramming

• CPU utilization as a function of number of 
processes in memory

Degree of multiprogramming

11

Multiprogramming
• Several programs

– Concurrently loaded into memory
– OS must arrange memory sharing
– Memory partitioning

• Memory
– Needed for different tasks within a process
– Shared among processes
– Process memory demand may change over time

• Use of secondary storage
– Move (parts of) blocking processes from memory
– Higher degree of multiprogramming possible
– Makes sense if processes block for long times

12

Memory Management for Multiprogramming

• Process may not be entirely in memory
• Reasons

– Other processes use memory
• Their turn
• Higher priority
• Process is waiting for I/O

– Too big
• For its share
• For entire available memory

• Approaches
– Swapping
– Paging
– Overlays

Registers

Cache(s)

DRAM

Disk

2x

100x

109x

Paging
Swapping
Overlays



3

13

Memory Management for Multiprogramming

• Swapping
– Remove a process from memory

• With all of its state and data
• Store it on a secondary medium

– Disk, Flash RAM, other slow RAM, historically also Tape

• Paging
– Remove part of a process from memory

• Store it on a secondary medium
• Sizes of such parts are fixed
• Page size

• Overlays
– Manually replace parts of code and data

• Programmer’s rather than OS’s work
• Only for very old and memory-scarce systems

How to use these
with

Virtual Memory

14

Memory Management Techniques
• Before details about moving processes out

– Assign memory to processes

• Memory partitioning
– Fixed partitioning
– Dynamic partitioning
– Simple paging
– Simple segmentation
– Virtual memory paging
– Virtual memory segmentation

15

Multiprogramming with Fixed Partitions

• Fixed memory partitions
– separate input queues for each partition
– single input queue

16

Fixed Partitioning

• Divide memory
– Into static partitions
– At system initialization time (boot or earlier)

• Advantages
– Very easy to implement
– Can support swapping process in and out

17

Fixed Partitioning

• Two fixed partitioning 
schemes
– Equal-size partitions
– Unequal-size partitions

• Equal-size partitions
– Big programs can not be 

executed
• Unless program parts are 

loaded from disk
– Small programs use entire 

partition
• A problem called “internal 

fragmentation”

Operating system
8MB

8MB

8MB

8MB

8MB

8MB

8MB

8MB

0x0

0x…fff

18

Fixed Partitioning
• Two fixed partitioning 

schemes
– Equal-size partitions
– Unequal-size partitions

• Unequal-size partitions
– Bigger programs can be 

loaded at once
– Smaller programs can lead 

to less internal 
fragmentation

– Advantages require 
assignment of jobs to 
partitions

Operating system
8MB

8MB

8MB

8MB

8MB

8MB

8MB

8MB

Operating system
8MB

8MB

8MB

2MB
4MB
6MB

12MB

16MB



4

19

Fixed Partitioning
• Approach

– Has been used in 
mainframes

– Uses the term job for a 
running program

– Jobs run as batch jobs
– Jobs are taken from a 

queue of pending jobs
• Problem with unequal 

partitions
– Choosing a job for a 

partition

Operating system
8MB

8MB

8MB

2MB
4MB
6MB

12MB

16MB

20

Fixed Partitioning

• One queue per 
partition
– Internal fragmentation 

is minimal
– Jobs wait although 

sufficiently large 
partitions are available

Operating system
8MB

8MB

8MB

2MB
4MB
6MB

12MB

16MB

21

Fixed Partitioning
• Single queue

– Jobs are put into next 
sufficiently large 
partition

– Waiting time is 
reduced

– Internal fragmentation 
is bigger

– A swapping 
mechanism can reduce 
internal fragmentation

• Move a job to another 
partition

Operating system
8MB

8MB

8MB

2MB
4MB
6MB

12MB

16MB

22

Problems: Relocation and Protection

• Cannot be sure where program will be loaded in memory
– address locations of variables,  code routines cannot be absolute
– must keep a program out of other processes’ partitions

• Use base and limit values
– address locations added to base value to map to physical addr
– address locations larger than limit value is an error

2 Registers: Base and Bound

• Built in Cray-1
• A program can only access 

physical memory in [base, 
base+bound]

• On a context switch: 
save/restore base, bound 
registers

• Pros: Simple
• Cons: fragmentation, hard to 

share, and difficult to use 
disks

virtual address

base

bound

error

+

>

physical address

24

Swapping (1)

Memory allocation changes as
– processes come into memory
– leave memory

Shaded regions are unused memory



5

25

Dynamic Partitioning
• Divide memory

– Partitions are created 
dynamically for jobs

– Removed after jobs are 
finished

• External fragmentation
– Problem increases with 

system running time
– Occurs with swapping 

as well
– Addresses of process 2 

changed

Operating system
8MB

56MB free

Process 1
20MB

36MB free

22MB free

Process 2
14MB

4MB free

Process 3
18MB

14MB free
Process 4

8MB
6MB free

20MB free
Process 5

14MB

6MB

External
fragmentation

Swapped in
Process 2

14MB

6MB free

Solutions to address
change with

Address Translation
26

Operating system
8MB

Dynamic Partitioning
• Reduce external fragmentation

– Compaction

• Compaction
– Takes time
– Consumes processing resources

• Reduce compaction need
– Placement algorithms

4MB free

Process 3
18MB

Process 4
8MB

6MB free

Swapped in
Process 2

14MB

6MBProcess 4
8MB

6MB free
Process 3

18MB

6MB free

6MB free
16MB free

27

Dynamic Partitioning: Placement Algorithms

• Use most suitable 
partition for process

• Typical algorithms
– First fit
– Next fit
– Best fit

128MB 128MB 128MB

16MB 16MB16MB

4MB 4MB 4MB
8MB 8MB 8MB
6MB 6MB 6MB

16MB 16MB 16MB

8MB 8MB 8MB

4MB

4MB

4MB

8MB
8MB

8MB

6MB

6MB

6MB

8MB

8MB

8MB

16MB

16MB

16MB

32MB 32MB

32MB

First Next Best

28

Dynamic Partitioning: Placement Algorithms

• Use most suitable 
partition for process

• Typical algorithms
– First fit
– Next fit
– Best fit

128MB 128MB

4MB 4MB

16MB 16MB

4MB

4MB

8MB

6MB

6MB

8MB

32MB 32MB

12MB

12MB

12MB

12MB

10MB

10MB

16MB 16MB

8MB
8MB

First Best

29

Dynamic Partitioning: Placement Algorithms

• Comparison of First fit, Next fit and Best fit
• Example is naturally artificial

– First fit
• Simplest, fastest of the three
• Typically the best of the three

– Next fit
• Typically slightly worse than first fit
• Problems  with large segments

– Best fit
• Slowest
• Creates lots of small free blocks
• Therefore typically worst

30

Memory Management with Bit Maps

• Part of memory with 5 processes, 3 holes
– tick marks show allocation units
– shaded regions are free

• Corresponding bit map
• Same information as a list



6

31

Memory Management with Linked Lists

Four neighbor combinations for the terminating process X

32

Buddy System
• Mix of fixed and dynamic 

partitioning
– Partitions have sizes 2k,

L ≤ k ≤ U

• Maintain a list of holes 
with sizes

• Assign a process
– Find smallest k so that 

process fits into 2k

– Find a hole of size 2k

– If not available, split 
smallest hole larger than 2k

• Split recursively into 
halves until two holes have 
size 2k

1MB

512kB

512kB

256kB

256kB

128kB

128kB

Process
128kB

256kB

Process
256kB

256kBProcess
256kB

Process
128kBProcess
256kB

Process 32kB

64kB
64kB

32kB
32kBProcess 32kB

33

Swapping (2)

• Allocating space for growing data segment
• Allocating space for growing stack & data segment

34

Memory use within a process

• Memory needs of 
known size
– Program code
– Global variables

• Memory needs of 
unknown size
– Dynamically allocated 

memory
– Stack

• Several in multithreaded 
programs

program

Initialized global
variables (data)

Uninitialized global vars

Program

PCB

Uninitialized global
variablesdata

stack

Possibly stacks for more threads

Process

35

Memory Addressing

• Addressing in memory
– Addressing needs are 

determined during 
programming

– Must work 
independently of 
position in memory

– Actual physical 
address are not known

program

Initialized global
variables

Uninitialized global vars

36

Memory Addressing

• Addressing in memory
– Addressing needs are 

determined during 
programming

– Must work 
independently of 
position in memory

– Actual physical 
address are not known

program

PCB

data

stack



7

37

Memory Management
• Addressing

– Covered address 
translation and virtual 
memory

• Important now
– Translation is 

necessary
– Therefore possible to 

have several parts
• Pages
• Segments

program
PCB

stack

data

data

data

program

38

Paging
• Paging

– Equal lengths
– Determined by processor
– One page moved into one 

memory frames

• Process is loaded into 
several frames
– Not necessarily consecutive

• No external fragmentation
• Little internal 

fragmentation
– Depends on frame size

Process 1Process 2Process 3Process 4Process 5Process 1

Paging

• Use a page table to translate
• Various bits in each entry
• Context switch: similar to 

the segmentation scheme
• What should be the page 

size?
• Pros: simple allocation, easy 

to share
• Cons: big page table and 

cannot deal with holes easily

VPage # offset

Virtual address

...

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

40

Segmentation
• Segmentation

– Different lengths
– Determined by programmer
– Memory frames

• Programmer (or compiler toolchain) organizes program in 
parts
– Move control
– Needs awareness of possible segment size limits

• Pros and Cons
– Principle as in dynamic partitioning
– No internal fragmentation
– Less external fragmentation because on average smaller segments

Segmentation
• Have a table of (seg, size)
• Protection: each entry has

– (nil, read, write)
• On a context switch: 

save/restore the table or a 
pointer to the table in kernel 
memory 

• Pros: Efficient, easy to share
• Cons: Complex management 

and fragmentation within a 
segment

physical address

+

segment offset

Virtual address

seg size

...

> error

42

Paging and Segmentation
• Typical for paging and 

swapping
– Address translation
– At execution time
– With processor support

• Simple paging and 
segmentation
– Without virtual memory and 

protection
– Can be implemented

• by address rewriting at load time
• by jump tables setup at load time

Code part 1

Code part 2

(“part 2”,
offset in part 2)Lookup

table
+

Simplified
Address translation



8

Segmentation with Paging

VPage # offset

Virtual address

...

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

...

Vseg #

error

44

Other needs (protection)
• Protection of process 

from itself
– (stack grows into heap)

• Protection of 
processes from each 
other
– (write to other process)

program

PCB

data

stack

program

data

stack

program

data

stack
Solutions to protection

with
Address Translation

45

Summary: Memory Management 
• Algorithms

– Paging and segmentation
• Extended in address translation and virtual memory lectures

– Placement algorithms for partitioning strategies
• Mostly obsolete for system memory management

– since hardware address translation is available
• But still necessary for managing

– kernel memory
– memory within a process
– memory of specialized systems (esp. database systems)

• Address translation solves
– Solves addressing in a loaded program

• Hardware address translation
– Supports protection from data access
– Supports new physical memory position after swapping in

• Virtual memory provides
– Provide larger logical (virtual) than physical memory
– Selects process, page or segment for removal from physical memory

46

Why Virtual Memory?

• Use secondary storage
– Extend expensive DRAM with reasonable 

performance
• Protection

– Programs do not step over each other and 
communicate with each other require explicit 
IPC operations

• Convenience
– Flat address space and programs have the same 

view of the world

47

Virtual Memory
Paging (1)

The position and function of the MMU

Translation Overview
• Actual translation is in 

hardware (MMU)
• Controlled in software
• CPU view

– what program sees, 
virtual memory

• Memory view
– physical memory

Translation
(MMU)

CPU

virtual address

Physical
memory

physical address

I/O
device



9

49

Goals of Translation

• Implicit translation for 
each memory reference

• A hit should be very 
fast

• Trigger an exception on 
a miss

• Protected from user’s 
faults

Registers

Cache(s)

DRAM

Disk

10x

100x

10Mx
paging

50

Paging (2)

The relation between
virtual addresses
and physical 
memory addres-
ses given by
page table

51

Page  Tables (1)

Internal operation of MMU with 16 4 KB pages 52

Page Tables (2)

• 32 bit address with 2 page table fields
• Two-level page tables

Second-level page tables

Top-level 
page table

53

Page Tables (3)

Typical page table entry

Multiple-Level Page Tables

Directory ...

pte

...

...

...

dir table offset
Virtual address



10

55

TLBs – Translation Lookaside Buffers

A TLB to speed up paging

Translation Look-aside Buffer (TLB)

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#

Bits in A TLB Entry

• Common (necessary) bits
– Virtual page number: match with the virtual address
– Physical page number: translated address
– Valid
– Access bits: kernel and user (nil, read, write)

• Optional (useful) bits
– Process tag
– Reference
– Modify
– Cacheable

Hardware-Controlled TLB
• On a TLB miss

– Hardware loads the PTE into the TLB
• Need to write back if there is no free entry

– Generate a fault if the page containing the PTE is invalid
– VM software performs fault handling
– Restart the CPU

• On a TLB hit, hardware checks the valid bit
– If valid, pointer to page frame in memory
– If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction

Software-Controlled TLB
• On a miss in TLB

– Write back if there is no free entry
– Check if the page containing the PTE is in memory
– If no, perform page fault handling
– Load the PTE into the TLB
– Restart the faulting instruction

• On a hit in TLB, the hardware checks valid bit
– If valid, pointer to page frame in memory
– If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction

60

Hardware vs. Software Controlled

• Hardware approach
– Efficient
– Inflexible
– Need more space for page table

• Software approach
– Flexible
– Software can do mappings by hashing

• PP# → (Pid, VP#)
• (Pid, VP#) → PP#

– Can deal with large virtual address space



11

61

How Many PTEs Do We Need?

• Worst case for 32-bit address machine
– # of processes × 220 (if page size is 4096 bytes)

• What about 64-bit address machine?
– # of processes × 252 

Inverted Page Tables

• Main idea
– One PTE for each 

physical page frame
– Hash (Vpage, pid) to 

Ppage#
• Pros

– Small page table for 
large address space

• Cons
– Lookup is difficult 
– Overhead of 

managing hash 
chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual 
address

Physical 
address

Inverted page table

63

Inverted Page Tables

Comparison of a traditional page table with an inverted page table

64

Page Replacement Algorithms

• Page fault forces choice
– which page must be removed
– make room for incoming page

• Modified page must first be saved
– unmodified just overwritten

• Better not to choose an often used page
– will probably need to be brought back in soon

65

Optimal Page Replacement Algorithm

• Replace page needed at the farthest point in future
– Optimal but unrealizable

• Estimate by …
– logging page use on previous runs of  process
– although this is impractical

66

Not Recently Used Page Replacement Algorithm

• Each page has Reference bit, Modified bit
– bits are set when page is referenced, modified

• Pages are classified
1. not referenced, not modified
2. not referenced, modified
3. referenced, not modified
4. referenced, modified

• NRU removes page at random
– from lowest numbered non empty class



12

67

FIFO Page Replacement Algorithm

• Maintain a linked list of all pages
– in order they came into memory

• Page at beginning of list replaced

• Disadvantage
– page in memory the longest may be often used

68

Second Chance Page Replacement Algorithm

• Operation of a second chance
– pages sorted in FIFO order
– Page list if fault occurs at time 20, A has R bit set

(numbers above pages are loading times)

69

The Clock Page Replacement Algorithm

70

Least Recently Used (LRU)

• Assume pages used recently will used again soon
– throw out page that has been unused for longest time

• Must keep a linked list of pages
– most recently used at front, least at rear
– update this list every memory reference !!

• Alternatively keep counter in each page table entry
– choose page with lowest value counter
– periodically zero the counter

71

Simulating LRU in Software (1)

LRU using a matrix – pages referenced in order
0,1,2,3,2,1,0,3,2,3 72

Simulating LRU in Software (2)

• The aging algorithm simulates LRU in software
• Note 6 pages for 5 clock ticks, (a) – (e)



13

73

The Working Set Page Replacement Algorithm (1)

• The working set is the set of pages used by the k
most recent memory references

• w(k,t) is the size of the working set at time, t
74

The Working Set Page Replacement Algorithm (2)

The working set algorithm

75

The WSClock Page Replacement Algorithm

Operation of the WSClock algorithm 76

Review of Page Replacement Algorithms

77

Modeling Page Replacement Algorithms
Belady's Anomaly

• FIFO with 3 page frames
• FIFO with 4 page frames
• P's show which page references show page faults 78

Stack Algorithms

State of memory array, M, after each item in 
reference string is processed

7    4    6   5 



14

79

The Distance String

Probability density functions for two 
hypothetical distance strings

80

The Distance String

• Computation of page fault rate from distance string
– the C vector
– the F vector

81

Design Issues for Paging Systems
Local versus Global Allocation Policies (1)

• Original configuration
• Local page replacement
• Global page replacement

82

Local versus Global Allocation Policies (2)

Page fault rate as a function of the number of 
page frames assigned

83

Load Control

• Despite good designs, system may still thrash

• When PFF algorithm indicates 
– some processes need more memory 
– but no processes need less

• Solution :
Reduce number of processes competing for memory
– swap one or more to disk, divide up pages they held
– reconsider degree of multiprogramming

84

Page Size (1)

Small page size
• Advantages

– less internal fragmentation 
– better fit for various data structures, code sections
– less unused program in memory

• Disadvantages
– programs need many pages, larger page tables



15

85

Page Size (2)

• Overhead due to page table and internal 
fragmentation

• Where
– s = average process size in bytes
– p = page size in bytes
– e = page entry

2
s e poverhead
p
⋅

= +

page table space

internal 
fragmentation

Optimized when

2p se=

86

Separate Instruction and Data Spaces

• One address space
• Separate I and D spaces

87

Shared Pages

Two processes sharing same program sharing its page table
88

Cleaning Policy

• Need for a background process, paging daemon
– periodically inspects state of memory

• When too few frames are free
– selects pages to evict using a replacement algorithm

• It can use same circular list (clock) 
– as regular page replacement algorithmbut with diff ptr

89

Implementation Issues
Operating System Involvement with Paging

Four times when OS involved with paging
1. Process creation

− determine program size
− create page table

2. Process execution
− MMU reset for new process
− TLB flushed

3. Page fault time
− determine virtual address causing fault
− swap target page out, needed page in

4. Process termination time
− release page table, pages

90

Page Fault Handling (1)

1. Hardware traps to kernel
2. General registers saved
3. OS determines which virtual page needed
4. OS checks validity of address, seeks page frame
5. If selected frame is dirty, write it to disk



16

91

Page Fault Handling (2)

6. OS brings schedules new page in from disk
7. Page tables updated

Faulting instruction backed up to when it began 
6. Faulting process scheduled
7. Registers restored

Program continues

92

Instruction Backup

An instruction causing a page fault

93

Locking Pages in Memory

• Virtual memory and I/O occasionally interact
• Proc issues call for read from device into buffer

– while waiting for  I/O, another processes starts up
– has a page fault
– buffer for the first proc may be chosen to be paged out

• Need to specify some pages locked
– exempted from being target pages

94

Backing Store

(a) Paging to static swap area
(b) Backing up pages dynamically

95

Separation of Policy and Mechanism

Page fault handling with an external pager
96

Segmentation (1)

• One-dimensional address space with growing tables
• One table may bump into another



17

97

Segmentation (2)

Allows each table to grow or shrink, independently
98

Segmentation (3)

Comparison of paging and segmentation

99

Implementation of Pure Segmentation

(a)-(d) Development of checkerboarding
(e) Removal of the checkerboarding by compaction

100

Segmentation with Paging: MULTICS (1)

• Descriptor segment points to page tables
• Segment descriptor – numbers are field lengths

101

Segmentation with Paging: MULTICS (2)

A 34-bit MULTICS virtual address

102

Segmentation with Paging: MULTICS (3)

Conversion of a 2-part MULTICS address into a main memory address



18

103

Segmentation with Paging: MULTICS (4)

• Simplified version of the MULTICS TLB
• Existence of 2 page sizes makes actual TLB more complicated 104

Segmentation with Paging: Pentium (1)

A Pentium selector

105

Segmentation with Paging: Pentium (2)

• Pentium code segment descriptor
• Data segments differ slightly

106

Segmentation with Paging: Pentium (3)

Conversion of a (selector, offset) pair to a linear address

107

Segmentation with Paging: Pentium (4)

Mapping of a linear address onto a physical address
108

Segmentation with Paging: Pentium (5)

Protection on the Pentium

Level


