
1

DisksDisks

Tore Larsen
Including material developed by

Pål Halvorsen, University of Oslo (primarily)
Kai Li, Princeton University

Overview
• Disks

Organization and properties

• Disk scheduling
traditional
real-time
stream oriented

• Data placement

• Multiple disks

• Prefetching

• Memory caching

Disks

Disks
• Disks ...

Are I/O devices that can store data, including programs
While disk controller registers are directly accessible in SW
(through I/O ports or memory mapped I/O), the data stored on
disks are only accessible through block-transfers between disks
and memory.
Offers persistent storage, in the sense that we expect data to
survive a controlled cycling of power (power-down-power-up)
have more capacity than main memory
are much cheaper than main memory
are orders of magnitude slower than main memory

2

Disks
• Two resources of importance

storage space
I/O bandwidth

• Because...
...there is a large speed mismatch (ms vs. ns) compared to main
memory...disk I/O is the performance bottleneck for some
applications

May be the case also for computational tasks, i.e. oil reservoir modelling
...we need to minimize the number of accesses,
...try to spread out the traffic in time and space
…

...we must consider what disk technology to use, and how
to use it!

Disk Organization

Platters
Circular platters, two surfaces
covered with
magnetic material to provide
nonvolatile storage of bits

Tracks
concentric circles on a
single platter

Sectors
segments of the track circle
separated by non-magnetic gaps.
The gaps are often used to identify
beginning of a sector

Cylinders
corresponding tracks on the different
platters are said to form a cylinder

Spindle
of which the platters
rotate around

Disk heads
read or alter the
magnetism (bits) passing
under it. The heads are
attached to an arm
enabling it to move across
the platter surface

Disk Technology Trends
• Packing density is increasing

Linear density (bits/inch) is increasing exponentially
Track density (tracks/inch) is increasing exponentially
Areal density (the product of track and linear density) increases exponentially
(doubles per 18 months?)

• Increasing transfer speed
Higher packing density
New interconnect technologies
Better buffering
Some increase in rotation speed

• Decreasing form factors
Less power/GB
New applications (ipods, cameras?)
Tighter packaging

Disk Market Trends
• Disks are getting cheaper

About a factor of two per year since 1991
• COTS Prevalence

Common-Off-The-Shelf technologies prevail in market
Technologies developed for mass market use continuously threatens
technologies applied at higher price-ponts because development costs are
amortized over more units sold. With lacking market shares, the more
exclusive technology may loose first in performance/cost, and eventually
also in performance
An aside: An important issue arises of when to hang on the true and tested,
when to go with the winds of change? Too early and too late may be equally
expensive.

COTS work when we have a synergy of technology push and
market pull

We are able to develop the technologies further, and there are markets
willing to pay for our development efforts and the products that arise

3

Is there a Future for Disks?

• Disks have repeatedly been doomed a dead-end technology
by respected computer scientists, because of moving
mechanical parts. That hasn’t happened yet.

M. Flynn volunteers the information that he advised IBM to get out
of the disk business. Fortunately, he says, they didn’t follow his
advise, and moved on to make lots of money on disks

• Look for new applications of disks …
Camera!?
Back-up!!

• …and new usage
”Hang to your life-time of data”

Disk Specifications
• Disk technology develops “fast”
• Some existing (Seagate) disks today (2002):

Note 1:
disk manufacturers usually
denote GB as 109 whereas
computer quantities often are
powers of 2, i.e., GB is 230

Note 3:
At any given time,
there is usually a
trade off between
speed and capacity

Note 2:
there is a difference between internal and formatted transfer rate. Internal is only
between platter. Formatted is after the signals interfere with the electronics
(cabling loss, interference, retransmissions, checksums, etc.)

73.4

0.2

609 – 891

X15.3

8 MB4 MB16 MBdisk buffer cache

522 – 709520 – 682282 – 508 internal transfer rate (Mbps)

234.17average latency (ms)

71216max (full stroke) seek (ms)

0.30.60.8min (track-to-track) seek (ms)

3.6 5.77.4average seek time (ms)

18.4799.77224.247#cylinders (and tracks)

15.00010.0007200Spindle speed (RPM)

36.736.4181.6Capacity (GB)

Cheetah X15Cheetah 36Barracuda 180

Disk Capacity
• The size (storage space) of the disk is dependent on

the number of platters
whether the platters use one or both sides
number of tracks per surface
(average) number of sectors per track
number of bytes per sector

• Example (Cheetah X15):
4 platters using both sides: 8 surfaces
18497 tracks per surface
617 sectors per track (average)
512 bytes per sector
Total capacity = 8 x 18497 x 617 x 512 ≈ 4.6 x 1010 = 42.8 GB
Formatted capacity = 36.7 GB

Note:
there is a difference between formatted
and total capacity. Some of the
capacity is used for storing checksums,
spare tracks, gaps, etc.

Disk Access Time

• How do we retrieve data from disk?
position head over the cylinder (track) on which the block
(consisting of one or more sectors) are located
read or write the data block as the sectors move under the head
when the platters rotate

• The time between the moment issuing a disk request and
the time the block is resident in memory is called disk
latency or disk access time

4

+ Rotational delay

+ Transfer time

Seek time

Disk access time =

+ Other delays

Disk platter

Disk arm

Disk head

block x
in memory

I want
block X

Disk Access Time Disk Access Time: Seek Time
• Seek time is the time to position the head

the heads require a minimum amount of time to start and stop moving the head
some time is used for actually moving the head –
roughly proportional to the number of cylinders traveled

Time to move head:

~ 3x - 20x

x

1 N
Cylinders Traveled

Time

“Typical” average:
10 ms → 40 ms
7.4 ms (Barracuda 180)
5.7 ms (Cheetah 36)
3.6 ms (Cheetah X15)

nβα + number of tracks
seek time constant
fixed overhead

Disk Access Time: Rotational Delay

• Time for the disk platters to rotate so the first of the
required sectors are under the disk head

head here

block I want

Average delay is 1/2 revolution

“Typical” average:
8.33 ms (3.600 RPM)
5.56 ms (5.400 RPM)
4.17 ms (7.200 RPM)
3.00 ms (10.000 RPM)
2.00 ms (15.000 RPM)

Disk Access Time: Transfer Time
• Time for data to be read by the disk head, i.e., time it takes the

sectors of the requested block to rotate under the head

• Transfer rate ≤

• Transfer time = amount of data to read / transfer rate

• Example – Barracuda 180:
406 KB per track x 7.200 RPM ≈ 47.58 MB/s

• Example – Cheetah X15:
316 KB per track x 15.000 RPM ≈ 77.15 MB/s

• Transfer time is dependent on data density and rotation speed
• If we have to change track, time must also be added for moving the

head

amount of data per track
time per rotation

Note:
one might achieve these
transfer rates reading
continuously on disk, but
time must be added for
seeks, etc.

5

Disk Access Time: Other Delays

• There are several other factors which might introduce
additional delays:

CPU time to issue and process I/O
contention for controller
contention for bus
contention for memory
verifying block correctness with checksums (retransmissions)
waiting in scheduling queue
...

• Typical values: “0”
(maybe except from waiting in the queue)

Disk Throughput
• How much data can we retrieve per second?

• Throughput =

• Example:
for each operation we have

- average seek - average rotational delay
- transfer time - no gaps, etc.

Cheetah X15 (max 77.15 MB/s)
4 KB blocks 0.71 MB/s
64 KB blocks 11.42 MB/s

Barracuda 180 (max 47.58 MB/s)
4 KB blocks 0.35 MB/s
64 KB blocks 5.53 MB/s

data size
transfer time (including all)

Block Size
• The block size may have large effects on performance
• Example:

assume random block placement on disk and sequential file access
doubling block size will halve the number of disk accesses

each access take some more time to transfer the data, but the total transfer
time is the same (i.e., more data per request)
halve the seek times
halve rotational delays are omitted

e.g., when increasing block size from 2 KB to 4 KB (no gaps,...)
for Cheetah X15 typically an average of:
☺ 3.6 ms is saved for seek time
☺ 2 ms is saved in rotational delays

0.026 ms is added per transfer time

increasing from 2 KB to 64 KB saves ~96,4 % when reading 64 KB

} saving a total of 5.6 ms
when reading 4 KB (49,8 %)

100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Amount of data read per operation (KB)

E
ff

ic
ie

n
cy

 in
 %

 o
f

m
a

x.
 t

h
ro

u
g

h
p

u
t

Block Size
• Thus, increasing block size

can increase performance
by reducing seek times and
rotational delays

• However, a large block size
is not always best

blocks spanning several tracks
still introduce latencies
small data elements may
occupy only a fraction of the
block

• Which block size to use therefore
depends on data size and data reference patterns

• The trend, however, is to use large block sizes as new technologies appear with
increased performance – at least in high data rate systems

6

Disk Access Time: Some Complicating Issues

• There are several complicating factors:
the “other delays” described earlier like
consumed CPU time, resource contention, etc.
unknown data placement on modern disks
zoned disks, i.e., outer tracks are longer and therefore usually have
more sectors than inner - transfer rates are higher on outer tracks
gaps between each sector
checksums are also stored with each the sectors

read for each track and used to validate the track
usually calculated using Reed-Solomon interleaved with CRC
for older drives the checksum is 16 bytes

(SCSI disks sector sizes may be changed by user!!??)

inner:

outer:

Writing and Modifying Blocks
• A write operation is analogous to read operations

must add time for block allocation
a complication occurs if the write operation has to be verified –
must wait another rotation and then read the block to see if it is
the block contains what we wanted to write
Total write time ≈ read time + time for one rotation

• Cannot modify a block directly:
read block into main memory
modify the block
write new content back to disk
(verify the write operation)
Total modify time ≈ read time + time to modify +

write time

Disk Controllers

• To manage the different parts of the disk, we use a disk
controller, which is a small processor capable of:

controlling the actuator moving the head to the desired track
selecting which platter and surface to use
knowing when right sector is under the head
transferring data between main memory and disk

• New controllers acts like small computers themselves
both disk and controller now has an own buffer reducing disk
access time
data on damaged disk blocks/sectors are just moved to spare
room at the disk – the system above (OS) does not know this, i.e.,
a block may lie elsewhere than the OS thinks

Efficient Secondary Storage Usage
• Must take into account the use of secondary storage

there are large access time gaps, i.e., a disk access will probably dominate the
total execution time
there may be huge performance improvements if we reduce the number of disk
accesses
a “slow” algorithm with few disk accesses will probably outperform a “fast”
algorithm with many disk accesses

• Several ways to optimize
block size
disk scheduling
multiple disks
prefetching
file management / data placement
memory caching / replacement algorithms
…

7

Disk Scheduling

Disk Scheduling
• Seek time is a dominant factor of total disk I/O time

• Let operating system or disk controller choose which request
to serve next depending on the head’s current position and requested
block’s position on disk (disk scheduling)

• Note that disk scheduling ≠ CPU scheduling
a mechanical device – hard to determine (accurate) access times
disk accesses cannot be preempted – runs until it finishes
disk I/O often the main performance bottleneck

• General goals
short response time
high overall throughput
fairness (equal probability for all blocks to be accessed in the same time)

• Tradeoff: seek and rotational delay vs. maximum response time

Disk Scheduling

• Several traditional algorithms
First-Come-First-Serve (FCFS)
Shortest Seek Time First (SSTF)
SCAN (and variations)
Look (and variations)
…

First–Come–First–Serve (FCFS)
FCFS serves the first arriving request first:
• Long seeks
• “Short” average response time

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24
8

21
7

2

14

12

8

Shortest Seek Time First (SSTF)
SSTF serves closest request first:
• short seek times
• longer maximum response times – may even lead to starvation

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24821721412

SCAN
SCAN (elevator) moves head edge to edge and serves requests on the way:
• bi-directional
• compromise between response time and seek time optimizations

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24821721412

LOOK
LOOK is a variation of SCAN:
• same schedule as SCAN
• does not run to the edges
• stops and returns at outer- and innermost request
• increased efficiency
• SCAN vs. LOOK example:

tim
e

cylinder number
1 5 10 15 20 25

12

incoming requests (in order of arrival):

14 2 7 21 8 24

scheduling
queue

24
8

21

7

2

14

12

Data Placement
on Disk

9

Data Placement on Disk

• Disk blocks can be assigned to files many ways, and
several schemes are designed for

optimized latency
increased throughput

access pattern dependent

Disk Layout

• Constant angular velocity (CAV) disks
equal amount of data in each track
(and thus constant transfer time)
constant rotation speed

• Zoned CAV disks
zones are ranges of tracks
typical few zones
the different zones have

different amount of data
different bandwidth
i.e., more better on outer tracks

Disk Layout
• Cheetah X15.3 is a zoned CAV disk:

4192,69075,3%8188848596,075438234210

4428,26875,5%8648960632,47546623259

4781,50675,7%9338880649,41548024378

5345,64176,3%10440704687,05551225547

5875,00375,5%11474616728,47553726766

6603,66978,1%12897792755,29657628055

7148,07376,0%13961080801,88659529394

7854,29376,5%15340416835,76662430793

9013,24876,0%17604000878,43765233821

9735,63577,2%19014912890,98767235440

Formatted
Capacity
(Mbytes)Efficiency

Sectors per
Zone

Zone Transfer
Rate Mb/s

Spare
Cylinders

Sectors per
Track

Cylinders per
ZoneZone

Always place often used data on outermost tracks (zone 0) …!?

NO, arm movement is often more important than transfer time

Data Placement on Disk
• Contiguous placement stores disk blocks contiguously on disk

minimal disk arm movement reading the whole file (no intra-file seeks)

possible advantage
head must not move between read operations - no seeks or rotational delays
can approach theoretical transfer rate
often WRONG: read other files as well

real advantage
do not have to pre-determine block (read operation) size
(whatever amount to read, at most track-to-track seeks are performed)

no inter-operation gain if we have unpredictable disk accesses

file A file B file C

10

Data Placement on Disk

• To avoid seek time (and possibly rotational delay), we can store data
likely to be accessed together on

adjacent sectors
(similar to using larger blocks)

if the track is full, use another track
on the same cylinder
(only use another head)

if the cylinder is full, use
next (adjacent) cylinder
(track-to-track seek)

Data Placement on Disk
• Interleaved placement tries to store blocks from a file with a fixed

number of other blocks in-between each block

minimal disk arm movement reading the files A, B and C
(starting at the same time)

fine for predictable workloads reading multiple files

no gain if we have unpredictable disk accesses

• Non-interleaved (or even random) placement can be used for highly
unpredictable workloads

file A
file B

file C

Data Placement on Disk
• Organ-pipe placement consider the usual disk head position

place most popular data where head is most often

center of the disk is closest to the head using CAV disks
but, a bit outward for zoned CAV disks (modified organ-pipe)

disk:
innermost

outermost

head

bl
oc

k
ac

ce
ss

 p
ro

ba
bi

lit
y

cylinder number

bl
oc

k
ac

ce
ss

 p
ro

ba
bi

lit
y

cylinder number

organ-pipe: modified organ-pipe:
Note:
skew dependent on
tradeoff between
zoned transfer time
and storage
capacity vs.
seek time

Prefetching and Buffering

11

Prefetching
• If we can predict the access pattern, one might speed up performance

using prefetching
a video playout is often linear easy to predict access pattern

eases disk scheduling
read larger amounts of data per request
data in memory when requested – reducing page faults

• One simple (and efficient) way of doing prefetching is read-ahead:
read more than the requested block into memory
serve next read requests from buffer cache

• Another way of doing prefetching is double (multiple) buffering:
read data into first buffer
process data in first buffer and at the same time read data into second buffer
process data in second buffer and at the same time read data into first buffer
etc.

process
data

Multiple Buffering
• Example:

have a file with block sequence B1, B2, ...
our program processes data sequentially, i.e., B1, B2, ...

single buffer solution:
read B1 buffer
process data in buffer
read B2 buffer
process data in Buffer
...

if P = time to process a block
R = time to read in 1 block
n = # blocks

single buffer time = n (P+R)

disk:

memory:

Multiple Buffering
double buffer solution:

read B1 buffer1
process data in buffer1, read B2 buffer2
process data in buffer2, read B3 buffer1
process data in buffer1, read B4 buffer2
...

if P = time to process a block
R = time to read in 1 block
n = # blocks

if P ≥ R
double buffer time = R + nP

if P < R, we can try to add buffers (n - buffering)

process
data

disk:

memory:

process
data Memory Caching

12

Pentium 4
Processor

registers

cache(s)

I/O
controller

hub

memory
controller

hub

RDRAM
RDRAM

RDRAM

RDRAM

PCI slots

PCI slots
PCI slots

network card

disk

file system
communication system

application

file system communication
system

application

disk network card

Data Path (Intel Hub Architecture) Memory Caching

communication
system

application

disk network card

expensive

file system

cache

caching possible

How do we manage a cache?
how much memory to use?
how much data to prefetch?
which data item to replace?
how do lookups quickly?
…

Memory Caching

