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* Basic memory management:
* Mono- and multi-programming
« Fixed and varaible memory partitioning
 Swapping
« Paging
* Segmentation
« Virtual memory (paging)
« Page replacement algorithms
* Design issues for paging systems
« Implementation issues

Motivation

* In project assignments so far
— Program code is linked to kernel
— Physical addresses are well-known
— Not realistic

* In the real world
— Programs are loaded dynamically
— Physical addresses it will get are not known to
program
— Program size at run-time is not known to kernel

Memory Management

* Ideally programmers want memory that is
— large
— fast
— non volatile

* Memory hierarchy
— small amount of fast, expensive memory — cache
— some medium-speed, medium price main memory
— gigabytes of slow, cheap disk storage

* Memory manager handles the memory hierarchy

Computer Hardware Review

Typical access time Typical capacity
1 nsec <1KB
2 nsec Cache 1MB
10 nsec | Main memory | 64-512 MB
omsee | Magnetic disk | 550 GB
100 sec | Magnetic tape | 20-100 GB

* Typical memory hierarchy

— numbers shown are rough approximations

Memory Management for Monoprogramming
* Only one user program loaded
— Program is entirely in memory
— No swapping or paging
» Three simple ways of organizing memory

Some PDAs, embedded systems
| userprogram | 0S in ROM

0x0
OS in RAM

Basic Memory Management
Monoprogramming without Swapping or Paging

O0xFFF ... -
Operating Device
system in drivers in ROM
ROM
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program
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system in system in
RAM RAM
0 0 0
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Three simple ways of organizing memory
- an operating system with one user process




Multiprogramming

Processes have to wait for I/O
Goal

— Do other work while a process waits
— Give CPU to another process

Processes may be concurrently ready

So

— If I/O waiting probability for all processes is p

— Probable CPU utilization can be estimated as
CPU utilization =1 - p"

Multiprogramming

* Arrival and work requirements of 4 jobs
* CPU utilization for 1-4 jobs with 80% I/O wait

# processors

Arriv - CPU 10 R ining CPU ti % 12 3 4
Job# al - use  wait emaining time CPUidle 80 64 51 41
time _time _time 1jee
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* Sequence of events as jobs arrive and finish
— Note numbers show amount of CPU time jobs get each interval

Analysis of Multiprogramming System

Performance
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 Arrival and work requirements of 4 jobs
» CPU utilization for 1 —4 jobs with 80% I/O wait

» Sequence of events as jobs arrive and finish
— note numbers show amout of CPU time jobs get in each interval

Multiprogramming
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Degree of multiprogramming

¢ CPU utilization as a function of number of
processes in memory

Multiprogramming

Several programs

— Concurrently loaded into memory
— OS must arrange memory sharing
— Memory partitioning

Memory
Needed for different tasks within a process
Shared among processes
Process memory demand may change over time

Use of secondary storage
Move (parts of) blocking processes from memory
Higher degree of multiprogramming possible
Makes sense if processes block for long times

Memory Management for Multiprogramming

* Process may not be entirely in memory
* Reasons
— Other processes use memory
 Their turn
« Higher priority

 Process is waiting for I/O

Too big
« For its share

« For entire available memory 2x
* Approaches
Swapping 100x
Paging Paging
— Overlays Swapping
Overlays 109




Memory Management for Multiprogramming

* Swapping
Remove a process from memory
« With all of its state and data
« Store it on a secondary medium
Disk, Flash RAM, other slow RAM, historically also Tape

* Paging
— Remove part of a process from memory
« Store it on a secondary medium
« Sizes of such parts are fixed
« Page size

How to use these
with
Virtual Memory

* Overlays
Manually replace parts of code and data
« Programmer’s rather than OS’s work
« Only for very old and memory-scarce systems

Memory Management Techniques

 Before details about moving processes out
— Assign memory to processes

* Memory partitioning
— Fixed partitioning
— Dynamic partitioning
— Simple paging
— Simple segmentation
— Virtual memory paging
— Virtual memory segmentation

Multiprogramming with Fixed Partitions

Muttiple

input quauas 800K

[CH Partsiona Partition 4
TOOK

Partition 3 Single Partition 3

input quaus

400K

O Partiion 2 Partition 2
200K

CH_H}—{ Partition 1 Partition 1
100K

Openting Operating

system o system
(@) &)

* Fixed memory partitions
— separate input queues for each partition
— single input queue

Fixed Partitioning

* Divide memory
— Into static partitions
— At system initialization time (boot or earlier)

» Advantages
— Very easy to implement
— Can support swapping process in and out

Fixed Partitioning

e Operating system 0x0
* Two fixed partitioning 8MB
schemes aMB
— Equal-size partitions
— Unequal-size partitions 8MB
. » 8MB
» Equal-size partitions
— Big programs can not be 8vB
executed
+ Unless program parts are 8MmB
loaded from disk
. 8MB
Small programs use entire
partition aMB
« A problem called “internal ox...fff

fragmentation”

Fixed Partitioning

« Two fixed panitioning Operating system| |Operating system

8MB 8MB
schemes 2MB
— Equal-size partitions 8MB AMB
— Unequal-size partitions sMB 6MB
8MB

. . MB

¢ Unequal-size partitions 8

q p 8MB

— Bigger programs can be 8VB

loaded at once

12mMB
— Smaller programs can lead 8MB
to less internal
fragmentation amB
16MB

— Advantages require

. . 8MB
assignment of jobs to

partitions




Fixed Partitioning

* Approach

— Has been used in
mainframes

— Uses the term job for a
running program

— Jobs run as batch jobs
— Jobs are taken from a
queue of pending jobs
* Problem with unequal
partitions
— Choosing a job for a
partition

Operating system
8MB
2ME
4MB

6MB

8MB

8MB

12mMB

16MB

Fixed Partitioning

Operating system
8MB
[TTTTTTH> 2MB
EREmRmRES 4MB
* One queue per
q P T 6MB
partition
. T
— Internal fragmentation 8mB
is minimal T 8MB
— Jobs wait although
sufficiently large I 12MB
partitions are available
T 16MB

Fixed Partitioning

 Single queue

— Jobs are put into next
sufficiently large
partition

— Waiting time is
reduced

— Internal fragmentation
is bigger

— A swapping
mechanism can reduce
internal fragmentation

* Move a job to another
partition

Operating system
8MB
7MBE
4MB

6MB

8MB

8MB

12mMB

16MB
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Problems: Relocation and Protection

+ Cannot be sure where program will be loaded in memory
— address locations of variables, code routines cannot be absolute
— must keep a program out of other processes’ partitions

» Use base and limit values
— address locations added to base value to map to physical addr

— address locations larger than limit value is an error

2 Registers: Base and Bound

©
1

error

physical address

Built in Cray-1

A program can only access
physical memory in [base,
base+tbound]

On a context switch:
save/restore base, bound
registers

Pros: Simple

Cons: fragmentation, hard to

share, and difficult to use
disks

Swapping (1)

/ 4 c c c
Z
B B B ]
) A A )
o o ]
[ | ] [ v | | | |

(@) (L] &) e} ] {agh

Memory allocation changes as
— processes come into memory
— leave memory

Shaded regions are unused memory 2




Dynamic Partitioning

* Divide memory OPe’ag"hg;VS‘e'"
— Partitions are created
dynamically for jobs
R d after iob External
— hemoved aller Jobs are fragmentation
finished T 6MBfree
Process 4
. 8MB
» External fragmentation
. . 6MB free
— Problem increases with
system running time
. . Process 3
— Occurs with swapping 18MB
as well
— Addresses of process 2 - 4MB free
haneed Solutions to address
c g change with

Address Translation
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Dynamic Partitioning

Operating system

* Reduce external fragmentation e

— Compaction Swapped in

Process 2
14MB

» Compaction
. Process 4
— Takes time 8MB

— Consumes processing resources

Process 3
. 18MB
* Reduce compaction need
— Placement algorithms
16MB free

Dynamic Partitioning: Placement Algorithms

Fir Next Be

» Use most suitable
partition for process

» Typical algorithms
— First fit
— Next fit
— Best fit
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Dynamic Partitioning: Placement Algorithms

-

16MB 16MB

Fir

» Use most suitable
partition for process

» Typical algorithms

— First fit

— Next fit

— Best fit
12MB
10MB

Dynamic Partitioning: Placement Algorithms

» Comparison of First fit, Next fit and Best fit

» Example is naturally artificial
— First fit
« Simplest, fastest of the three
« Typically the best of the three
— Next fit
« Typically slightly worse than first fit
* Problems with large segments
— Best fit
* Slowest
« Creates lots of small free blocks
* Therefore typically worst
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Memory Management with Bit Maps
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* Part of memory with 5 processes, 3 holes
— tick marks show allocation units
— shaded regions are free

* Corresponding bit map
e Same information as a list




Memory Management with Linked Lists

Before X terminates After X terminates

@[ A [ x[8 ] vecomes [ A 777 & |
oA x P77 vecomes | A V777777
@A x | B | becomes V777 8|
O 4 x 77 veeomes 17777722

Four neighbor combinations for the terminating process X
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Buddy Systeim

* Mix of fixed and dynamic 5
. rocess
partitioning Process 128KkB
— Partitions have sizes 2¥, 256kB —FrocesS7kE |
L<k<U 64kB
* Maintain a list of holes Process
with sizes 2288E
» Assign a process
— Find smallest k so that Process
process fits into 2% 256kB
— Find a hole of size 2%
— If not available, split
smallest hole larger than 2% 256kB
« Split recursively into
halves until two holes have

size 2k

Swapping (2)

B-5uek
+ Rioom for grows ¥ .
B-Data
° : ' B-Program
+ Fioom e growh A'S;"d' .
. | | eem ter grown
A + Actually in use Ao
AProgram
Oparating Opamanng
wyvm sysiem
=) i)

» Allocating space for growing data segment

 Allocating space for growing stack & data segment
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Memory use within a process

* Memory needs of
known size
— Program code

Program

— Global variables
* Memory needs of
unknown size
— Dynamically allocated
memory
— Stack

« Several in multithreaded
programs

Process

Memory Addressing

program

* Addressing in memory

— Addressing needs are
determined during
programming

— Must work
independently of
position in memory

— Actual physical
address are not known

Initialized global
variables
Uninitialized global vars
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Memory Addressing
L) program

* Addressing in memory

— Addressing needs are
determined during
programming

— Must work
independently of
position in memory

— Actual physical
address are not known

CB

data

stack




Memory Management

Paging
|

PCB
+ Addressing program * Paging Process 1
— Covered address — Equal lengths
translation and virtual data Determined by processor
memory One page moved into one
program memory frames
* Important now data + Process is loaded into
— Translation is several frames
necessary data Not necessarily consecutive
— Therefore possible to » No external fragmentation
have several parts stack ¢ Little internal
* Pages fragmentation
* Segments — Depends on frame size
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Paging Segmentation
Segmentation
Virtual address page table size B g ifferer}t 1Zn§ths
— Determined by programmer
'7 » Use a page table to translate ¢
VPage # offset 1 error S ] p g‘ - — Memory frames
@—» Various bits in each entry
Page thle + Context switch: similar to Programmer (or compiler toolchain) organizes program in
PPagett| .. the segmentation scheme parts

L |

* What should be the page
size?

* Pros: simple allocation, easy
to share

» Cons: big page table and

~ Move control

— Needs awareness of possible segment size limits

Pros and Cons

— Principle as in dynamic partitioning

— No internal fragmentation

— Less external fragmentation because on average smaller segments

Physical address cannot deal with holes easily
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Segmentation Paging and Segmentation
* Have a table of (seg, size) * Typical for pagingand  « Simple paging and
Virtual address * Protection: each entry has swapping segmentation
[segmen [ ot f—p— ()08 (ni, read, it " Aresconiontine. " protscton

seg | size

physical address

On a context switch:
save/restore the table or a
pointer to the table in kernel
memory

Pros: Efficient, easy to share

Cons: Complex management
and fragmentation within a
segment

With processor support

Lookup
table

Simplified
Address translation

— Can be implemented
by address rewriting at load time
+ by jump tables setup at load time

,,,,,,, Code part 1

h {% Code part 2

42




Segmentation with Paging

Virtual address

‘ Vseg # H VPage # | offset

I Page table

S€g S1Z€_L—1 PPage#

=N

47 PPag&# H
&—
error Physical address

Other needs (protection)

* Protection of process . program
from itself program
— (stack grows into heap) data
¢ Protection of
processes from each stack
other data roaram
— (write to other process) u Py
data
Solutions t(_J protection 34 Fk
with stack
Address Translation

Summary: Memory Management

Algorithms
— Paging and segmentation
« Extended in address translation and virtual memory lectures
Placement algorithms for partitioning strategies

* Mostly obsolete for system memory management
since hardware address translation is available

+ But still necessary for managing
kernel memory
memory within a process

— memory of specialized systems (esp. database systems)

Address translation solves
— Solves addressing in a loaded program
Hardware address translation
— Supports protection from data access
— Supports new physical memory position after swapping in
Virtual memory provides
— Provide larger logical (virtual) than physical memory
— Selects process, page or segment for removal from physical memory
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Why Virtual Memory?

» Use secondary storage

— Extend expensive DRAM with reasonable
performance

* Protection

— Programs do not step over each other and
communicate with each other require explicit
IPC operations
» Convenience

— Flat address space and programs have the same
view of the world

Virtual Memory

Paging (1)
The CPU sends virtual
cPU addresses to the MMU
package
CPU=
/ Memory Memer Disk
- management ¥ controller
unit
3 1.

The MMU sends physical
addresses to the memory

The position and function of the MMU
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Translation Overview

e Actual translation is in
CPU hardware (MMU)

virtual address  Controlled in software

Translation e CPU view
(MMU)
— what program sees,
physical address virtual memory
] * Memory view
Physical 1/0 .
‘ memory ‘ ‘ device - phys1ca1 memory




Goals of Translation

Paging (2)

Virtual

address
space
BOK-B4K x
Implicit translation for , Seank] } virtual page
each memory reference The relation between aocsok [
] virtual addresses adrask [T
A hit should be very and physical dok-4ak [ X Physical
10x agk-d0k | 5 i
fast memory addres- aokask [ X address
. . 1 28K-32K | X 2BK-32K
Trigger an exception on ses given by ——— adkanK
a miss 100x page table 20K24K | 3 \/‘ 20K-24K
paging 16K20 | 4 16K-20K
’ 12K-16K o 12K-16K
Protected from user’s 1OMx O )C o
faults akex| 1 4K-8K
-4k 2 \ OK-AK
Page frame
49 50
Page Tables (1) Page Tables (2)
‘ Guigeing Second-level page tables
e
e
/ E i
e | =
Jrr— - e = =
1= i
oy ) .
] e 32 bit address with 2 page table fields

Internal operation of MMU with 16 4 KB pages

* Two-level page tables

Page Tables (3)

Caching
disabled Modified

ZATI 1]

Referenced Protection

Present/absent

Page frame number

Typical page table entry
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Multiple-Level Page Tables

Virtual address

-

Directory




TLBs — Translation Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 3
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

A TLB to speed up paging
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Translation Look-aside Buffer (TLB)

Virtual address

:’ VPage# | PPaget |

; VPaget# | PPage# | 1 Miss

j VPagett | PPaget# | eee |4 Real
| TLB | page
i s - table

PPage # offset

Physical address

Bits in A TLB Entry

» Common (necessary) bits
— Virtual page number: match with the virtual address
— Physical page number: translated address
— Valid
— Access bits: kernel and user (nil, read, write)
* Optional (useful) bits
— Process tag
— Reference
— Modify
— Cacheable

Hardware-Controlled TLB

* On a TLB miss
— Hardware loads the PTE into the TLB
* Need to write back if there is no free entry
— Generate a fault if the page containing the PTE is invalid
— VM software performs fault handling
— Restart the CPU

* On a TLB hit, hardware checks the valid bit

— If valid, pointer to page frame in memory

— Ifinvalid, the hardware generates a page fault
* Perform page fault handling
* Restart the faulting instruction

Software-Controlled TLB

* On amiss in TLB
— Write back if there is no free entry
— Check if the page containing the PTE is in memory
— If no, perform page fault handling
— Load the PTE into the TLB
— Restart the faulting instruction

e On a hit in TLB, the hardware checks valid bit
— If valid, pointer to page frame in memory
— If invalid, the hardware generates a page fault
* Perform page fault handling
* Restart the faulting instruction

Hardware vs. Software Controlled

» Hardware approach
— Efficient
— Inflexible
— Need more space for page table
» Software approach
— Flexible
— Software can do mappings by hashing
* PP# — (Pid, VP#)
« (Pid, VP#) - PP#

— Can deal with large virtual address space
60
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How Many PTEs Do We Need?

» Worst case for 32-bit address machine
— # of processes x 220 (if page size is 4096 bytes)
* What about 64-bit address machine?

— # of processes x 252
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Inverted Page Tables

* Main idea
— One PTE for each
physical page frame
— Hash (Vpage, pid) to
Ppagett

Physical

Virtual
irua address

address

‘ pid [Vpage[offset‘ ‘ k [offset‘

* Pros
0 — Small page table for
large address space
* Cons
— Lookup is difficult

— Overhead of
managing hash
chains, etc

‘ .

pid [vpage

n-1

Inverted page table

Inverted Page Tables

Traditional page
table with an entry
for each of the 2%

pages
282
£ B
256-MB physical
memory has 218
4-KB page irames Hash table
216 9 216 .1 ——T T
A= A A= B2
" ——T
1] l o nT —
Indexed Indexed / \
by virtual by hash on Virtual Page
page virtual page page frame

Comparison of a traditional page table with an inverted page table
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Page Replacement Algorithms

* Page fault forces choice
— which page must be removed
— make room for incoming page

* Modified page must first be saved

—unmodified just overwritten

 Better not to choose an often used page
— will probably need to be brought back in soon

Optimal Page Replacement Algorithm

» Replace page needed at the farthest point in future

— Optimal but unrealizable

» Estimate by ...
— logging page use on previous runs of process
— although this is impractical

Not Recently Used Page Replacement Algorithm

» Each page has Reference bit, Modified bit
— bits are set when page is referenced, modified
» Pages are classified
.. not referenced, not modified
.. not referenced, modified
5. referenced, not modified
.. referenced, modified
* NRU removes page at random
— from lowest numbered non empty class

66

65
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FIFO Page Replacement Algorithm

* Maintain a linked list of all pages

— in order they came into memory

* Page at beginning of list replaced

* Disadvantage
— page in memory the longest may be often used

67

Second Chance Page Replacement Algorithm

Page loaded first
o e Most recently

12 1 15 18 joadedpage

o 3 7 8
[AHeHCeHo
(a)

A treated like a

3 7 8 12 14 15 ~ newly loaded page

18 20
(] [FHeH"HA

(b)

(2]

* Operation of a second chance
— pages sorted in FIFO order

— Page list if fault occurs at time 20, A has R bit set
(numbers above pages are loading times)

The Clock Page Replacement Algorithm

o
on the R bit:

m/@_

|I| |E| R = 1: Clear R and advance hand

‘When a page fault occurs,
the page the hand is
pointing to is inspected.
The action taken depends
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Least Recently Used (LRU)

» Assume pages used recently will used again soon
— throw out page that has been unused for longest time

* Must keep a linked list of pages
— most recently used at front, least at rear
— update this list every memory reference !!

* Alternatively keep counter in each page table entry
— choose page with lowest value counter
— periodically zero the counter

Simulating LRU in Software (1)

Page Page Page Page Page
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
alef1|1]1 ool ojojel ojojo|o ojojojo
1jojojojo 1jof1]1 1jojof1 1jojojo 1jojojo
2jojofojo ojojo|o 1]1]0]1 11|00 111101
3jojofojo ojojo|o ojojo|o 1j1|1]0 1j1|o]o

{a) L] (e} id) (L]
ojojojo op1|1] ol1|1]o oj1|o0]o0 oj1]oj|o0
1jof1]1 ojof1]1 ojoft1]o ojojojo ojojojo
1jojo|1 ojojoj| ojojojo 111101 111|100
1jojojo ojofjojo 1]1(1]0 11|00 1]1(1]0

] [1:1] n U] i)

LRU using a matrix — pages referenced in order
0,1,2,3,2,1,0,3,2,3
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Simulating LRU in Software (2)

Rbtsr | Abitstor Rttske | Rbisfor R bits for

pages 05, | pages 05, pages 05, | pages 0, pages 05,
clock tick E clock ok 1 ook tick 2 E clock sch 3 chock tick 4.
[leltfel ] ; DTTelel fo] : [DTo[ el ] [Jefelo[ Te] : [e[:T[olo[s]
Pae
o[ toooocco | i [1iceoooo | i [trrecesa | i [ rantesce | i [ omiese |
1 [ ooo0000 | [ 10000000 | i [ 11000000 ] [ oriooace ][ 10110000 ]
2[ 10000000 | IEEEHEEEE [[ooro00c0 ] i [ 10000000 |
s oo ] | [Coommmmo ] | [oome ] | [Corwmmoo ] | oo ]
[ 1000000 | [ 11000000 | | [ otteceon | | toriooce | i [ otorioon |
5[ 10000000 |[ otooo000 | £ [ 10100000 || ototooo0 | 1 [ ovioraoo |
fay ) &) ) e ) iy (=)

» The aging algorithm simulates LRU in software
* Note 6 pages for 5 clock ticks, (a) — (e)
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The Working Set Page Replacement Algorithm (1)

wik.t)

» The working set is the set of pages used by the k
most recent memory references

* wi(k,t) is the size of the working set at time, t
73

The Working Set Page Replacement Algorithm (2)

== Current virtual time

Information about { L~ R (Feferenced) bit

[—zoss T34

ane page
—c
Time of last use — =1 1 Scan all pages examining R bit:
Page | 1213 _J0 ! t::l-n:\:onasr use to curment virtual time
i 201411, if (Ft we 0 and age » 1)
m remove this page
EE #{R==Oandagess)
:‘::Q;gn;‘lis o) - the smallest time
Page tatée

The working set algorithm

The WSClock Page Replacement Algorithm

= b b
[ v l =

"

I |
lEE hE:_|

Operation of the WSClock algorithm 7

Review of Page Replacement Algorithms

Algorithm [+
Not implementable, but useful as a benchmark
Very crude

Optimal

NRU (Mot Recently Used)
FIFO (First-In, First-Out) Might throw out important pages

Second chance | Big improvement over FIFQ

Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly
NFU (Mot Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set | Somewhat expensive to implement
WSClock | Good efficient algorithm

Modeling Page Replacement Algorithms
Belady's Anomaly

All pages frames initially empty

Lo 12301401234
Youngest page ol1]z2]3joj1]4]alal2z]a]a
o|1(z[3|o1[1]1]4]2]2
Oldest page oji1j2j3jojojof1]4a]4
FPFRFPFPF F P 9Paefaulis
(a)
012301401234
Youngestpage[ Jo[1]z[3[a[a[a|o[1]2]3]4
o|1]z|2|2|aalo[1]2]a
Oldest page ofi|1[1[2|al4[o]1]z
ojojo[1]2|3[4]o]1
FP PP PP P P P P 10Pagefauls
&)
» FIFO with 3 page frames
» FIFO with 4 page frames
» P's show which page references show page faults 7

Stack Algorithms

Referencestring 0 2 1 3 5 4 6 3 7 4 73 355 311171341
ofz[1]s]sale[s[7]a]7[ss]s]s s "7 1 =]a o
oflzf1]als|ale|a[7[a|r(7|a]a]sa]ala]1]r]1]a]s

olz1]|a]s[a]ela|alalal7|7]|7]s|s]s]a]s]7]1 ]2
olz|1]|a[5]|4|6|e|6|6]a|a|al7|7]7|5]5]5]7]7
olzl1f1)s|5|5|s|s5|e|lefel4]|a]|a]d4]|4]4]|5[5

olaja1 (1|11 {1]1|1]1|6|6|E|6|6|B|B|E
A0HHBHBHBHHEHBHEHBEBE
olofofolofo]oefolololelefe]e]o

Pagefauts P PP PP PP P P P P

Distancesting = = = = = w = 4 = 4 23 15126114 , 4, gg

State of memory array, M, after each item in
reference string is processed
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The Distance String

-~

P(d) P(d)

1 d n 1 d n

Probability density functions for two
hypothetical distance strings

79

The Distance String

# times
1 occurs in

distance string

e el s Fi= 19 |+—C,4C 4 C v 4 C.

C,=2 Fy= 17 |+—Cy4 B4 Cot ..+ €.

Cy= 1 Fy= 16 [+—C,+ €4 Cyv .. 4 €

C,=4 F,= 12

: #times -

Cg= 2 6 ocours in Fg= 10 |+— & of page faults with 5 frames
distance strin

C,= 2 e e F,= 10

C,=1 F,=8

C.=8 F.=8

{ah (b}

» Computation of page fault rate from distance string
— the C vector
— the F vector

Design Issues for Paging Systems
Local versus Global Allocation Policies (1)

Age

A 10 AQ A
A 7 Al A
A 5 AZ AZ
A 4 A3 A
A L] Ad A
A 3 [+ A5
B0 ] BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3 {.'E.‘
B4 5 B4 B4
BS & BS BS
B6 12 B85 BS
c1 3 Cc1 C1
cz2 5 cz2 cz
C3 L] c3 [=]
(@) b} =]

* Original configuration
* Local page replacement
* Global page replacement

81

Local versus Global Allocation Policies (2)

Page faults/sec

Number of page frames assigned

Page fault rate as a function of the number of
page frames assigned

Load Control

Despite good designs, system may still thrash

When PFF algorithm indicates
— some processes need more memory
— but no processes need less

Solution :

Reduce number of processes competing for memory
— swap one or more to disk, divide up pages they held

— reconsider degree of multiprogramming

83

Page Size (1)

Small page size
» Advantages
— less internal fragmentation
— better fit for various data structures, code sections
— less unused program in memory
* Disadvantages
— programs need many pages, larger page tables

14



Page Size (2)

* Overhead due to page table and internal

page table space

fragmentation

overhead internal

«| fragmentation

e Where

s = average process size in bytes

— p = page size in bytes Optimized when

Separate Instruction and Data Spaces

Single address
space | space D space
2%

} Unused page

Data

Data

Program Program

1}

—_—
=

e =page entry p =+/2se * One address space
 Separate I and D spaces
Shared Pages Cleaning Policy

7Ul

Process

table

Data 1 Data2

v
Page tables

Two processes sharing same program sharing its page table
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* Need for a background process, paging daemon

— periodically inspects state of memory

* When too few frames are free
— selects pages to evict using a replacement algorithm

* It can use same circular list (clock)
— as regular page replacement algorithmbut with diff ptr

Implementation Issues

Operating System Involvement with Paging

Four times when OS involved with paging
1. Process creation
determine program size
create page table
2. Process execution
MMU reset for new process
TLB flushed
3. Page fault time
determine virtual address causing fault
swap target page out, needed page in
4. Process termination time
release page table, pages
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Page Fault Handling (1)

Hardware traps to kernel

General registers saved

OS determines which virtual page needed

OS checks validity of address, seeks page frame
If selected frame is dirty, write it to disk

15



Page Fault Handling (2)

6. OS brings schedules new page in from disk

7. Page tables updated

o Faulting instruction backed up to when it began
o Faulting process scheduled

7. Registers restored

¢ Program continues
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Instruction Backup

MOVE.L #6(A1), 2(A0)

| 16 Bits |
1000 MOVE Opcode
1002 6 First operand
1004 2 Second operand

An instruction causing a page fault

Locking Pages in Memory

* Virtual memory and I/O occasionally interact
* Proc issues call for read from device into buffer

— while waiting for 1/O, another processes starts up

— has a page fault

— buffer for the first proc may be chosen to be paged out
* Need to specify some pages locked

— exempted from being target pages
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Backing Store

Main memory

Main memory Disk

FPages

[ 1l=]
L 1le]

Page
table

(a) (b}

(a) Paging to static swap area
(b) Backing up pages dynamically

Separation of Policy and Mechanism

. 3, Request page
M.
ain memary ,_____\ Disk
User
space
Kermel
space

Page fault handling with an external pager
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Segmentation (1)

Virtual address space
Call stack| +
} Frae
Address space 1
allocated to the Parse ree | Space currently being

parse tree i used by the parse tree

Constant tabis [f

Source text §

| Symbol table has
Symbel table } bumped into the
| source text table

* One-dimensional address space with growing tables
* One table may bump into another 9%

16



Segmentation (2)

20K
16K |- 16K
12K - 12K 12K = 12K
table
BK - BK |- BK = Parse BK =
troe
Source Call
text stack
AK - 4K - 4K - 4K -
Constants.
0K oK K oK 0K
Sagmant ‘Sagmant Segment Segmant ‘Segment
o 1 2 3 4

Allows each table to grow or shrink, independently
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Segmentation (3)

Consideration Paging Segmentation

Nood the programmer be awars | Mo os
that this technique is being used?

How many linoar address 1 Many
spaces are there?

Can the fotal address space Yos Yos.
enceed the size of physical
mamary?

Can procedures and data be Ho ™
distinguished and separately
prctected?

Car tabies whase 3i2e fuctuates L Ves.
ba accommodated easily?

I3 sharing of procedures. L] Yo
betwean usars faciltabed?

was this technique To get alar To allow programs
get alarge o
inveritod? Ninear address | and data fo ba broken
without up il logically
having o buy | wkdirass
more physical | spaces and to aid
meemory sharing and

Comparison of paging and segmentation

Implementation of Pure Segmentation

% = %

Segment 4 Segment 4 7 4 / //A %

(7K) (7K) Segment 5 Segment 5

(4K) | laK 2

Segment 3 Segment 3 Segment 3 M mt

(8K) (BK) (8K} Segment 6 E !9‘“]

(4 Segment 6

Segment 2 Segment 2 Segment 2 Segment 2 (4K}

(5K) (5K) SK} (5K)

(8K) Segment 7 Sogmon: 7 Segment 7 Segment 7
(SK) (5K} (5K) (5K}

Segment 0 Segment 0 Segment 0 Segment 0 Segment 0
4K} (4K {4K} 4K} (4K
(a) () () () (&)

(a)-(d) Development of checkerboarding
(e) Removal of the checkerboarding by compaction

Segmentation with Paging: MULTICS (1)

R
Paga 2 oty
Page 1 ey " 1113 3
Sagrmet § daserpie Paga 0wy s ‘ ||E I |
‘Segment 5 dascripior Page table for segment 3
Segment & duscriphe Pige bx
0 = 1024 words
Sagment 3 descripier Vu Bl words
rym Omsegrantipaged |
£ 1 = segrract s ot paged
Segrmect | deseripher Page 2eriry -
Sagrmeet 0 daseripiee Paga 1 wriry R
Descriptor segment Paga Qurtry
Page tabiafor sagmant 1

* Descriptor segment points to page tables
* Segment descriptor — numbers are field lengths

Segmentation with Paging: MULTICS (2)

Address within
the segment
Segment number Page Offset within
number the page
18 5 10

A 34-bit MULTICS virtual address
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Segmentation with Paging: MULTICS (3)

MULTICS virtual address

Page

Word
Descriptor Page frame. \ ‘
Offset
Segment ‘ ﬁ |
number Descriptor number P Page
segment table

Conversion of a 2-part MULTICS address into a main memory address
102
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Segmentation with Paging: MULTICS (4)

Comparison Is t{"is

i entry

,—a—llald used?
Segment \irtual Page

number page frame Protection Age |

4 1 7 Read/write 13 1

6 4] 2 Read only 0 |1

12 3 1 Read/write 2 1

4]

2 1 o Execute only 7 1

2 2 12 Execute only 9 1
— —— o ——

« Simplified version of the MuLTICS TLB
« Existence of 2 page sizes makes actual TLB more complicated

Segmentation with Paging: Pentium (1)

Bits 13 1 2

Index

/A

0=GDT/1 =LDT Privilege level (0-3)

A Pentium selector

Segmentation with Paging: Pentium (2)

o Is-Butsegmem' @ Segment is absant from memery

1: 32-Bit segment | | 1- Segment is present in memary
Privilege kevel (0-3)
0 Liisin bytes |_ O System
1: Liis in pages 1: Application
— 5 t nd pratectan
KR! i 1 [ epment type and pratectan
A
Base 2431 |G|D[o ‘I-G"_r;; PlOPL|S| Type l Base 16-23 4
A
Base 015 Limit 0-15 o
_ Relative

- 32Bits address

* Pentium code segment descriptor
* Data segments differ slightly
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Segmentation with Paging: Pentium (3)

Selector | Offset |

Descriptor

Base address —l-(+)

— Limit

Other fields

| 32-Bit linear address

Conversion of a (selector, offset) pair to a linear address
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Segmentation with Paging: Pentium (4)

Uinear adchess

B 0 10 12

Dx Page Ottsan
a
Page drectory Page itle Pags ku=s
[l
Word
sactid .

1024
Enties

-—g

b}

Mapping of a linear address onto a physical address
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Segmentation with Paging: Pentium (5)

et PrOgramg ™

__ Typical uses of
he levels

Level

Protection on the Pentium

108
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