
1

Paging (cont.)
30/10-2003

Pål Halvorsen

(including slides from Andrew Tanenbaum)

0 0 1 00 0 1 0

Memory Lookup

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

12-bit offset

Outgoing physical address

4-bit index
into page table
virtual page = 0x0010 = 2

Incoming virtual address
(0x2004, 8196)

0 010 1
1 001 1
2 110 1
3 000 1
4 100 1
5 011 1
6 000 0
7 000 0
8 000 0
9 101 1

10 000 0
11 111 1
12 000 0
13 000 0
14 000 0
15 000 0Page table

0 0 1 0

present
bit

0 0 0 0 0 0 0 0 0 1 0 0

(0x6004, 24580)

1 1 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 00 0 1 0

Memory Lookup

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

12-bit offset

Outgoing physical address

4-bit index
into page table
virtual page = 0x0010 = 2

Incoming virtual address
(0x2004, 8196)

0 010 1
1 001 1
2 110 0
3 000 1
4 100 1
5 011 1
6 000 0
7 000 0
8 000 0
9 101 1

10 000 0
11 111 1
12 000 0
13 000 0
14 000 0
15 000 0Page table

0 0 1 0

present
bit

0 0 0 0 0 0 0 0 0 1 0 0

PAGE FAULT

Page Fault Handling

1. Hardware traps to the kernel saving program counter and process state information

2. Save general registers and other volatile information

3. OS discover the page fault and tries to determine which virtual page is requested

4. OS checks if the virtual page is valid and if protection is consistent with access

5. Select a page to be replaced

6. Check if selected page frame is ”dirty”, i.e., updated

7. When selected page frame is ready, the OS finds the disk address where the needed data is
located and schedules a disk operation to bring in into memory

8. A disk interrupt is executed indicating that the disk I/O operation is finished, the page tables are
updated, and the page frame is marked ”normal state”

9. Faulting instruction is backed up and the program counter is reset

10. Faulting process is scheduled, and OS returns to routine that made the trap to the kernel

11. The registers and other volatile information is restored and control is returned to user space to
continue execution as no page fault had occured

Page Replacement Algorithms

• Page fault → OS has to select a page for replacement

– Modified page → write back to disk

– Not modified page → just overwrite with new data

• How do we decide which page to replace?
→ determined by the page replacement algorithm
→ several algorithms exist:

• Random
• Other algorithms take into acount usage, age, etc.

(e.g., FIFO, not recently used, least recently used, second chance,
clock, …)

• which is best???

Optimal

• Best possible page replacement algorithm:
• When a page fault occurs, all pages in memory are labeled with the

number of instructions that will be executed before this page will be
used again

• The page with most instructions before reuse is replaced

• Easy to describe, but impossible to implement
(OS cannot look into the future)

• Estimate by logging page usage on previous runs of process

• Useful to evaluate other page replacement algorithm

2

Not Recently Used (NRU)

• Two status bits associated with each page:
R → page referenced (read or written)
M → page modified (written)

• Pages belong to one of four set of pages according to the
status bits:

• Class 0: not referenced, not modified (R=0, M=0)
• Class 1: not referenced, modified (R=0, M=1)
• Class 2: referenced, not modified (R=1, M=0)
• Class 3: referenced, modified (R=1, M=1)

• NRU removes a page at random from the lowest numbered,
non-empty class

• Low overhead

First In First Out (FIFO)
• All pages in memory are maintained in a list sorted by age
• FIFO replaces the oldest page, i.e., the first in the list

• Low overhead
• FIFO is rearly used in its pure form

Page most
recently loaded

Page first loaded, i.e.,
FIRST REPLACED

Reference string: A B C D A E F G H I A J

AC B AB AE D C B AF E D C B AG F E D C B AI H G F E D C BA I H G F E D CJ A I H G F E DD C B AD C B A

No change in the FIFO chain

H G F E D C B A

Now the buffer is full, next page fault results in a replacement

Page most
recently loaded

Page first
loaded

R-bit

Second Chance

• Modification of FIFO
• R bit: when a page is referenced again, the R bit is set,

and the page will be treated as a newly loaded page

Reference string: A B C D A E F G H I

E

0

D

0

C

0

B

0

A

1

F

0

E

0

D

0

C

0

B

0

A

1

G

0

F

0

E

0

D

0

C

0

B

0

A

1

D

0

C

0

B

0

A

0

D

0

C

0

B

0

A

1

The R-bit for page A is set

H

0

G

0

F

0

E

0

D

0

C

0

B

0

A

1

Now the buffer is full, next page fault results in a
replacement

H

0

G

0

F

0

E

0

D

0

C

0

B

0

A

1

Page I will be inserted, find a page to page out by looking at the first page loaded:
-if R-bit = 0 → replace
-if R-bit = 1 → clear R-bit, move page last, and finally look at the new first page

A

0

H

0

G

0

F

0

E

0

D

0

C

0

B

0

Page A’s R-bit = 1 → move last in chain and clear R-bit, look at new first page (B)

I

0

A

0

H

0

G

0

F

0

E

0

D

0

C

0

Page B’s R-bit = 0 → page out, shift chain left, and insert I last in the chain

• Second chance is a reasonable algorithm, but inefficient because it is
moving pages around the list

Reference string: A B C D A E F G H I

Clock
• More efficient way to implement Second Chance
• Circular list in form of a clock
• Pointer to the oldest page:

– R-bit = 0 → replace and advance pointer
– R-bit = 1 → set R-bit to 0, advance pointer until R-bit = 0, replace

and advance pointer

A
0

D
0

B
0

C
0

A
1

E
0

F
0

G
0

H
0

I
0

Least Recently Used (LRU)

• Replace the page that has the longest time since
last reference

• Based on the observation that
pages that are heavily used in the last few
instructions will probably be used again in the
next few instructions

• Several ways to implement this algoithm

Least Recently Used (LRU)
• LRU as a linked list:

Page most
recently used

Page least
recently used

Reference string: A B C D A E F G H A C I

E A D C BF E A D C BG F E A D C BD C B AA D B C

Move A last in the chain
(most recently used)

H G F E A D C B

Now the buffer is full, next page fault results in a replacement

I C A H G F E D

Page fault, replace LRU (B) with I

A H G F E D C B

Move A last in the chain
(most recently used)

C A H G F E D B

Move C last in the chain
(most recently used)

• Expensive - maintaining an ordered list of all pages in
memory:
• most recently used at front, least at rear
• update this list every memory reference !!

3

Least Recently Used (LRU)

• LRU by using aging:
– ”reference counter” for each page
– after a clock tick:

• shift bits in the reference counter to the right
(rightmost bit is deleted)

• add a page’s referece bit in front of the reference counter (left)
– page with lowest counter is replaced

000000006

000000005

000000004

000000003

000000002

000000001

100000006

100000005

000000004

100000003

000000002

100000001

010000006

010000005

100000004

010000003

100000002

110000001

Clock tick 0
1 0 1 0 1 1

Clock tick 1
1 1 0 1 0 0

Clock tick 2
1 1 0 1 0 1

Clock tick 3
1 0 0 0 1 0

Clock tick 4
0 1 1 0 0 0

101000006

001000005

110000004

001000003

110000002

111000001

010100006

100100005

011000004

000100003

011000002

111100001

001010006

010010005

001100004

100010003

101100002

011110001

Least Recently Used (LRU)

• LRU as a matrix:
– N pages → N x N matrix
– Page N is referenced → row N is set (1)

→ column N is cleared (0)
– Replace page with lowest row value

0

0

0

0

4321

0004

0003

0002

0001

0

0

0

1

4321

0004

0003

0002

1111

”Page frame” string: 1 2 3 4 3 2 1 4
0

0

0

1

4321

0004

0003

0002

1101

0

0

1

1

4321

0004

0003

1112

1101

0

0

1

1

4321

0004

0003

1012

1001

0

1

1

1

4321

0004

1113

1012

1001

0

1

1

1

4321

0004

0113

0012

0001

1

1

1

1

4321

1114

0113

0012

0001

0

0

0

0

4321

1114

0113

0012

0001

0

1

0

0

4321

1114

1113

0012

0001

0

1

0

0

4321

0114

0113

0012

0001

0

1

1

0

4321

0114

0113

1112

0001

0

1

1

0

4321

0014

0013

1012

0001

0

1

1

1

4321

0014

0013

1012

1111

0

1

1

1

4321

0004

0003

1002

1101

1

1

1

1

4321

1114

0003

1002

1101

0

0

0

0

4321

1114

0003

1002

1101

Counting Algorithms

• LRU by using a reference counter
– clear the counter when the page is referenced (counter = 0)
– increase all counters each clock tick
– replace the page with the highest counter

• Not/Least Frequently Used (N/LFU)
– counter initially 0
– increase the page’s counter only if it has been referenced during this

clock tick
– replace the page with lowest counter

• Most Frequently Used (MFU)
– counter as LFU
– replace the page with the highest counter

(assuming low counters mean new, fresh pages)

LRU-K & 2Q

• LRU-K: bases page replacement in the last K
references on a page [O’Neil et al. 93]

• 2Q:uses 3 queues to hold much referenced and
popular pages in memory [Johnson et al. 94]

• 2 FIFO queues for seldom referenced pages
• 1 LRU queue for much referenced pages

FIFO LRU FIFO

Retrieved from disk Reused, move to LRU queue NOT Reused, move to FIFO queue

NOT reused, page out

NOT reused, page out

Reused, re-arrange LRU queue Reused, move back
to LRU queue

Working Set Model

• Working set:
set of pages which a process is currently using

• Working set model:
paging system tries to keep track of each process’ working set and makes
sure that these pages is in memory before letting the process run
→ reduces page fault rate (prepaging)

• Defining the working set:
– set of pages used in the last k memory references (must count backwards)
– approximation is to use all references used in the last XX instructions

Working Set Page Replacement Algorithm
τ - time period to calculate the WS over
age - virtual time - last reference time

if all pages have R == 1
select one page randomly

• Expensive - must search the whole page table

4

WSClock Page Replacement Algorithm

• Organize each page table entry as a
clock

• As with clock - the page pointed to is
examined first
– R = 1:

clear bit, set virtual time, continue (b)

– R = 0: (c)

• age < τ : continue to next

• age > τ :
– if page clean, replace (d)
– othervice, write to disk and continue

to next

• If all pointer comes back to start
– writes are scheduled to clean pages

(find first)

– no scheduled writes (all in WS),
several option

• remove first clean
• remove oldest
• ...

2204

2204 2204

2204

Belady’s Anomaly

• Question: the more page frames, the fewer page faults?

• Belady’s anomaly gives a counter example using the FIFO
replacement algorithm and buffers of 3 and 4 page frames:

432104103210

0

P

0

P

0

1

P

0

1

P

1

2

0

P

1

2

0

P

2

3

1

P

2

0

3

1

P

3

0

2

P

2

0

3

1

0

1

3

P

2

0

3

1

1

4

0

P

3

1

4

2

P

1

4

0

4

2

0

3

P

1

4

0

0

3

1

4

P

4

2

1

P

1

4

2

0

P

2

3

4

P

2

0

3

1

P

2

3

4

3

1

4

2

P

Refernce string:

Youngest page:

Oldest page:

Youngest page:

Oldest page:

⇒ 9 page faults

⇒ 10 page faults

Stack Algorithms

• Observation:
Every process generates a sequence of memory references
as it runs where each memory reference corresponds to a
virtual page

• Reference string: ordered list of page numbers
(process’ memory accesses)

• A paging system can be charachrized by 3 items:
1. Reference string of the executing process
2. Page replacement algorithm
3. Number of page frames available in memory

Stack Algorithms

143271113553374736453120

∞

P

0

∞

P

0

2

∞

P

0

2

1

∞

P

0

2

1

3

∞

P

0

2

1

3

5

∞

P

0

2

1

3

5

4

∞

P

0

2

1

3

5

4

6

4

0

2

1

5

4

6

3

∞

P

0

2

1

5

4

6

3

7

4

0

2

1

5

6

3

7

4

2

0

2

1

5

6

3

4

7

3

0

2

1

5

6

4

7

3

1

0

2

1

5

6

4

7

3

5

P

0

2

1

6

4

7

3

5

1

0

2

1

6

4

7

3

5

2

0

2

1

6

4

7

5

3

6

P

0

2

6

4

7

5

3

1

1

0

2

6

4

7

5

3

1

1

0

2

6

4

7

5

3

1

4

0

2

6

4

5

3

1

7

7

P

0

6

4

5

3

1

7

2

4

0

6

4

5

1

7

2

3

6

P

0

6

5

1

7

2

3

4

5

P

0

6

5

7

2

3

4

1

Reference string:

Page faults:

Distance string:

Distance string: a page reference is denoted by the distance from the top
of the stack, i.e., the number of references since the page was
referenced last

Distance String Properties

• The statistical properties of the distance string may show expexted
performance of the algorithm (probability density function)

P(d)

d n1

P(d)

d n1

k

having k page frames,
few page faults happen

needs as much as possible

Predicting Page Fault Rates

• Fm = ∑Ck + C∞ , m + 1 ≤ k ≤ n
Fm – # page faults occuring with a given distance string and m page frames
Ck – # occurrences of k, i.e., # times we have a distance k since last reference

• Example - computation of the page fault rate:

Distance string: ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 ∞ 4 2 3 1 5 1 2 6 1 1 4 7 4 6 5

C1 = 4
C2 = 2
C3 = 1
C4 = 4
C5 = 2
C6 = 2
C7 = 1
C∞ = 8

F1 = 20 ← C2 + C3 + C4 + C5 + C6 + C7 + C∞

F2 = 18 ← C3 + C4 + C5 + C6 + C7 + C∞

F3 = 17 ← C4 + C5 + C6 + C7 + C∞

F4 = 13 ← C5 + C6 + C7 + C∞

F5 = 11 ← C6 + C7 + C∞

F6 = 9 ← C7 + C∞

F7 = 8 ← C∞

F8 = 8 ← C∞

← # times 1 occurs in the distance string

← # times 2 occurs in the distance string

← # times 3 occurs in the distance string

page faults with 1 page frame →

page faults with 2 page frame →

page faults with 3 page frame →

5

Locality

• Reference locality:

– Time:
pages that are referenced in the last few instructions will
probably be referenced again in the next few instructions

– Space:
pages that are located close to the page being referenced
will probably also be referenced

Demand Paging Versus Prepaging

• Demand paging:
pages are loaded on demand, i.e., after a process needs it

• Should be used if we have no knowledge about future references
• Each page is loaded separatly from disk, i.e., results in many disk accesses

• Prepaging:
prefetching data in advance, i.e., before use

• Should be used if we have knowledge about future references
• # page faults is reduced, i.e., page in memory when needed by a process
• # disk accesses can be reduced by loading several pages in one

I/O-operation

Allocation Policies

• How should memory be allocated among the
competing runnable processes?

• Equal allocation:
all processes get the same amount of pages

• Proportional allocation:
amount of pages is depending on process size

Allocation Policies

• Local page replacement:
consider only pages of own process when replacing a page

• corresponds to equal allocation
• can cause thrashing
• multiple, identical pages in memory

• Global page replacemet:
consider all pages in memory when replacing a page

• corresponds to proportional allocation
• better performance in general
• monitoring of working set size and aging bits
• data sharing

Allocation Policies
• Example: local versus global replacement

insert page A5 using age replacement

Original configuration

Age

7A2

5C4

9C3

2C2

8C1

3B4

1B3

12B2

6B1

11A4

4A3

10A1

Local replacement

Age

7A2

5C4

9C3

2C2

8C1

3B4

1B3

12B2

6B1

11A4

13A5

10A1

Global replacement

Age

7A2

5C4

9C3

2C2

8C1

3B4

13A5

12B2

6B1

11A4

4A3

10A1

Local replacement:
Replace the oldest
of A’s pages

Global replacement:
Replace the oldest page
in memory

Allocation Policies
• Page fault frequency (PFF):

Usually, more page frames → fewer page faults

P
FF

:
pa

g
e

fa
u

lt
s/

se
c

page frames assigned

PFF is unacceptable high
→ process needs more memory

PFF might be too low
→ process may have too

much memory!!!??????

Solution ??:
Reduce number of processes competing for memory

• reassign a page frame
• swap one or more to disk, divide up pages they held
• reconsider degree of multiprogramming

d n1d n1

6

Page Size

• Determining the optimum page size requires balancing several
competing factors:

• Data segment size ≠ n x page size → internal fragmentation (small size)
• Keep in memory only data that is (currently) used (small size)

• Disk operations (large size)
• Page table size: access/load time and space requirements (large size)
• Page replacement algorithm: operations per page (large size)

• Usual page sizes is 4 KB – 8 KB, but up to 64 KB is suggested
for systems supporting ”new” applications managing high data
rate data streams like video and audio

Locking & Sharing

• Locking pages in memory:
– I/O and context switches
– Much used pages
– …

• Shared pages
users running the same program at the same time, e.g., editor or
compiler

– Problem 1: not all pages are shareable
– Problem 2: process swapping or termination
– …

Backing Store
• Backing store (disk management):

Where on disk shall the pages be put when paged out?
a) Special, in-advance allocated swap area

(problem: growing processes)
b) Allocate disk space when needed

(problem: must hold all disk addresses in memory,
time to allocate a new disk block)

Paging Daemons

• Paging daemons:
Background process which sleeps most of the time, but is for example
awakened periodically or when the CPU is idle

– Taking care that enough free page frames are available by writing
back modified pages before they are reused

– Prepaging

Paging on Pentium

• In protected mode, the currently executing process have a
4 GB address space (232) – viewed as 1 M 4 KB pages

– The 4 GB address space is divided into 1 K page groups
(1 level – page directory)

– Each page group has 1 K 4 KB pages
(2 level – page table)

• Mass storage space is also divided into 4 KB blocks of
information

• Uses control registers for paging information

Control Registers used for Paging on Pentium

• Control register 0 (CR0):

• Control register 1 (CR1) – does not exist, returns only zero

• Control register 2 (CR2)
– only used if CR0[PG]=1 & CR0[PE]=1

PEWPNWCDPG

016293031

Not-Write-Through and Cache Disable:
used to control internal cache

Paging Enable:
OS enables paging by setting CR0[PG] = 1

Write-Protect: If CR0[WP] = 1,
only OS may write to read-only pages

Page Fault Linear Address

031

Protected Mode Enable: If CR0[PE] = 1,
the processor is in protected mode

7

Control Registers used for Paging on Pentium

• Control register 3 (CR3) – page directory base address:
– only used if CR0[PG]=1 & CR0[PE]=1

• Control register 4 (CR4):

PWTPCDPage Directory Base Address

11 03431

A 4KB-aligned physical base
address of the page directory

Page Cache Disable:
If CR3[PCD] = 1, caching is turned off

Page Write-Through:
If CR3[PWT] = 1, use write-through updated

PSE

0431

Page Size Extension: If CR4[PSE] = 1,
the OS designer may designate some pages as 4 MB

Pentium Memory Lookup

00011100000001000000000110000000

11 012212231

Incoming virtual address
(0x1402038, 20979768)

Page directory:

PWUAPS...PT base address

7 6 5 012341231

physical base
address of the
page table

page
size

accessed present

allowed to write

user access allowed

Pentium Memory Lookup

00011100000001000000000110000000

11 012212231

Incoming virtual address
(0x1402038, 20979768)

1 ...0...01010101111

7 6 5 012341231

0...0...01111000101

......

0...0...00000000100

1...0...00001010101

0...0...01110000111

0...0...01111111000

Index to page directory
(0x6, 6)

Page Directory Base Address

CR3:

Page table PF:
1. Save pointer to instruction
2. Move linear address to CR2
3. Generate a PF exception – jump to handler
4. Programmer reads CR2 address
5. Upper 10 CR2 bits identify needed PT
6. Page directory entry is really a mass

storage address
7. Allocate a new page – write back if dirty
8. Read page from storage device
9. Insert new PT base address into

page directory entry
10. Return and restore faulting instruction
11. Resume operation reading the same

page directory entry again – now P = 1

Pentium Memory Lookup

00011100000001000000000110000000

11 012212231

Incoming virtual address
(0x1402038, 20979768)

1 ...0...01010101111

7 6 5 012341231

0...0...01111000101

......

1...0...00000000100

1...0...00001010101

0...0...01110000111

0...0...01111111000

Index to page directory
(0x6, 6)

Page Directory Base Address

CR3:

......

10...00010000100

10...01100110011

00...01010100000

1 ...0...01010101111

7 6 5 012341231
Page table:

Index to page table
(0x2, 2)

Page frame PF:
1. Save pointer to instruction
2. Move linear address to CR2
3. Generate a PF exception – jump to handler
4. Programmer reads CR2 address
5. Upper 10 CR2 bits identify needed PT
6. Use middle 10 CR2 bit to determine entry

in PT – holds a mass storage address
7. Allocate a new page – write back if dirty
8. Read page from storage device
9. Insert new page frame base address into

page table entry
10. Return and restore faulting instruction
11. Resume operation reading the same

page directory entry and page table entry
again – both now P = 1

Pentium Memory Lookup

00011100000001000000000110000000

11 012212231

Incoming virtual address
(0x1402038, 20979768)

1 ...0...01010101111

7 6 5 012341231

0...0...01111000101

......

1...0...00000000100

1...0...00001010101

0...0...01110000111

0...0...01111111000

Index to page directory
(0x6, 6)

Page Directory Base Address

CR3:

......

10...00010000100

10...01100110011

10...01010100000

1 ...0...01010101111

7 6 5 012341231

Index to page table
(0x2, 2)

Page offset
(0x38, 56)

Page:

requested data

Page Fault Causes

• Page directory entry’s P-bit = 0:
page group’s directory (page table) not in memory

• Page table entry’s P-bit = 0:
requested page not in memory

• Attempt to write to a read-only page

• Insufficient page-level privilege to access page table or frame

• One of the reserved bits are set in the page directory or table
entry

